ПАРУТА

Валентин Анатолійович docent2155@gmail.com

УДК 69.002.2

БРИН3ІН

Свген Вікторович yevgen.brynzin@udkgazbeton.com

к.т.н., доцент, Одеська Державна Академія Будівництва та Архітектури ЭКОНОМИЧЕСКАЯ
ЭФФЕКТИВНОСТЬ
ПРИМЕНЕНИЯ АВТОКЛАВНОГО
ГАЗОБЕТОНА В
СТРОИТЕЛЬНОМ
ПРОИЗВОДСТВЕ

к.т.н., Начальник відділу маркетингу, ТОВ "ЮД К"

ГНИП

Ольга Павлівна asp@ogasa.org.ua

к.т.н., доцент, Одеська Державна Академія Будівництва та Архітектури ECONOMIC EFFICIENCY OF AUTOCLAVED AERATED CONCRETE APPLICATION IN CONSTRUCTION INDUSTRY

ЛАВРЕНЮК

Леонід Іванович leonid-2319@ukr.net

к.т.н., доцент, Одеська Державна Академія Будівництва та Архітектури

Статья посвящена применению автоклавного газобетона в строительном производстве. В статье обоснована экономическая эффективность использования автоклавного газобетона в строительстве. The present article is devoted to the use of autoclaved aerated concrete in construction. The economic efficiency of using autoclaved aerated concrete in construction is substantiated in the article.

Ключевые слова: энергоэффективность, кирпич, автоклавный газобетон, долговечность, теплопотери

Keywords: efficiency, brick, autoclaved aerated concrete, durability, heat loss

ВВЕДЕНИЕ

До 45 % тепловой энергии, теряется через стеновые конструкции, что предопределяет значительные затраты при эксплуатации зданий, ухудшение условий проживания и рост заболеваемости. Для снижения этих затрат, необходимо увеличить термическое сопротивление стеновой конструкции.

ЦЕЛЬ РАБОТЫ

Целью работы является выбор материала для возведения стеновой конструкции с нормативным термическим сопротивлением, минимальными затратами при возведении и эксплуатации.

МЕТОДЫ ИССЛЕДОВАНИЯ

В работе использовали математический аппарат для расчета теплотехнических параметров стеновой конструкции, проведен экспертный анализ, применяемых и рекомендуемой, стеновых конструкций и расчет экономической эффективности от применения рекомендуемой конструкции.

РЕЗУЛЬТАТЫ

Значительную долю энергоносителей потребляют в жилищно-коммунальном хозяйстве. В связи с тем, что 40-45 % тепловой энергии теряется через стеновые конструкции, для снижения теплопотерь необходимо увеличить их термическое сопротивление до нормативных показателей (2,8-3,3 м² К/Вт).

При использовании наиболее часто применяемых ранее стеновых материалов (кирпич керамический и силикатный, полнотелый и пустотелый, камни и блоки из легкого бетона, известняк-ракушечник), данную проблему решить невозможно. При

традиционно принятой толщине стены 0,52-0,62 м (табл. 1), что было нормативами в 80-ые и 90-ые годы прошлого столетия, термическое сопротивление их составляет лишь 0,84-1,23 м²·К/Вт (рис. 1). Это предопределяет значительную величину теплового потока через стеновую конструкцию [1], т.е. большие теплопотери (рис. 2).

Увеличение толщины таких стен неэффективно. Для обеспечения нормативного термического сопротивления, толщина стены из этих материалов должна составлять 1,2-2,5 метра (рис. 3), при массе 1 м² кладки 1150-4500 кг (рис. 4). Это приводит к увеличению расхода материала, затрат на него и оплату труда за кладочные работы.

Значительная масса 1 м² кладки является препятствием для использования таких стеновых конструкций при многоэтажном строительстве, так как увеличивается нагрузка на перекрытия, фундаменты и основания. А это ведет к увеличению расхода арматуры и бетона и, как следствие, увеличение себестоимости здания.

Устройство многослойной стеновой конструкции, в которой механическую нагрузку воспринимает стена, выполненная из кирпича, керамического или силикатного, камней или блоков из легкого бетона, известняка-ракушечника и др., а необходимое термическое сопротивление обеспечивают теплоизоляционные материалы (пенополистирол, минераловатные и др.) не совсем эффективно (рис. 5).

Недостатком таких конструкций является их сложность, низкая производительность труда, повышенная себестоимость (рис. 6). Еще одним из важных факторов является соотношение долговечности

системы утепления и стеновой конструкции. Так, например, наиболее часто используемая система «скрепленной теплоизоляции» (ССТ) [8], имеет в Германии гарантийный срок эксплуатации 30 лет, а при низком качестве работ, присущем нашему

строительству, он еще сократится. Это означает, что за период эксплуатации здания (100-150 лет) будет произведено несколько капитальных ремонтов стеновой конструкции.

Таблица 1

Характеристики	Стеновои	KUHUTIVKIIMA

		Вид стенового материала					
№ пп	Характеристика стенового материала	керамзи тобетон	кирпич керамиче- ский пустотелый	кирпич силикатный полнотелый	кирпич силикатный пустотелый	известняк ракушечник	газобетон автоклавный
1.	Средняя плотность, $\kappa \Gamma / M^3$	1000	1400	1800	1400	1400	300-600
2.	Теплопроводность, Вт/м·К	0,41	0,58	0,76	0,64	0,58	0,11-0,16
	Термическое сопротивлении (R) стены, при традиционных толщинах:						
3.	TO THE . 16	0.25	0.51.0.60	0.51.0.62	0.71.0.60	0.4	0.275.05
3.	-толщина, м	0,35	0,51-0,62	0,51-0,62	0,51-0,62	0,4	0,375-0,5
3.	-голщина, м -R, м ² ·К/Вт	0,35 1,02	0,51-0,62 1,04-1,23	0,51-0,62 0,84-0,98	0,51-0,62 0,96-1,13	0,4 0,85	0,3/5-0,5 3,1-4,5
3.		1,02	, ,	0,84-0,98	0,96-1,13	0,85	
4.		1,02	1,04-1,23	0,84-0,98	0,96-1,13	0,85	
	-R, м ² ·К/Вт	1,02 Толщина	1,04-1,23 стены, м, при тер	0,84-0,98	0,96-1,13 гивлении (Rн), м	0,85 ² ·К/Вт	3,1-4,5
4.	-R, m ² ·K/BT R _H =2,8	1,02 Толщина 1,15 1,35	1,04-1,23 стены, м, при тер 1,62	0,84-0,98 омическом сопрот 2,13 2,5	0,96-1,13 гивлении (Rн), м 1,79 2,11	0,85 ² ·K/BT 1,69 1,91	0,36-0,79
	-R, m ² ·K/BT R _H =2,8	1,02 Толщина 1,15 1,35	1,04-1,23 стены, м, при тер 1,62 1,9	0,84-0,98 омическом сопрот 2,13 2,5	0,96-1,13 гивлении (Rн), м 1,79 2,11	0,85 ² ·K/BT 1,69 1,91	0,36-0,79

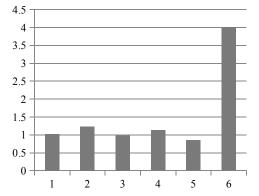


Рис. 1. Термическое сопротивление стены при общепринятых толщинах, $M^2 \cdot K/Bm$

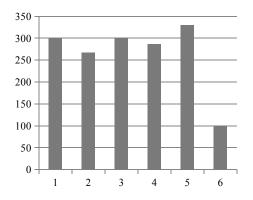


Рис.2. Величина теплового потока через стены при общепринятых толщинах, %

1. Керамзитобетон. 2. Кирпич керамический пустотелый. 3. Кирпич силикатный полнотелый. 4. Кирпич силикатный пустотелый. 5. Известняк-ракушечник. 6. Газобетон автоклавный.

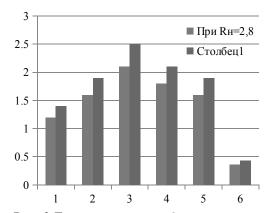


Рис. 3.Толщина стены, обеспечивающая нормативное термическое сопротивление, м

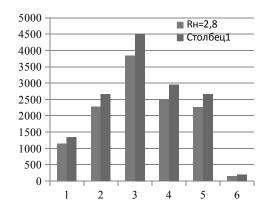


Рис. 4. Масса 1 м² кладки, при толщине, обеспечивающей нормативное термическое сопротивление, т

1. Керамзитобетон. 2. Кирпич керамический пустотелый. 3. Кирпич силикатный полнотелый. 4. Кирпич силикатный пустотелый. 5. Известняк ракушечник. 6. Газобетон автоклавный.

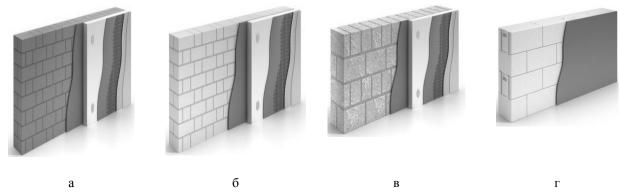


Рис. 5.Двухслойная стеновая конструкция а) кирпич керамический+ССТ; б) кирпич силикатный+ССТ; в) известняк-ракушечник+ССТ; г) газобетон с полимерцементной штукатуркой

Это приведет к увеличению эксплуатационных и энергетических затрат, так как для производства материалов, используемых при капитальном ремонте, тоже будут затрачены энергоресурсы. Следовательно, такое энергосбережение обернется дополнительными энергозатратами [1].

Оптимальным решением проблемы, является использование стеновой конструкции из автоклавного газобетона. При толщине 0,4-0,5 м обеспечивается термическое сопротивление 3,3-4,5 м²·К/Вт, достаточное для всех регионов Украины (рис. 1). Такие стены используют с различными системами отделки: облицовкой кирпичом, керамической плиткой, устройством навесного вентили-руемого фасада и др. [2,5,6,7]. Оптимальным технико-экономическим решением является применение однослойной стеновой конструкции из автоклавного газобетона, оштука-

туренной фасадной полимерце-ментной штукатуркой, с последующей отделкой лакокрасочной системой или декоративной штукатуркой [5, 6, 9].

Технология возведения проста, с высокой производительностью и малыми затратами [2]. Вследствие снижения стоимости стеновой конструкции и увеличения коэффициента долговечности, уменьшаются приведенные затраты (Π):

$\Pi = \mu \cdot (C + E \cdot K) + 3/E \cdot H$

где: Π — приведенные затраты; μ -коэффициент долговечности; C — стоимость 1 м 2 стеновой конструкции (одноразовые затраты), грн; Eн — нормативный коэффициент; K — капитальные вложения, грн; Θ — эксплуатационные затраты;

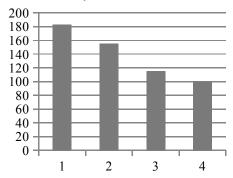


Рис. 6. Затраты на возведение стен, %

1. Кирпич керамический пустотелый с CCT. 2.Кирпич силикатный полнотелый с CCT. 3.Блоки из известняка-ракушечника с CCT. 4.Оштукатуренный автоклавный газобетон

выводы

- 1. Высокая стоимость энергоносителей, значительная доля которых затрачивается и теряется в жилищно-коммунальном хозяйстве, требует использования стеновых конструкций с высоким термическим сопротивлением.
- 2. При применении традиционных стеновых материалов (кирпича керамического и силикатного, керамзитобетона, известняка-ракушечника) данную проблему решить невозможно.
- 3. Эффективным является использование стеновой конструкции из автоклавного газобетона. При толщине 0,4-0,5 м обеспечивается термическое сопротив-

ление 3,3-4,5 м^2 -К/Вт, достаточное для большинства регионов.

4.Оптимальным конструктивным решением являяется применение однослойной стены, из автоклавного газобетона, оштукатуренной фасадной полимерцементной штукатуркой, с последующей отделкой лакокрасочной системой или декоративной штукатуркой.

Технология возведения проста, с высокой производительностью и малыми затратами при производстве работ и эксплуатации. Вследствие снижения стоимости стеновой конструкции и увеличения

коэффициента долговечности, уменьшаются затраты на возведение зданий и их эксплуатацию.

Список использованных источников

- 1. А.С. Горшков Пути повышения энергоэффективности ограждающих конструкций зданий / А.С. Горшков, А.Б. Войлоков // Сборник трудов II Всероссийской научно-технической конференции «Строительная теплофизика и энергоэффективное проектирование ограждающих конструкций зданий». 2009. Санкт-Петербург с.47-51.
- 2. Старчук В.Н. Питання оптимізації та індустріалізації влаштування зовнішніх стін в сучасному житловому будівництві / Старчук В.Н., Старчук Т.В., Старчук Я.В. // Науково-технічний збірник НДІБМВ, ДНДІСТ // "Будівельні матеріали, вироби та санітарна техніка".—2012.-№46.— с. 115-119.
- 3. Парута В.А. Теоретические предпосылки оптимизации рецептурно-технологических параметров штукатурных растворов для стен, выполненных из газобетонных блоков / Парута В.А., Саевский А.А, Семина Ю.А., Столяр Е.А., Устенко А.В // Инженерностроительный журнал № 8 (34), 2012, Санкт Петербург с.30-36.
- 4. Григоровский П.Е.Технические решения стен многоэтажных зданий из ячеистобетонных изделий автоклавного твердения. / Григоровский П.Е., Франивский А.А., Парута В.А. и др // НИИСП, Киев, 2011, 189с.
- 5. Буравченко С.Г., Парута В.А. и др.. Посібник з проектування малоповерхових будівель з автоклавного бетону з альбомом технічних рішень. УкрНДППроцивільсільбуд, Киев, 2011, 163с.

- 6. А.С. Коломацкий, Г.И. Гринфельд, Л.Х. и др. Руководство по наружной отделке стен из ячеистобетонных блоков автоклавного твердения. Национальная ассоциация производителей автоклавного газобетона России, Белгород, 2010. 47 с.
- 7. В.Г. Гагарин Теплоизоляционные фасады с тонким штукатурным слоем. // «АВОК» № 6, 2007, с. 34-36.
- 8. Я. Паплавскис, А. Фрош Требования к штукатурным составам для наружной отделки стен из ячеистых бетонов. Сборник: Проблемы эксплуатационной надежности наружных стен на основе автоклавных газобетонных блоков и возможности их защиты от увлажнения. Штукатурные составы для наружной отделки стен из газобетона: материалы семинара; под редакцией Н.И.Ватина, СПб.: Изд-во. Политехнического ун-та, 2010, с.10-15.
- 9. Парута В.А. Теоретические предпосылки повышение долговечности наружных стен из автоклавного газобетона / Парута В.А., Брынзин Е.В., Гайденко Ю.А., Демешко Е.И. // "Строительные материалы, изделия и санитарная техника", 2011. №40.— С. 136-140.
- 10. EN 998-1:2003 "Specification for mortar for masonry. Part 1: Rendering and plastering mortar", 32 p.
- 11. M. Homann. Richtig Bauen mit Porenbeton. Stuttgart, 2003, 268 p.
- 12. Helmut Künzel "Außenputz. Untersuchungen, Erfahrungen, Überlegungen-", Fraunhofer IRB Verlag, 2003, P. 23-27.
- 13. Сажнева Н.Н., Сажнев Н.П., Урецкая Е.А. Защитные системы для отделки ячеистого бетона пониженной плотности // "Строительные материалы", 2009. №1. с.17-19.