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Abstract 
The technique for designing the optimal value of the filter time constant for analog signal is presented in the 

paper. This technique is based on the objective function which takes into account the quality index of the filtration 
process and the dynamic error of the filtered signal. The experimental study of the transient processes in a thermal 
plant was carried out in order to analyze the influence of the filter parameters on the quality of the filtration process. 
The optimal value of the filter time constant was designed on the basis of the developed technique for the obtained 
experimental data. The experimental transient process was compared to the filtered one which was obtained with 
application of a filter with an optimal time constant. Application of the developed technique for designing the optimal 
time constant in the automated measurement and control systems will ensure high quality of the filtration process and 
small dynamic error of the filtered signal. 
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1. Introduction 
The analog signal filtration is often used in the up-to-date automated measurement and control systems. The main 

purpose of the filtration process is to eliminate the disturbances (noise) and to allow the useful signal to pass. 
Application of a filter in an automatic control system based on a step controller or a continuous controller provides 
elimination of the undesired operation of the controller and improvement of the automatic control quality. 

When designing a filter there is often a problem of choosing the filter structure and defining the numerical values 
of its tuning parameters. Nowadays the following two types of filters are most widely applied in the industrial 
automation systems based on microprocessor controllers: exponential filter and moving average filter. The structures 
of these filters are known and their tuning parameters can be set in a definite range depending on the process for 
which the technological parameter is measured. 

Setting a too small value of the time constant for the exponential filter will lead to a low quality of the filtration 
process because not all the disturbances (noises) will be filtered (removed). Setting a too big value of the filter time 
constant will provide a good quality of filtration, however it will lead to a significant delay of the filtered signal 
which, in turn, will cause a big value of the dynamic error in the filtered signal. That is why there is a problem of 
defining such a value of the filter time constant at which a good quality of the filtration process would be ensured 
together with a small dynamic error of the filtered signal. To solve this problem the technique for designing the 
optimal value of the filter time constant was developed. This technique is based on the objective function which takes 
into account the quality index of the filtration process and the dynamic error of the filtered signal. 

Optimization of filters is discussed in [1]-[3], however these works are mostly focused on optimization of the 
filter structure and less attention is paid to defining the optimal numerical values of the filter tuning parameters. 
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The goal of this work is to present the developed technique for designing the optimal value of the exponential 
filter time constant taking into account the dynamic properties of the controlled plant. The technique was developed 
on the basis of the results of experimental study of the transient processes in a thermal plant. 

2. Filters of analog signals 
In the analog signal processing, the filter is a device for passing the desired frequencies of the electric signal and 

for suppressing the undesired frequencies. In the digital signal processing, the digital filter is a hardware or software 
tool for any kind of digital signal processing with the properties of a linear time-invariant system [4]-[6]. Depending 
on the shape of the amplitude frequency response curve there are four types of filters: 

• low-pass filters (they pass all the frequencies below the cutoff frequency fc); 
• high-pass filters (they pass all the frequencies higher than the cutoff frequency fc); 
• band-pass filters (they pass all the frequencies within the range from fc1 to fc2); 

• band-stop filters (they pass all the frequencies outside the range from fc1 to fc2). 

Since it is impossible to implement the ideal amplitude frequency response (AFR) in a device, various 
approximation methods are applied during the filter design. There are the following types of filters depending on the 
AFR approximation function: 

• Butterworth filter (its main advantage is the absence of the ripple in the pass band and in the stop band, 
however this filter has a slow roll-off and it is difficult and expensive to implement a highly selective filter 
since a high order of the filter is needed); 

• Chebyshev type 1 and type 2 filters (they have a steeper roll-off, however there is ripple in the pass band (type 1) 
or in the stop band (type 2)); 

• elliptical (Cauer) filter (it has the steepest roll-off, however there is ripple both in the pass band and in the stop 
band). 

There are also Bessel, Lagrange, Gaussian and other filters known in addition to those listed above. 

The main advantages of the digital filters as compared to the analog ones are as follows: 

• high accuracy (in the analog filters the accuracy is limited by the tolerance for the elements); 
• stability in time (there is no drift of parameters depending on the environmental conditions); 
• flexibility in tuning and simple change of the setting parameters; 
• small dimensions. 

There are also some drawbacks of the digital filters in comparison with the analog ones: 

• limited range of operation due to the Nyquist frequency; 
• difficulties with operation in the real-time mode, since all the computations need to be done within the 

sampling period; 

• high resolution of ADC and DAC is needed to provide high accuracy of the filter. 

The process of digital filtration consists in summarizing a definite number of the input and previous output samples: 
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where yn is the current output sample; xn is the current input sample; yn-i are the previous output samples; xn-i are the 
previous input samples; bi are the coefficients of the input samples; ai are the coefficients of the output samples. 

Depending on which samples take part in the computation of the output value, the following two categories of 
filters are considered: 

• finite impulse response (FIR) filters (only input samples are used for computation of the output value); 
• infinite impulse response (IIR) filters (both input and previous output samples are used for computation of the 

output value). 
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The industrial low-pass filters are usually based on the following two types of filters: the moving average filter 
(FIR filter) and the exponential filter (IIR filter) [7]. 

The moving average filter with five samples used for computing the output sample can be described by the equation: 

 ( )21125
1

++−− ++++= nnnnnn xxxxxy . (2) 

In this equation, both samples before and after a given moment of time n take part in computation of the     
current output sample. That is why there is no delay in the filtered signal. This type of the filtration algorithm is called 
non-causal. And it cannot be used for the real-time applications. 

The output sample of a real-time filter is computed on the basis of the previous samples. There is a delay of the 
output samples with respect to the input ones. This filter is called causal and it can be described by the equation: 
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The moving average filter is simple, however at equal coefficients it becomes inert and there is a slow response 
of the filter to the variation of the input signal. 

The exponential filter which is also called the autoregressive-moving-average (ARMA) filter can be described 
by the equation: 
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where h is the analog signal sampling period; T is the filter time constant. 

The current filtered sample yn is defined by summing the previous filtered sample yn-1 and the current input 
sample xn with the corresponding weighting coefficients. 

3. Experimental study 
To evaluate the influence of the filter parameters on the quality of the filtration process the results of the 

experimental study were obtained. The transient processes in a thermal plant (electric oven) were studied. Air 
temperature at the output of the oven was the output variable of the plant. Fifteen step response curves in total were 
registered. The sampling period during the analog signal logging was 1 s. The experimental facility and the data 
logging processes are described in details in [8]. The normalized step response curves obtained during the 
experimental study are presented in Fig. 1. The curves 119 – 1019 were obtained during the first day of the 
experimental study and the curves 120 – 520 during the second day of the study. 

 
Fig. 1. Normalized step response curves obtained during the experimental study 
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It can be seen from Fig.1 that the registered step response curves contain both useful signal and the disturbances 
(noise) which occurred during the experiment. These disturbances look like abrupt, brief deviations of the registered 
points from the main current value of the signal. In order to eliminate these disturbances during operation of the 
measurement system in real-time mode it is proposed to apply the exponential filter with the time constant designed 
according to the technique presented below.  

We can also see from Fig. 1 that the registered curves have different dynamics. For designing the optimal value 
of the filter time constant the curve 520 is chosen (upper violet curve in Fig. 1). This curve has the highest rate of 
signal change. Such a choice of the curve is explained by the fact that the impact of the filter time constant on the 
dynamic error of measurement is the most significant for the signal with the highest rate of change. And for the 
signals with a smaller rate of change this influence will be less considerable. 

4. Design of optimal filter 

In order to design the optimal value of the time constant for the exponential filter according to the developed 
technique the following eight steps should be accomplished. 

Step 1. Computation of the smoothed analog signal by means of the non-causal moving average filter using the 
following formula: 
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where ys are smoothed samples; ye are experimental samples. 

The example of the smoothed step response curve for the experimental curve 520 is presented in Fig. 2. The step 
response curve is presented in the time range from 0 to 20 s for a better visual demonstration. 

 
Fig. 2. Comparison of the smoothed (ys) and experimental (ye) step response curves 

Step 2. Computation of the mean square of the experimental samples deviation from the smoothed experimental 
samples according to the formula 
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where N is the number of registered experimental samples of the analog signal; уе are experimental samples; уs are 
smoothed experimental samples obtained in step 1. 
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In formula (6), the sum of squares starts from the third sample (i = 3) and ends by the third sample from the end 
(N – 2) which is caused by the fact that there are no first two and last two samples in the smoothed signal (ys). This is 
the peculiarity of the non-causal moving average filter.  There is (N – 4) in the denominator which is also caused by the 
absence of the first two and the last two samples in the smoothed signal. 

Step 3. Filtration of the experimental analog signal by means of the exponential filter with the time constant Tf = 1 s. 
The example of the model for filtration of the experimental signal in Simulink is presented in Fig. 3. The 
experimental samples of the registered signal (ye) are entered in the block Signal 1. The exponential filter is 
presented by the block filter (the first-order lag element with the time constant T_f). The signal yf1 will be obtained as 
the result of the filtration. The comparison of the experimental and the filtered analog signal is presented in Fig.4. 

 
Fig. 3. Example of the model for filtration of the experimental signal by means of the exponential filter in Simulink. 

 
Fig. 4. Comparison of the experimental analog signal (ye) and the filtered signal (yf1)  

by means of the exponential filter with the time constant Tf = 1 s 

Step 4. Computation of the smoothed filtered signal by means of the non-causal moving average filter using the 
following formula: 
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The comparison of the filtered (yf1) and the smoothed filtered signal (ys1) is presented in Fig. 5. 

Step 5. Computation of the mean square of the filtered samples (yf1) deviation from the smoothed filtered 
samples (ys1) according to the formula 
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Fig. 5. Comparison of the filtered (yf1) and the smoothed filtered analog signal (ys1). 

Step 6. Computation of the maximum dynamic error of the smoothed filtered samples (ys1, obtained in step 4) 
with respect to the smoothed experimental samples (ys, obtained in step 1). Since the normalized experimental step 
response curve varies from 0 to 1 (see Fig. 1), the maximum relative reduced error can be calculated according to the 
formula 

 )100|max(| 1
max ×−= ss yyδ . (9) 

The comparison of the smoothed experimental signal (ys) and the smoothed filtered signal (ys1) is presented in 
Fig. 6. 

 
Fig. 6. Comparison of the smoothed experimental signal (ys) and the smoothed filtered signal (ys1) 

Step 7. Accomplishment of steps 3-6 for the exponential filter time constant Tf = 2, 3, 4, ... n s. The computation 
should be done until the maximum dynamic error δmax does not exceed 10 %. At the result of the computation, the 
dependence of the deviation mean square D on the filter time constant Tf will be obtained as well as the dependence 
of the maximum dynamic error δmax on the filter time constant Tf will be obtained. These dependences are presented 
in Table 1 and in Fig. 7, Fig. 8 for the experimental step response curve 520. 

It can be seen from Table 1 that the last value of the filter time constant for which the maximum dynamic error 
does not exceed 10 % is equal to 18 s. 
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Table 1. Dependence of the deviation mean square D and the maximum dynamic error δmax on the filter time constant Tf 

Тf, s D×10-6 δmax, % Тf, s D×10-6 δmax, % Тf, s D×10-6 δmax, % Тf, s D×10-6 δmax, % 

0 4.528 0.00 5 0.046 3.18 10 0.012 5.95 15 0.006 8.29 
1 0.720 0.67 6 0.033 3.76 11 0.010 6.45 16 0.005 8.71 
2 0.240 1.33 7 0.024 4.34 12 0.009 6.94 17 0.005 9.14 
3 0.118 1.96 8 0.019 4.90 13 0.008 7.41 18 0.004 9.57 
4 0.070 2.59 9 0.015 5.44 14 0.007 7.86 19 0.004 10.01 

 
Fig. 7. Dependence of the deviation mean square D on the filter time constant Tf 

 
Fig. 8. Dependence of the maximum dynamic error δmax on the filter time constant Tf 

The value D represents the scattering of the filtered signal with respect to the smoothed filtered signal. This 
value can serve as the index of the filtration quality. The smaller the scattering of the filtered signal, the higher the 
quality of the filtration process is. As we can see from Fig. 7, the increase of the filter time constant Tf leads to the 
decrease of the deviation mean square D, i.e. to the improvement of the quality of the analog signal filtration. 
However, our attention should also be paid to the influence of the filter time constant Tf on the dynamic error of the 
filtered signal δmax. The increase of the filter time constant Tf   leads to the increase of this error (see Fig. 8). 

To define the optimal value of the filter time constant it is proposed to apply a combined objective function. 
Computation of this objective function is presented in the next step. 



 Roman Fedoryshyn, Sviatoslav Klos, Volodymyr Savytskyi, Yevhen Pistun, Miroslaw Woloszyn  

 
 

100 

Step 8. Computation of the objective function on the basis of the obtained arrays of the deviation mean square D 
and the maximum dynamic error δmax according to the formula 

 I(Tf) = D'(Tf)  + δ'max(Tf) , (10) 

where D'(Tf) is the reduced mean square of the deviation; δ'max(Tf) is the reduced maximum dynamic error. 

The reduced mean square values of the deviation are calculated as follows: 
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where D(0) is the first value of the deviation mean square (for the filter time constant Tf = 0 s). 

The reduced maximum dynamic errors are calculated as follows: 
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where δmax(п) is the last value of the maximum dynamic error (for the last value of the filter time constant Tf = n s). 

The optimal time constant of the exponential filter shall be defined on the basis of the calculated values of the 
objective function. The optimal time constant is such a value of the time constant for which the objective function is 
minimal: 
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The curve of the objective function I versus the filter time constant Tf for the experimental step response curve 
520 is presented in Fig. 9. 

 
Fig. 9. Curve of the objective function I versus the filter time constant Tf 

As we can see from Fig. 9, the optimal filter time constant for which the objective function takes a minimum 
value is equal 2 s. At such a value of the filter time constant the maximum dynamic error of the filtered signal is equal 
1.33 % (see Table 1). The influence of the disturbances (noise) on the useful signal after filtration becomes almost  
20 times less than it was in the unfiltered experimental signal (4.528/0.240, see Table 1). The comparison of the 
experimental step response curve and the filtered curve by means of the filter with the optimal time constant Tf

opt = 2 s 
is presented in Fig. 10. 
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The filtered signal almost coincides with the experimental one (see, Fig. 10, a) which means that the dynamic 
error of the filtered signal is insignificant. We can also see that the filtered signal varies smoothly without abrupt 
deviations (see, Fig. 10, b) which means that the quality of the filtration process is high. 

 
a 

 
b 

Fig. 10. Comparison of the experimental step response curve and the filtered curve by means of the filter 
with the optimal time constant Tf

opt = 2 s (a – whole curve; b – part of the curve in the time range from 0 to 20 s) 

If there is a task of further decreasing the influence of the disturbances (noise) on the useful signal, for instance 
to make it 100 times smaller, then in this case the filter time constant should be increased up to 5 s (4.528/0.046, see 
Table 1). However the maximum dynamic error here would rise up to 3.18 %. One more problem to be solved might 
be defining such a value of the filter time constant at which the maximum dynamic error of the filtered signal does 
not exceed 3 %. In this case the filter time constant should be set equal to 4 s. 

5. Conclusion 
The technique for designing the optimal time constant of the exponential filter has been developed. This 

technique is based on the objective function which takes into account the quality index of the filtration process and 
the dynamic error of the filtered signal. The mean square of deviation of the filtered signal from the smoothed filtered 
signal is taken as the quality index of the filtration process. The filtered signal was smoothed by applying the non-
causal moving average filter. 
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Based on the experimental step response curve for a thermal plant, the optimal value of the filter time constant 
was designed. This optimal value is equal to 2 s. By setting such a time constant, the influence of the disturbances 
(noise) on the useful signal is reduced by 20 times after the filtration. The maximum dynamic error of the filtered 
signal is equal to 1.33 %. The designed optimal value of the filter time constant is recommended to be applied for the 
analog input signal filtering in the automated system for the thermal plant control. 

Application of the developed technique for designing the optimal value of the filter time constant in the 
automated measurement and control systems will ensure high quality of the filtration process and small dynamic error 
of the filtered signal. 
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Анотація 
Представлено методику розрахунку оптимального значення сталої часу фільтра аналогового сигналу на 

основі розробленого критерію оптимальності. Запропонований критерій враховує показник якості процесу 
фільтрування та динамічну похибку профільтрованого сигналу. Виконано експериментальне дослідження 
перехідних процесів у тепловому об’єкті з метою аналізу впливу параметрів фільтра на якість процесу 
фільтрування аналогового сигналу. Для отриманих експериментальних даних було розраховано оптимальне 
значення сталої часу фільтра на основі розробленої методики, що складається з восьми кроків. Здійснено 
порівняння експериментального перехідного процесу із профільтрованим процесом за допомогою фільтра з 
оптимальним значенням сталої часу. Застосування розробленої методики в автоматизованих системах 
вимірювання та керування забезпечить високу якість процесу фільтрування за незначної динамічної похибки 
профільтрованого сигналу. 

Ключові слова: фільтр; стала часу; оптимізація; аналоговий сигнал; динамічна похибка; критерій 
оптимальності. 


