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The emission of the hard photon from the initial state is considered. The nucleon polarization and the differential cross sections for 
some experimental conditions have been calculated. The case of the emission of the collinear (with respect to the direction of the 
electron beam momentum) photon is considered separately. The differential cross section, the nucleon polarization, the correlation 
coefficients for both polarized nucleons (provided the electron beam is unpolarized or longitudinally polarized), the transfer 
polarization from the longitudinally polarized electron beam to the nucleon have been calculated. The photon energy distribution for 

the reaction 1 2e e h h    , where 1h  and 2h  are some hadrons for the case of the collinear photon, emitted in the initial state, has 

been calculated. As 1 2h h  final state we considered some channels, namely: two spinless mesons (for example, K K     ), two 

spin–one particles (for example, dd   ), and the channels 1(1260)a  and (1232)N . The photon energy distributions are 

calculated in terms of the form factors of the 1 2h h   transition (   is the virtual photon). 
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2Харківський національний університет імені В.Н. Каразіна 

61022, Україна, м. Харків, пл. Свободи, 4 
Розглянуто випромінювання жорсткого фотону у початковому стані. Обчислені диференційні перерізи і поляризація 
нуклона для деяких експериментальних умов. Окремо розглянуто випадок випромінювання колінеарного (по відношенню 
до напрямку імпульсу електронного пучка) фотона. Обчислені диференційний переріз, поляризація нуклона, коефіцієнти 
кореляції для випадку, коли поляризовані обидва нуклона (при умові, що електронний пучок неполяризований або 
поздовжньо поляризований), передача поляризації від поздовжньо поляризованого електронного пучка до нуклону. Для 
випадку колінеарного фотона, який випромінюється у початковому стані, обчислено енергетичний розподіл фотона для 

реакції 1 2e e h h    , де 1h  і 2h  є деякі адрони. В якості кінцевого стану 1 2h h розглянуті деякі канали, а саме: два 

безспінових мезона (наприклад, K K     ), дві частинки зі спіном одиниця (наприклад, dd   ), 1(1260)a  і 

(1232)N  канали. Енергетичні розподіли фотона обчислені у термінах формфакторів 1 2h h   переходу (  віртуальний 

фотон). 
КЛЮЧОВІ СЛОВА: поляризаційні явища, електрон, нуклон, радіаційне повернення, формфактори, жорсткий фотон 
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Рассмотрено излучение жесткого фотона в начальном состоянии. Вычислены дифференциальные сечения и поляризация 
нуклона для некоторых экспериментальных условий. Отдельно рассмотрен случай излучения коллинеарного (по 
отношению к направлению импульса электронного пучка) фотона. Вычислены дифференциальное сечение, поляризация 
нуклона, коэффициенты корреляции для случая, когда поляризованы оба нуклона (при условии, что электронный пучок 
неполяризован или продольно поляризован), передача поляризации от продольно поляризованного электронного пучка к 
нуклону. Для случая коллинеарного фотона излученного в начальном состоянии вычислено энергетическое распределение 

фотона для реакции 1 2e e h h    , где 1h  и 2h  есть некоторые адроны. В качестве конечного состояния 1 2h h рассмотрены 

некоторые каналы, а именно: два безспиновых мезона (например, K K     ), две частицы со спином единица (например, 

dd   ), 1(1260)a  и (1232)N  каналы. Энергетические распределения фотона вычислены в терминах формфакторов 

1 2h h    перехода (  виртуальный фотон). 

КЛЮЧЕВЫЕ СЛОВА: поляризационные явления, электрон, нуклон, радиационный возврат, форм-факторы, жесткий 
фотон 
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The investigation of the electromagnetic form factors of the proton and neutron in both the space–like and time–
like regions of the momentum transfer squared is important for the understanding of the internal structure of these 
particles and for the interpretation of many data on reactions with participation of the nucleons. The knowledge of the 
nucleon form factors is also required for the interpretation of the nuclear structure and various measurements of the 
reactions involving nuclei. So, the experimental determination of the elastic nucleon electromagnetic form factors in the 
region of small and large momentum transfer squared is one of the major fields of research in hadron physics [1]. 

The measurement of the nucleon electromagnetic form factors in the space–like region of the momentum transfer 
squared has a long history. The electric and magnetic form factors were determined both for the proton and neutron 
using two different techniques: the Rosenbluth separation [2, 3] and polarization transfer method [4-7]. It turned out that 
the measurements of the ratio of the proton electric and magnetic form factors using these two methods lead to the 

appreciably different results, and this difference is increasing when 2Q  (the four– momentum transfer squared) grows. 

The ratio p p
E MG G  is monotonically decreasing with increasing 2Q  suggesting crossing zero at 2 2(8 9)Q GeV   [8]. 

These unexpected results revived an experimental and theoretical investigations of this problem (see reviews [1, 9]). 
One possible mechanism suggested for the explanation of this discrepancy is the two–photon–exchange contribution to 
the elastic electron–nucleon scattering [10, 11]. Other considerations lead to the conclusion that the contribution from 

the two–photon term is too small at the 2Q  values of interest [12] and/or lead to a definite non–linearity in the 

Rosenbluth plot which has not been seen in the data so far [13]. A model independent study of the two–photon–
exchange mechanism in the elastic electron–nucleon scattering and its consequences on the experimental observables 
has been carried on in Refs. [14-16], and in the crossed channels: proton–antiproton annihilation into the lepton pair 
[17] and annihilation of the electron–positron pair into the nucleon–antinucleon [18].  

The data on nucleon form factors in the time–like region are not numerous. So, the separation the electric and 
magnetic form factors in this region has not yet been done. One of the reasons is the limitation in the intensity of 
antiproton beams and of the luminosity of electron-positron colliders.  

Nevertheless, a few unexpected results have been observed in the measurements of the nucleon form factors in the 
time–like region (note that the accuracy of the data set is not sufficiently good to do definite statements). Despite of the 

relation E MG G   , which must be valid at the threshold of the e e NN    reaction, the neutron electric form factor 

is negligible near the threshold as may be suggested from the measurement of the differential cross section. The general 
behavior of the neutron time–like form factors is rather unexpected. The proton magnetic form factor is smaller than the 

neutron one at 2 26q GeV  (where experiments were done). The review of the present status in this field of 

investigations is given in [1]. Note also that in the time–like region the proton magnetic form factor is considerably 
bigger than the corresponding space–like quantity.  

Recent experimental data on the nucleon form factors (both in the space– and time–like regions) together with new 
theoretical developments [19] (where the analytic continuation of the QCD formulas from the space–like region of 
momentum transfer to the time–like one was discussed) show the necessity of a global description of the nucleon form 

factors in the full region of the 2q  variable. Some papers were already appeared [20, 21, 22].  

The experimental data on the time–like form factors may turn out to be very sensitive to the details of existing 
models. For example, the analysis, performed in [23], taking into account the combined space–like and time–like data 
on the proton and neutron form factors leads to a good fit to the space–like form factors but cannot describe neutron 
time–like data.  

So, the experimental investigation of the nucleon form factors in the time–like region may give additional valuable 
information about the internal nucleon structure and can test the existing models.  

In the time–like region, the nucleon form factors can be measured using the reactions e e NN    or pp e e    

In this region only a small set of data exists. The neutron form factors were measured by the FENICE 

collaboration [24], using the ADONE e e   collider in Frascati. The reaction e e nn    was studied up to 
2 26q GeV  starting with reaction threshold. The proton form factors were measured in a broader region of 2q  values. 

The region of the large 2q  was achieved with the help of pp e e   reaction: Fermilab experiment E835 measured the 

cross section of this reaction up to 2 218 22q GeV   [25].  

Some experiments are planning to study this region of 2q . A new experiment at an asymmetric collider is 

proposed at SLAC with the ambitious goal to measure the nucleon form factors from threshold up to 3 GeV with the 
same accuracy currently available in the space–like region [26].  

The chance of measuring these form factors with higher precision will be given by a suitable upgrade of DA NE  
energy [27]. The number of good detectable events per day is about, or exceeding, the total amount of events collected 
by FENICE  in all its data takings.  

FINUDA  planned to offer a unique possibility - a measurement of the nucleon polarization [27]. This kind of 

measurement would be of great interest, as it would be a handle to infer something about the relative phases of MG  and 
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EG  form factors.  

As it is known, the e e NN    reaction is the cross channel for the reaction of the elastic electron–nucleon 
scattering. The form factors describing the annihilation channel are assumed to be the analytical continuation of the 
space–like ones. So, one may expect that the problems existed in the scattering channel will also manifest itself in the 
annihilation channel. It concerns, in particular, the problem of the two–photon–exchange contribution.  

Theoretically, the reaction e e NN    was studied in a number of papers. The dependence of polarization states 

of created one–half spin baryons in the e e BB    reaction on the polarization of colliding e e  - beams was 
investigated in [28]. The formulae obtained in this paper exhaust all polarization effects of baryons with spin 1/2 in the 

e e BB    reaction. Numerical estimates of polarization effects were presented only for the nucleons. The polarization 
effects appear to be very sensitive to the choice of the nucleon form factors parametrization and are rather large in 

absolute value. The pronounced energy dependence measured in the cross section of the reactions e e pp    

investigated in [29] in the near-threshold region. The authors considered the role of the antinucleon-nucleon interaction 

in the initial- or final state using NN  potential derived within chiral effective field theory. 
The existence of the T–odd single–spin asymmetry normal to the reaction scattering plane requires a non–zero 

phase difference between the electric and magnetic form factors. The measurement of the polarization of one of the 
outgoing nucleons allows to determine the phase of the ratio E MG G . In [30] it was shown that measurements of the 

proton polarization in e e pp    reaction strongly discriminate between the analytic forms of models suggested to fit 

the proton data in the space–like region.  
As it is known, the problem of taking into account the radiative corrections in the elastic electron–nucleon 

scattering is important for the reliable extraction of the nucleon form factors. The same is valid for the crossed channel. 

The importance of the e e N N      reaction is not only due to the fact that it is a part of the radiative 

corrections to the e e N N     reaction but rather because it allows to measure the nucleon form factors by the 
radiative return method [31].  

Purpose of our research is to apply the method of radiative return for the scanning of the cross section and 
polarization observables in the process of electron-positron annigilation into nucleon-antinucleon and other hadronic 
channels to measure corresponding hadronic form facors in the time-like region. 

In this paper we investigate the polarization phenomena in the reaction  
 

1 2 1 2( ) ( ) ( ) ( ) ( )e k e k N p N p k              (1) 

 
where four–momenta of the corresponding particles are given in the brackets. We consider here the emission of the 
additional hard photon by the initial electron or positron since the emission of the photon by the final state particles is 
model dependent and suppressed with respect to the initial state radiation due to the large nucleon mass as compared 
with electron one and perhaps by the nucleon form factors.  

Here we derive the expressions for the differential cross section and various polarization observables taking into 
account the nucleon form factors.  

We consider a particular case of the high–energy photon emission at small angles (the radiative return). The 
differential cross section and various polarization observables (the nucleon polarization, the correlation coefficients for 
the nucleon–antinucleon pair and polarization transfer from the longitudinally polarized electron to the nucleon), when 
the angular distribution of the nucleon and energy of the emitted photon are measured, have been calculated for the case 
of the photon emitted at small angles relative to the electron beam momentum.  

The standard analysis of the experimental data requires the account for all possible systematic uncertainties. One 
of the important source of such uncertainties are the electromagnetic radiative effects caused by physical processes 
which take place in higher orders of the perturbation theory with respect to the electromagnetic interaction. In present 
paper we calculate the model–independent QED radiative corrections to the observables (both polarized and 
unpolarized). Our approach is based on the covariant parametrization of the nucleon or antinucleon spin four-vectors in 
terms of the four–momenta of the particles in process (1) [32, 33].  

The photon energy distribution for the reaction 1 2e e h h    , where 1h  and 2h  are some hadrons for the case of 

the collinear photon, emitted in the initial state, has been calculated. As 1 2h h  final state we considered some channels, 

namely: two spinless mesons (for example, K K     ), two spin–one particles (for example, dd    ), the 

1(1260)a  and (1232)N  channels. The photon energy distributions are calculated in terms of the form factors of the 

1 2h h   transition (   is the virtual photon).  

The paper is organized as follows. In Section “POLARIZATION PHENOMENA IN e e N N    ” the 

polarization phenomena for the Born approximation, i.e., for the reaction e e N N     are given. In Section 
“HARD–PHOTON EMISSION” the emission of the hard photon by the initial state is considered. The nucleon 
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polarization and the differential cross sections for some experimental conditions have been calculated. In Section 
“RADIATIVE RETURN. SMALL ANGLES” the emission of the collinear photon is considered in details. The 
differential cross section and various polarization observables have been calculated. In Section “PHOTON ENERGY 

DISTRIBUTION” we have calculated the photon energy distribution for the reaction 1 2e e h h    , where 1h  and 2h  

are some hadrons for the case of the collinear photon, emitted in the initial state. As 1 2h h  final state we consider some 

channels. In Section “RADIATIVE RETURN. LARGE ANGLES” the emission of the collinear photon at large angles 
is considered. The main results are summarized in Section “CONCLUSIONS”.  

 

POLARIZATION PHENOMENA IN e e N N     

Let us consider first the production of NN -pair without emission of additional photons:  
 

1 2 1 2( ) ( ) ( ) ( )e k e k N p N p             (2) 

 
where four–momenta of the corresponding particles are given in the brackets. The matrix element of this reaction can be 
written as follows  

2
4M i j J

q
  

           (3) 

 

where 2 4 1 137e       1 2 1 2q k k p p     is the virtual photon four–momentum. The leptonic and hadronic 

currents can be written as  

2 1( ) ( )j v k u k             (4) 

 

2 2
1 1 2 2

1
( )[ ( ) ( ) ] ( )

2
J u p F q F q q v p

M
        

 

where ( ) 2             M  is the nucleon mass and 2
1( )F q  and 2

2 ( )F q  are the Dirac and Pauli nucleon 

electromagnetic form factors, respectively, which are the complex functions of the variable 2q   The complexity of the 

form factors arises due to the final–state strong interaction of the produced NN  pair. In the following, we use the 

standard magnetic 2( )MG q  and charge 2( )EG q  nucleon form factors which are related to the form factors 2
1( )F q  and 

2
2 ( )F q  as follows  

2

1 2 1 2 24
M E

q
G F F G F F

M
                (5) 

 

Then, the differential cross section of the e e N N     reaction, for the case of the polarized electron beam and 
unpolarized positron beam, can be written as follows in the reaction centre of mass system (CMS)  

2

68

d
L H

d q
 

  
            (6) 

where   is the nucleon velocity in CMS, 2 21 4M q     and the leptonic and hadronic tensors are defined as  
 

L j j H J J           

 
The leptonic tensor for the case of longitudinally polarized electron beam has the form (other components of the 

electron polarization lead to the observables suppressed by a factor m M , where m  is the electron mass)  
 

2
1 2 1 2 22( ) 2 eL q g k k k k i qk                    (7) 

 
where ab a b       and e  is the degree of the electron longitudinal polarization (we use the following 

definition for the antisymmetric tensor 1230 1 ).  

Taking into account the polarization states of the produced nucleon and antinucleon, the hadronic tensor can be 
written as a sum of four contributions as follows:  
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1 1 1
(0) (1) (1) (2)

4 2 2
H H H HH              (8) 

where the tensor (0)H  describes the production of unpolarized nucleon and antinucleon, the tensor (1)( (1))H H   

describes the production of polarized nucleon (antinucleon) and the tensor (2)H  corresponds to the production of 

polarized particles, nucleon and antinucleon.  

Let us consider the production of unpolarized NN   pair as a result of annihilation of unpolarized e e    pair. In 
this case the general structure of the hadronic tensor can be written as  

 

1 2 1 12

1
(0)H H Hg p p

M
                (9) 

 

where 2g q q qg        and 2
1 11 p q p q qp         One can get the following expressions for these structure 

functions for the case of the hadronic current given by Eq. (4)  
 

2
2 2 2 2 2 2 2 2 2

1 2

8
( ) 2 ( ) ( ) [ ( ) ( ) ]

1
M M E

M
H q q G q H q G q G q           





    (10) 

 
Then, the contraction of the leptonic and hadronic tensors, in the case of unpolarized initial beams and produced 
nucleon and antinucleon, can be written as  
 

2
2 2 2 2

1 2 2

( )
(0) (0) 2 ( ) ( )[( 1) ]

4

u t
S L H q H q H q q

M


          

 

where 2
1 2( )u k p   and 2

1 1( )t k p     

The differential cross section of the e e N N     reaction, for the case of unpolarized particles, has the form 
in CMS  

2

24
und

D
d q

 

  

         (11) 

 

2 2 2 2 2 21
(1 ) ( ) ( )M ED cos G q sin G q        


 

 

where   is the angle between the electron and detected nucleon momenta in the e e N N     reaction CMS. 
This expression coincides with the result for the differential cross section obtained in Ref. [28]. At the threshold of the 

reaction, 2 24q M   we have M EG G G   (this relation follows from the definition (5)) and the formula (11) reduced 

to (near the threshold)  
 

2
2

22

th
th thund

D D G
d q

    

  

        (12) 

 
Integrating the expression (11) over the angular variables, we obtain the total cross section for the reaction 

e e N N      
 

2 2
2 2 2 2 2

2 2

4 2
( ) [ ( ) ( ) ]

3
un M E

M
q G q G q

q q
      

         (13) 

 
Now, let us consider the single polarization observables. To do this, it is necessary to calculate the hadronic tensor for 
the case when produced nucleon is polarized. We can write this tensor as a sum of two terms: one is symmetrical and 
another one is antisymmetrical (over   and   indices)  

 
(1)H S iA      
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1 1

2 1
( )

1
E MS ImG G a ap p

M
  


    

       (14) 

21
1 1

1
2 [ ]

1
E M M E M

q s
A MReG G qs G ReG G p q

M
 

        
  


 

 

where 1 2 1a p p s      and 1s   is the nucleon polarization four–vector and 1 1 0s p    2
1 1s   .  

Let us define the coordinate frame in CMS of the e e N N     reaction. The z  axis is directed along the 

momentum of the nucleon ( )p


, y  axis is orthogonal to the reaction plane and directed along the vector k p
 

, where k


 

is the electron momentum, and the x  axis forms a left–handed coordinate system. Therefore, the components of the 

unit vectors are: ˆ (0 0 1)p   


 and 
ˆ

( 0 )k sin cos   


   with 
ˆp̂ k cos  
    

The polarization 4–vector 1s   of a nucleon in the system where it has momentum p


 is connected with the polarization 

vector 1

  in its rest frame by a Lorentz boost  

 

1
1 101 1

1

( )

p p
s ps

M E M M


     



    
          (15) 

 
Let us note that four-vector 1s   can be written down as  

 
( )

1 1 1
i

is s i x y z         

 

Each four-vector ( )
1

is   satisfies the following conditions  

 
( ) ( )2
1 1 10 1i is p s       

 
Note that the polarization 4–vectors of the particles can be parameterized in terms of the four–momenta of these 

particles in the reaction under study (it is very convenient when calculating the radiative corrections to this reaction). 
Let us write the chosen axes in a covariant form in terms of the four–momenta. So, in the reaction CMS we choose the 

longitudinal direction l


 ( z  axis) along the nucleon momentum and the transverse one t


 in the plane ( )p k


 ( x  axis) 

and perpendicular to l


 ( y  axis), then  

( ) 2 2 2 2 2 2 2
1 1

1

1
( 2 ) ( 4 )lP q p M q d M q q M

d
         

 

( ) 2 2 2 2
1 1 1 1 1 1

2

1
[( 4 ) 2( ) (4 ) ]tP q p k p p k M q M q k

d
             

 
2 2 2 2 2
2 1 1 1 2( 4 )(4 )d q M p k p k M q       

 
2

( ) 2 2 2
1 1 3 1 1 1 2

3

1
(4 )

4
n q

P qk p d p k p k M q
d

              (16) 

 

It can be verified that the set of the four–vectors ( )l t nP  
  has the properties  

 
( ) ( ) ( )

1 0P P P p l t n           
             (17) 

 
and that in the reaction CMS we have  
 

( ) ( ) ( )
1

1
( ) (0 ) (0 )l t nP p E P t P nn

M
         

 
         (18) 
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1 2 1 2 2 1
1 2

2 2
1 2 1 2

( )

1 ( ) 1 ( )

p k n n n n n nt nn n
p k n n n n

  
       
       

               

It is easy to show that the following relations are valid  
 

( ) ( ) ( ) ( ) ( ) ( )
1 1 1

l z t x n yP s P s P s                  (19) 

 
Note that, unlike the elastic electron–nucleon scattering in the Born approximation, the hadronic tensor (1)H  in the 

time–like region contains the symmetric part even in the Born approximation due to the complexity of the nucleon form 
factors. So, this term leads to the non–zero polarization of the outgoing nucleon (the initial state is unpolarized) in the 

e e N N     reaction and it can be written as  
 

2
y M E

sin
P ImG G

D
 




        (20) 

 
This expression gives the well known result for the polarization yP  obtained in Ref. [28]. One can see also that:  

- The polarization of the outgoing nucleon, in this case, is determined by the polarization component which is 
perpendicular to the reaction plane.  
- The polarization, being T–odd quantity, does not vanish even in the one–photon–exchange approximation due to the 
complexity of the nucleon form factors in the time–like region (to say more exactly, due to the non–zero difference of 
the phases of these form factors). This is principal difference with the elastic electron–nucleon scattering.  

- In the Born approximation this polarization becomes equal to zero at the scattering angle 090  (as well as at 00  

and 0180 ).  
In the threshold region we can conclude that in the Born approximation this polarization must be zero due to the 

relation E MG G  which is valid at the threshold.  

If one of the colliding beam is longitudinally polarized then nucleon acquires x   and z  components of the 

polarization, which lie in the e e N N     reaction plane. These components can be written as (we assume 100%  
polarization of the electron beam)  

 

22 2
x M E z M

sin
P ReG G P cos G

DD
      

 


      (21) 

 
These polarization components are T–even observables and they are non–zero in the Born approximation even for the 
elastic electron–nucleon scattering. Note that in the Born approximation we obtain the result of Ref. [28]. The 

polarization component zP  equals to zero at the scattering angle 090  in the Born approximation. Transversally 

polarized electron beam leads to the nucleon polarization which is smaller by factor ( )m M  than for the case of the 

longitudinal polarization of the electron beam.  
Let us consider the case when the produced antinucleon and nucleon are both polarized. The corresponding 

hadronic tensor can be written as  
 

1 2 1 2(2) ( ) ( )H S s s iA s s        

 

2 2 1 11 2 1 21 1 1 1( ) [ ( ) ( )]
1

E MImG G
A s s q s q sp p p ps s s s



       


              
 

 

1 2 1 2 2 2 1 11 2 11 1 1 21 1 1 1 1 1( ) ( ) [ ( ) ( )]g s sS s s A A A A q s q sg p p p p p ps s s s s s s s                                        (22) 

 

2
1 2i

ii

q s
s q is

q


         

 
where 2s   is the antinucleon polarization 4-vector ( 2 2 0p s  ). Antisymmetric part of the tensor (2)H  arises due to 

the fact that nucleon form factors in the time– like region are complex quantities.  
The structure functions iA  have the following form  
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2 2
1 2 1 2

1
( 2 )

2
g MA q s s q s q s G         

2 2 21 2 1 2
11 2 2

2 [ ]
1 ( 1)

M E E M

s s q s q s
A G G G G

M

  
          

 


 
 

 
2

2
1

1
( )

2 1
s M s M E M

q
A G A Re G G G       





      (23) 

 
Using previous formulae one can obtain the following expressions for the components of the polarization correlation 
tensor ( )ikP i k x y z     of the nucleon and antinucleon, created by the one–photon–exchange mechanism in the 

e e N N     process:  
2 2

2 2 2 2[ ] [ ]xx M E yy E M

sin sin
P G G P G G

D D
             

  
 

 

 

2 2 2 21
[ (1 ) ]zz M EP cos G sin G

D
         


 

 

2 ( )xz zx M E

sin
P P cos ReG G

D
   

 


 (24) 

 
where the first index of the tensor ikP  refers to the component of the nucleon polarization vector, whereas the second 

index refers to the component of the antinucleon polarization vector.  
The antinucleon polarization four-vector, 2s  , is described by the formula (15) where it is necessary to do the 

following substitution: p p 
 

 and 1 2
    ( 2

  is the polarization vector of the antinucleon in its rest frame). The 

antinucleon polarization 4–vectors ( )i i l t nP      (in terms of the particles four–momenta) can be written down as  

 

2 2( ) ( )
2 2 2

1 3

1 1
( 2 )l nq p M q qk pP P

d d
           (25) 

 

2 2 2 2( )
2 1 2 2 1 1

2

1
[( 4 ) 2( ) (4 ) ]t q p k p p k M q M q kP

d
             

 
It is easy to show that the following relations are valid  
 

( ) ( ) ( )( ) ( ) ( )
2 2 2

z x yl t ns s sP P P                 (26) 

 
And for the completeness we give here the non–zero coefficients for the case of the longitudinally polarized electron 
beam  
 

0 ( )xy yx zy yz M E

sin
P P P P Im G G

D
     




 (27) 

 
The following relation exists for these coefficients  
 

1xx yy zzP P P     
 

One can see that:  
- The components of the tensor describing the polarization correlations xxP   yyP   zzP   xzP   and zxP  are the T–even 

observables, whereas the components yzP   and zyP  are the T–odd ones.  

- In the Born approximation the expressions for the T–odd polarization correlations coincide with the corresponding 

components of the polarization correlation tensor of baryon B  and antibaryon B  created by the one–photon–exchange 
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mechanism in the e e B B     process [28]. The expressions for the T–even polarization correlations calculated in 
this paper have some misprints.  
 

HARD–PHOTON EMISSION  
Let us consider the emission of the hard photon, i.e., consider the reaction (1). In this case the matrix element 

corresponding to the emission of photon by electron and positron, can be written as  
 

2

1
4 4M i j J

q
  

          (28) 

 
where the leptonic current with emission of additional photon has the form  
 

2 11 2

1 2

1 1ˆ ˆˆ ˆˆ ˆ( )[ ( ) ( ) ] ( )j v k k m A A k m u kk kt t
       

         (29) 

 
where 1 12t k k    2 22t k k  , A  is the photon polarization four-vector and the square of the matrix element can be 

written as follows  
 

2 3 3

4

1
64M L H L j j

q
         

            (30) 

 
where the hadronic tensor has the same form as in the Born approximation but the structure functions defining this 
tensor depend on the shifted momentum transfer 1 2q k k k      

Let us represent the leptonic tensor L  as a sum of the spin–independent and spin–dependent part (we consider 

only the case of the longitudinally polarized electron beam)  
 

(0) ( )eL L L s    
           (31) 

 
where the spin–independent part of this tensor can be written as  
 

0 1 2 31 1 2 2 1 2 1 2(0) ( )L A A A Ag k k k k k k k k            
             (32) 

 

where 2( ) ( 1 2)i ii k q k q q ik           and the structure functions iA  are  

 
2 2 2

2 2
0 1 2 1 2 12 2 2

1 2 1 21 2 2

1 1 16 8
2(2 )( ) 8

q m q
A m q t t k k A

t t t tt t t
          

 
2 2 2

2 32
1 2 1 21

16 8 16m q m
A A

t t t tt
             (33) 

 

The spin–independent part of the leptonic tensor (0)L  coincides with the one obtained in Ref. [34] and if we neglect 

the 2
1 2m t t  term in the structure functions iA  then the result coincides with the expression obtained in Ref. [35].  

Let us consider the spin–dependent part of the leptonic tensor ( )eL s
 . As it was noted above, we consider only 

the longitudinal polarization of the electron beam. The spin four–vector describing this polarization is 1e e es k m    

in calculations of polarization effects in the Born approximation (this gives sufficient accuracy when we neglect the 
electron mass in the Born approximation). But it is necessary to use more correct expression for the spin four–vector. 
We use the following form  

 

2 2 2 2 2
1 2

1
[( 2 ) 2 ] ( 4 )es s m k m k N m s s m

N
               (34) 

where 2
1 2( )s k k   is the square of the total energy of the beams. One can see that this expression satisfies the 
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necessary conditions: 1 0es k   and 2 1es     In the reaction (1) CMS this polarization four-vector can be written as 

0( )( )es E m s s   


  where 0s p E s p p    
 

 and ( )p E


 is the electron momentum (energy). So, we see that this 

vector describes the longitudinal polarization of the electron.  

Then the spin–dependent part of the leptonic tensor ( )eL s
  can be written as  

 
2

1 2
1 1 2 2( ) 2 (1 4 ) { }e

i m
L s B k q B k q

s s
        

         (35) 

 
where the structure functions iB  are  

 

2 4 2
1

2 1 1 2 1 2 1 2

1 1 1 1 1 1
2 (1 ) 4 ( )[1 ( )] 8 ( )

s s
B m s m

t t t t t t t t
           

 
2

2 4
2 2

1 2 1 21

1 1
2 1 8 8

s s q k
B m m

t t t tt

   
        

   
      (36) 

 
Let us consider the case of unpolarized initial beams and when final state is unpolarized or the final nucleon has 
polarization. Then the contraction of the spin–independent leptonic tensor and hadronic tensor which corresponds to the 
polarized nucleon can be written as  
 

(0) (0)[ (0) (1)] (0) (1)S L H L H H S S         
        (37) 

 

where (0)( (1))S S   corresponds to the unpolarized particles (polarized nucleon).  

We can write for the unpolarized part  
 

2 2
1 1 1 21 12 2

(0) (0) (0) (0)[ ]H HS L H L Q Qg p pH H
M M

         
        (38) 

 

where the bar over the structure functions 1 2iH i    means that they depend on the shifted variable 2q  which is equal 

to 2
1 2q s t t     In the reaction (1) CMS it is 2 4 ( )q E E    where   is the hard photon energy. The kinematic 

coefficients 1 2Q   can be written as  

 
2

2 4 2 2 2 2
1

1 2 1 2

4 1 1
8 ( 4 ) 8 ( 2 )Q s q m s m q m

t t t t

 
         

 
    (39) 

 
4

2 2 2 21 2
2 1 2 1 2

2 1 1 2 1 2

1
2 [ ( )] 4

q
Q q s m

t t t t t t

 
   

 
        

 
 

 
22 2 2

2 2 2 21 2 1 2 1 2

2 1 2 1 1 2 2 1 1 2

1 1
4 2 2 2

q q t tq s
m M m q

t t t t t t t t t t

          
             
       

 

 
where 1 2 1 1 22 p k      

The contraction of the unpolarized lepton tensor and the hadron tensor corresponding to the polarized nucleon has the 
form  

1 2 2
3

2
(1) (0) (1) (1 ) ( ) ( )M ES L H ImG q G q Q

M
     

       (40) 

 
where the function 3Q  can be written as  
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2 2 2 22 2
2 22 1 1 2

3 1 1 1 2 2 22 2
1 2 1 2 1 2 1 22 1

2 2 2 2
4 (2 ) 2 4 (2 ) 2

q q q qq q
Q y t s m y t s m

t t t t t t t tt t

   
 

         
                 

         
(41) 

 

1 1 1 2 2 2 1 2y k p p s y k p p s      

Let us choose in the reaction CMS the following coordinate system: z  axis is directed along the nucleon momentum 

1p


, the momentum of the initial electron beam 1k


 forms the xz  plane (the angle between these two momenta is  ), y  

axis is directed along the vector 1 1k p
 

 The momentum of the emitted photon k


 is defined by the polar and azimuthal 

angles,   and  , respectively. The angles defining the kinematics of the reaction (1) in its CMS are given in Fig.1. 

 

Fig. 1. The angles defining the kinematics of the reaction (1) in its CMS. 

 
Then the cross section of the process (1) can be written as  
 

3 33 3
(4)1 2

1 2 1 23 4
1 2

1
( )

32

d dp pd k
d L H k k p p k

E Esq
 

 
 


     

  
    (42) 

 
where 1 2( )E E  and   are the energies of the nucleon (antinucleon) and photon, respectively; 2p


 is the antinucleon 

momentum.  
On the basis of this expression we can obtain the different distributions depending on the experimental conditions. 

If we measure the nucleon scattering angle and variables of the emitted photon, we can obtain the following distribution  
 

3
11

13 4

1

1
[ ]

32

Ed
W cos Sp

d d d sq p







     
 

     
   


     (43) 

 
The dependence of this expression on the azimuthal angle   is due to the denominators 1t  and 2t . The integration over 

this variable can be done easily. In this case the quantity 2q  is 2 ( 2 )q W W   . Using the energy and momentum 

conservation: 1 2W E E    and 1 2 0k p p  
  

, we can obtain the following relation between the nucleon energy 1E  

and the photon polar angle    

 

1 1( 2 ) 2( ) 2W W W E cosp      
          (44) 

 
If we retain the energies of the final hadrons we can obtain another distribution, namely  

3

3 4
1 2

1

32

d
S

d dE dE d sq






 
 

 


       (45) 

 

In this case 2
1 2[2( ) ]q W E E W     The integration over the photon azimuthal angle   can be done easily. Instead of 
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antinucleon energy 2E  we can introduce the accolinearity angle   (the angle between the momenta of the nucleon and 

antinucleon) which is measured in some experiments. From the energy and momentum conservation we have  
 

2 2
1 2 1 21 22 2 2 ( ) 2cos W M W E E E Ep p                (46) 

 

If the additional photon is absent then 0180  and the deviation of this angle from the value 0180  means that there is 

an additional photon. Experimenters choose the events in some interval of this angle. Using the above expression we 
can change 2dE  by dcos . We have  

2 2 22
1 2 13

1 2

[2 ( ) ( 2 2 )]
2

dE
dcos M E W E W WE M

p p
      

        (47) 

 
The energy of the antinucleon 2E  can be expressed in terms of the nucleon energy 1E  and the accolinearity angle   by 

the following way  
 

2 2 2 2 2 2 2
1 1 11 1

2 2 2 2
1 1

( )( 2 2 ) ( 2 ) 4

2[( ) ]

W E W WE M cos W W E M sinp p
E

W E cosp

         
 

   

 

 


   (48) 

 
The polar angle of the emitted photon   can be also expressed in terms of the energies of the final hadrons. We have  

 
2

1 1 2 1

1 21

( )( 2 )

2 ( )

W E E E W E
cos

W E Ep

   
 

           (49) 

 
Let us parameterize the nucleon spin four-vector 1s   in terms of the four-momenta of the particles participating in the 

reaction under study. When measuring the polarization of the produced particle the z -axis is usually chosen along the 

momentum of this particle. So, in the reaction CMS we choose the longitudinal direction l


 ( z  axis) along the nucleon 

momentum and the transverse one t


 in the plane 11( )p k


 and perpendicular to l


, and denote these polarization four-

vectors as ( )iP i l t n      

 

( ) 2 2 2 2 2
1 2 1 1 2 1 2

1
[( ) 2 ( ) ] [( ) 4 ]l

l
l

P p M k k d M M s
d

               

 

( ) 2
1 2 2 1 1 2 1 2 1 1 2

1
{( )( ) [( ) 2 ( ) ]}t

t

P k k s p M k k
d

                  

 
2 2 2 2

1 2 1 2( )[( ) 4 ]td s M s M s         

 

( ) 2 2
1 2 1 1 2

1
( )

4
n

n
n

s
P k k p d M s

d
                (50) 

 

It can be verified that the set of the four–vectors ( )l t nP  
  has the properties  

 
( ) ( ) ( )

1 0P P P p l t n           
             (51) 

 
and that in the reaction CMS we have  
 

( ) ( ) ( )
111

1
( ) (0 ) (0 )l t nP E P t P np n

M           
         (52) 

 

2 1 2 1 2 11 1
1 2

2 2
1 1 1 2 1 2

( )

1 ( ) 1 ( )

p n n n n n nk t nn n
p k n n n n
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Note that in the Born case (there is no additional photon) these nucleon polarization 4-vectors coincides with the ones 
given by the Eq. (16).  
The variables 1 2y   in Eq. (41) have the following expressions for particular choice of the nucleon polarization four–

vectors ( )iP i l t n      

2
21 2 1 2

2 1 1 2 1 2 1 22 [2 ( )] 1 2l l t
i i

l t

k k p pM
y y k k p p y M s i

d d

 
               

 

2
1 1 1 1 2 1 1 2

1
{ [ 2 ( )] [ ( ) ( )}

8
n

n

y s s M s t s t s t
d

                (53) 

 

2
2 2 2 2 1 2 2 1

1
{ [ 2 ( )] [ ( ) ( )}

8
n

n

y s s M s t s t s t
d

             

 

The function 3Q  depends on the nucleon polarization four–vectors ( )iP i l t n     and it determines the spin–dependent 

part of the cross section. The function 3Q  has the following expressions for a particular choice of the nucleon 

polarization four–vectors ( )l t nP  
  (in the reaction CMS)  

 

( )
3 1

1 2 1 2

1 1 1
4 [( ) 4lQ Ms sin sin sin E W cosp

t t t t      
 

       
 


 

 

2 2
11 2 2 2 2

1 2 1 2

1 1 1 1
2 2 ( ) ]m cos m E Ep

t t t t
 
   

           
   


 

 

( )
3 1 1 1 1

1 2

1 1
4 {( )[( ) ( )tQ s sin sin E p E cos p E cos

t t
                (54) 

 
2 2

2
1 1 2 1 1 1 2 1 1 2 12 2

1 2 1 2

8 ( )( ) 2 ( )( ) 2 ( )( )}
E m m

p E E cos E E p E cos p cos E E p E cos E E p cos
t t t t

                   

 

( ) 12
3 0 2 2 2 2

1 1 2 1 2 1 2 1 2 1 2

1 1 1 1 1 1 1 1 1
4 [ 2 2 2 ]n LE

Q L L L L L
p sin t t t t t t t t t t   

      
                

       
 

 
where for the coefficients iL  we have  

 

 2 2 2 2
0 1 1 12 1 1 1 14 ( ) 2 [ (2 3 ) ]L E p E cos L sq p cos E E E E p sin             

 
2 2 2

1 1 1 2 12 [ (5 2 ) ( ) ]L q p cos E E E E E E p sin         

 
2 2 2 2 2

1 1 1 2 2 1 1[2 ( ) ( ) 2 (2 2 ) ]L q EE E E E E M E p E E cos             

 
2 2 2 2

1 2 1 2 14 [2 ( )( ) (2 ) ]m Ep cos E E E E E E M E p sinL               

 
2 2 2 2

2 1 1 2 14 ( )[2 ( ) (2 ) (4 ) ]m E E E EE E E E M E E p sinL               

 

Let us integrate the expressions ( )
3

iQ i l t n      over the angular variable  . We have the following integrals  

 

1 2 1 2 122
1 2 1 21 2

d d d
I sin J sin I sin

t t tt 
 

         
  

  
       (55) 
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where  
 

1 2 1 2 1 2 1 2 1 1 2 12 ( ) 2t A B cos A E k cos cos B k sin sin                     

 
After integration we have  

1 1 1
( ) 1 2i i i i

i i i i

I ln A B cos J i
B B A B cos

        







 

 

2 2

12

1 1 1

1

2

A B cos
I ln

E B A B cos





 


 


       (56) 

 

If we integrate over the whole possible region of the angle  , i.e., over (0 2 )  , we have that all these integrals are 

equal to zero. So, in this case only perpendicular (to the reaction plane) polarization of the nucleon gives nonzero 
contribution (as well as in the Born approximation). We have the following integrals  
 

1 22
2

2
1 2

1 2 1 1

d d E m
k cos cos sin

t t k k
 



      



 

  
             

     

 

1 22 3 2 3
1 21 2

1 1

24 4

d d d
A A

t t k qt t
      

  

 
            

        (57) 

 
So, we have after integration over the angle    

 

( ) ( ) 12
3 0

1

4 1 1 1 1 1 1
2n n LE

Q Q d L L L
p sin k q


  

     

      
                          
  

 

1 2 1 2

3 3 3 3

1 1
)

2 2

A A A A
L L 

   

   
              

       (58) 

 
RADIATIVE RETURN. SMALL ANGLES  

Since the main contribution, proportional to the large logarithm, comes from the integration of the integrand in the 
case of collinear kinematics of photon emission, we consider this case. For definiteness let us consider the case when 
the emitted photon moves close to the initial electron direction:  


1 0 01

m
k k

E
     

 
   

The differential cross section can be written as  
 

3
11

12 2 2
1

1
[2 ]

32 (1 )

Yd
xy x xcos L H

d dxd yx s



 



  


   
  

     (59) 

 
where x  is the energy fraction carried away by the emitted photon, x E   and 1 1y p E  , 1 1Y E E   (here 1 1( )p E  

is the momentum (energy) of the nucleon in the reaction CMS).  
Integrating the leptonic tensor over the photon angular variables we obtain the following result for the case of 

unpolarized initial beams  
 

2
( ) 2

1 12

16
(0) ( )[ (1 ) ]unL L d F L x E x k kg

x E
          

    



     (60) 

 
where the factor ( )F L x  has the form [36]  
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22 2
0

2

1 (1 ) 1 (1 )
( ) [( 1) ]

2 4
s s

x x s
F L x L x L L ln L ln

x x m

   
          




    (61) 

 
After the integration over the photon variables the differential cross section can be written as  

2
11 1

3 2
1

( )[2 ]
(1 )

uny Yd
F L x x xcos S

d dx ys x
    

 

        (62) 

 
where we introduce 
 

2

1 1[ (1 ) ]unS E x Hg k k         

 
Then the differential cross section for the case of the unpolarized particles can be written as  
 

2
11 1

2
1

( )[2 ] ( )
2 (1 )

und y Y
F L x x xcos D x

d dx s yx
    

 

       (63) 

 
where the factor ( )D x  is  

 
2

2 2 2
1 1 12

1 1
( ) {[4(1 )(1 )( 1) (2 )

4 1 1

y
D x x Y Y x y x sin

x x y
        

  
     (64) 

 
2 2 2 2 2 2 2 2 2]( ( ) ( ) ) 8(1 )(1 ) ( ) }M E Mx y G q G q x G q              

 

where y M E   and 2 2 2(1 ) 4q x s q M       The nucleon electromagnetic form factors MG  and EG  are taken at 

the value 2q   Thus, the emission of the photon decreases the argument of the form factors. If we remove the emission 

factor ( )F L x dx  and put 0x   we obtain the standard expression for the differential cross section in the Born 

approximation since (0)D D   Setting the form factors equal to one, 1E MG G  , we obtain the differential cross 

section for the case of the point particles in the final state, for example, e e       or      To do this, it is 

necessary to replace ( )D x  by ( )pointD x  where  

 

2 2 2 2 2
1 1 1 1

1 1
( ) {4(1 )[(1 )(1 ) (1 )] (2 ) }

4 1
pointD x x x Y Y Y y x sin x y

x
         


    (65) 

 
The nucleon energy 1E , the scattering angle   and x  variable are connected by the following relation  

 

1 12(1 ) (2 )xy cos x x Y      

 
Using this relation we can determine the nucleon energy as a function of two variables: x  and cos . We have  
 

2 2 2 1 2 2 2 2 2 1 2
1 [(2 ) ] {2(1 )(2 ) [4(1 ) ((2 ) )] }Y x x cos x x xcos x y x x cos                (66) 

 
When calculating the radiative corrections to the polarization observables it is convenient to parameterize the nucleon 
polarization 4–vector in terms of the four–momenta of the particles participating in the reaction under study. Any four-

vector ( )iU  which parameterize the polarization state of the particle can be read as  

 
( ) ( )

1 2 1 2( )i iU U k k p p               (67) 

 
Let us imagine for a moment that chosen parametrization on the right side of Eq. (67) is stabilized relative substitution 

1 1k xk   
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( ) ( )
1 2 1 2 1 2 1 2( ) ( )i iU k k p p U xk k p p               (68) 

 
Further we call such parametrization a stable one (relative to the substitution 1 1k xk ) and denote such set of 

polarization four-vectors as ( )iS i l t n    . 

In what follows we use the following set of the stable polarization four-vectors  

( ) 2 ( ) 2 2
1 1 1 2 1 1 1 1 2

1 1

1 1
(2 ) ( )

4
l n s

S M k p S k k p n M s
M n

              


   (69) 

 

( ) 2 2 2
1 2 1 2 1 2 1 2

2 1

1
[ ( 2 ) ] ( )t s

S k sp M k n s M s
n

             


 

 

If the polarization four-vectors ( )iU  are unstable ones under above substitution they can be always expressed in terms of 

the stable polarization four-vectors by means of some linear combination  
 

( ) ( )
1 2 1 2 1 2 1 2 1 2 1 2( ) ( ) ( )i j

ijU k k p p A k k p p U k k p p                 (70) 

 
In case of the radiative return at small angles we have only one plane (reaction plane) and, therefore, normal 

polarization four-vector ( )nS  do not mix with the polarization four-vectors ( )l tP 
 . In this case we have some rotation in 

the reaction plane and it can be written down as  
 

( ) ( ) ( ) ( ) ( ) ( )l l t t t lS cos P sin P S cos P sin P                   (71) 

 
where  

1 1

1 1 1 1

E cos p Msin
cos sin

E p cos E p cos


    

 
  

 
      (72) 

 
 Since in the time–like region the nucleon form factors are complex functions, the (1)H  tensor has a symmetric part 

(in    indices) and, therefore, the contraction of the ( )unL  and (1)H  tensors is not zero. This leads to the nucleon 

polarization in the case when the rest of the particles are unpolarized. The polarization vector in this case is normal to 
the reaction plane and can be written as  
 

2 2
1 1 12

( ) 2 ( 1 ) ( ) ( )
1

y E M

sin
D x P yy Y x y cos ImG q G q

x y
    

 
       (73) 

 
Putting 0x   we obtain the result of the Born approximation. For the point final particles we have natural result that 
the polarization is equal to zero.  

Let us consider the case when the electron beam is longitudinally polarized. Integrating the leptonic tensor 

( )eL s
  over the photon angular variables we obtain the following result [36]  

 
2

( )
1 22

8
( ) ( )pol pol

eL L s d i F L x k k
x E

      
  

 


     (74) 

 

where the factor ( )polF L x , describing the photon emission by the longitudinally polarized electron beam, has the form  

 
2 21 (1 ) 1 (1 )

( ) [( 1) ]
2

pol
s

x x
F L x L x L

x x

   
     




     (75) 

 

The contraction of the tensors ( )polL  and (0)H  is equal to zero and, therefore, the asymmetry determined by the 

longitudinal polarization of the electron beam is absent. A non–zero asymmetry may arise due to the two–photon 

exchange contribution, for example. The contraction of the ( )polL  and antisymmetrical part (in    indices) of the 

(1)H  tensors is non zero. This leads to the nucleon polarization and in this case the polarization vector lies in the 
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reaction plane. The components of the nucleon polarization vector for the case of the stable set of the polarization four-
vectors can be written down as (we assume 100%  polarization of the electron beam)  
 

2 21
1 12

1 1

( )
( ) ( ) 2 {(1 )(1 ) ( )

1

pol

x M

yyF L x
F L x D x P sin x Y y cos G q

Y y cos x y


       

  
 


   (76) 

 
2 2 2

1 1[ (1 )( )] ( ) ( )}E My x y cos Y ReG q G q      

 

2
1 1 12

1 1

1 ( ) 1
( ) ( ) {(1 )(1 )[ (1 )(

2 1

pol

z

F L x
F L x D x P x Y y cos y x y cos

Y y cos x y


        

  
 


  (77) 

 
2 2 2 2 2 2

1 1 1 1 1)] ( ) [(1 )( )(2 ) ] ( ) ( )}M E MY G q y x Y y cos Y y cos y ReG q G q            

 

If we remove the unpolarized and polarized emission factors ( )F L x dx  and ( )polF L x dx  and put 0x   we obtain the 

standard expressions for the components of the nucleon polarization vector in the Born approximation. For the case of 
the point final particles we have  
 

( ) ( ) (2 ) ( )point pol
xF L x D x P y x sin F L x            (78) 

 

1 1( ) ( ) [ (2 ) ] ( )point pol
zF L x D x P xy x Y cos F L x       

 
Let us consider the case when the produced antinucleon and nucleon are both polarized. Then the components of 

the polarization correlation tensor ( )ikP i k x y z       of the nucleon and antinucleon (determined as a coefficient in front 

of 1 2i k   where 
1 2
( )
 
   is the nucleon (antinucleon) polarization vector in its rest frame) can be written as  

 

2 2 2 2 2

2
( ) [(1 ) ( ) ( ) ]

1
yy M E

z
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     (79) 
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2 2 2
1 12 2
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where we introduce the notations  

2 2
1 1 1 1 2

2

1
(1 )( )( 2)

( )

E
z y x Y y cos Y y cos d Y

y y Y E
          


   

For completeness we give also the nonzero coefficients in the case of longitudinally polarized electron beam  

2
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2 21
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PHOTON ENERGY DISTRIBUTION 

Let us calculate the differential cross section of the reaction (1) for the experimental conditions when only the 

energy of the collinear photon is measured. To do this, it is necessary to calculate the quantity d dx , i.e., we have to 
integrate the differential cross section (62) over the nucleon angular variables. The invariant integration of the hadronic 
tensor is the simplest method to do this.  

Let us define the following quantity  
 

3 3
(4)1 2

1 2 1 23 3
1 2

( )
(2 ) 2 (2 ) 2

d dp p
F H k k p p k

E E
     

 
  

 
    (81) 

 
Using the requirements of the Lorentz invariance and 0q H q H      (it is a consequence of the hadron current 

conservation) the most general expression for the F  tensor can be written as  

 
2( )F A q g           (82) 

 
Only unpolarized part of the hadronic tensor (0)H  gives nonzero contribution to the Eq. (81) since we integrate over 

the variables of the nucleon–antinucleon pair. To calculate the 2( )A q  function it is necessary to multiply by g  tensor 

the left and right sides of Eq. (81) and this leads to the following result  
 

3 3
2 (4)1 2

1 2 1 23 3
1 2

1
( ) (0) ( )

3 (2 ) 2 (2 ) 2

d dp p
A q H g k k p p k

E E
     

 
  

 
   (83) 

 
The contraction of the hadron (0)H  and g  tensors can be written in terms of the structure functions 

2( ) 1 2iH q i     

 
2 2 2

1 2(0) 3 ( ) (1 ) ( )H g H q M H q              (84) 

 
This contraction can be written also in terms of the nucleon electromagnetic form factors  
 

2 2 2 2 2(0) 8 [ ( ) 2 ( ) ]E MH g M G q G q                (85) 

The easiest way to do the integration over the variables of the nucleon–antinucleon final state is to use the center–of–
mass system of this pair. As a result we have  
 

2 2
2 2 2 2 2

5 2

2 4
( ) 1 [ ( ) 2 ( ) ]

3 (2 )
E M

M M
A q G q G q

q
        


     (86) 

 
Representing the square of the matrix element as contraction of the lepton and hadron tensors we can write the 
expression for the differential cross section as (we integrate over the angular variables of the collinear photon)  

 

4 3

4

1
4 und

x F L
dx q




 
            (87) 

 
Since the F  tensor is symmetric (over the    indices) only unpolarized part of the lepton tensor gives nonzero 

contribution. As a result we have for the differential cross section d dx  (where x  is the beam energy fraction 

carried away by the emitted collinear (to the direction of the electron momentum) photon in the e e NN     reaction)  

2 2
2 2 2 2 2

4 2

8 4
1 ( )[ ( ) 2 ( ) ]

3
E M

d M
M F L x G q G q

dx q q

                (88) 
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The limit of the point–like final particles (for example, the e e        reaction) is given by  

 
2 2 2

2 2 2

4 4
1 (1 2 ) ( )

3

pointd M M
F L x

dx q q q

  
            (89) 

 
Let us write the energy spectrum of the collinear photon in the terms of the structure functions, which define the spin–
independent part of the hadron tensor, for the case of two final particles with different masses. We have  
 

2 2 22
2 2 2 2 2 2 2 2 21 2 1

1 1 2 1 24 2 2 2 2
1

1
(1 ) 4 ( ){ 3 ( ) [( ) 4 ] ( )}

3 4

M M Md
F L x H q q M M M q H q

dx q q q M q

   
           (90) 

 
And the spin–independent part of the hadron tensor is written in this case as  
 

2 2
1 2 1 12

1

1
(0) ( ) ( )H H q H qg p p

M
              (91) 

 
where 1M  is the mass of the particle with four–momentum 1p   Using this equation we can calculate the contributions 

of some various channels to the energy spectrum.  
Spin–zero particles. 

Consider the production of two spinless particles (for example, e e K K          ). The electromagnetic current of 

the hadrons in this case is determined by one complex form factor and the explicit expression of this current can be 
written as  

2
1 2 1 2( )( )J F q p p               (92) 

where 1 2( )p p   and 1 2( )   are the four–momentum and wave function of the first (second) spinless particle. The 

structure functions in this case are  
 

2 2 2 2 2
1 2( ) 0 ( ) ( )H q H q M F q             (93) 

 
where M  is the spinless particle mass.  
Spin–one particles.  

Consider the production of two spin–one particles (for example, e e dd        ). The electromagnetic 

current for a spin–one particle is completely described by three complex form factors. Assuming the P - and C  - 
invariance of the hadron electromagnetic interaction, this current can be written as 

 
2

2 2 2
1 2 1 1 2 3 1 2 1 2 2 1 2 2 12

1
( ) [ ( ) ( )( ] ( )( )

2

q
J p p G q U U G q U qU q U U G q U U q U U q

M
                           (94) 

 
where 1 2( )U U   is the polarization four–vector describing the first (second) spin–one particle.  

The form factors 2( )iG q  are related to the standard electromagnetic form factors: CG  (charge monopole), MG  

(magnetic dipole) and QG  (charge quadrupole) by  

 

2 1 2 3 2 3 1

2 2
2 ( ) (1 )

3 3
M Q CG G G G G G G G G G                  (95) 

 
The standard electromagnetic form factors have the following normalizations  
 

2(0) 1 (0) (0)C M QG G G M Q        

 
where ( )Q  is the magnetic (quadrupole) moment of a spin–one particle. The structure functions in this case are  
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2 2 2 2 2 2 2 2 2
1 2

2 8
( ) 8 (1 ) ( ) 12 ( )

3 9
M C M QH q M G H q M G G G                     (96) 

 
where M  is the spin–one particle mass. The form factors of the  –meson, deuteron in the time–like region of the 

momentum transfer were discussed in Refs. [37, 38].  
Channel 1a .  

Let us consider the production of  –meson and 1(1260)a , where 1(1260)a  is the axial–vector meson with the following 

quantum numbers ( ) 1 (1 )G PCI J     This channel gives a substantial contribution to the 4e e     process. In the 

energy region 1 2 5W    GeV (W  is the total energy of the colliding beams) the process of four pion production is 

one of the dominant processes of the reaction e e hadrons      
The electromagnetic current of the 1a    transition is described by two complex form factors. Assuming the 

P - and C  - invariance of the hadron electromagnetic interaction this current can be written as [39]  
 

2 2 2
1 2 2 2( )( ) ( )( )J F q q U q U q F q q p U q U p                   (97) 

 
where U  is the polarization four–vector describing the spin–one 1a –meson, 2p   is the pion four–momentum and 

2( )iF q  are the electromagnetic form factors describing the 1a    transition. The structure functions corresponding 

to this current are  
 

2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 1 2 1 2

1
( ) ( ) ( ) [ ]

2
H q q F q M M F H q q q F F M F                  (98) 

 
where 1 2( )M M  is the 1a –meson (pion) mass.  

Channel N .  

Let us consider the production of antinucleon and (1232) –isobar with the ( ) 3 2(3 2 )PI J      One can expect that 

this channel gives a substantial contribution to the e e NN     process. The electromagnetic current of the N    

transition is described by three complex form factors and it can be written as [40]  
 

2 2
1 5 1 1 2( ) { ( ) [ ( ) ]J p F q q q M M qu             (99) 

 

2 2
2 1 2 3 1 2 2

1 2

1
( ) [ ( ) ] ( )[( ) ]} ( )F q q p p F q M M g q v p

M M
      

        

 

where 1 2( )M M  and 1 2( )p p  are the mass and four–momentum of the  –isobar (antinucleon). 2( )( 1 2 3)iF q i     are the 

electromagnetic form factors describing the N    transition. The structure functions corresponding to this current 

are  

2 2 2 2
1 1 2 1 2 1 2 3 1 2 1 2 32
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1 1 1
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3
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3 ( )

q M Mq
M q ReFF M M M r F M M F F

M MM M M
  

          


 

 

where 2 2 2 2
1 2 3 1 2( ) 2F q F F F r q M M        .  

 
RADIATIVE RETURN. LARGE ANGLES 

Let us consider the experimental conditions when the nucleon–antinucleon pair is not detected. We assume that 
the apparatus detect events in the whole phase space of the nucleon–antinucleon pair. So, it is necessary to integrate the 
differential cross section (42) over the variables of this pair. This procedure is already done in the Section “PHOTON 
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ENERGY DISTRIBUTION”. Using these results we have for the energy and angular distribution of the photon  
 

4 3 2

4

1
4 ( ) (0)

d
x A q Lg

dxd q







   


        (101) 

where the function 2( )A q  has the following form for the general case of two particles with unequal masses  

 

2 2 2 2 2 2 2
1 2 15 2

1 1 1
( ) ( ) 4

12 (2 )
A q q M M M q

q
   


      (102) 

 

2 2 2 2 2 2 2 2
1 1 2 1 22 2

1

1
{3 ( ) [( ) 4 ] ( )}

4
H q q M M M q H q

M q
      

 

where 1M  and 2M  are the masses of the final particles. The structure functions 2( )iH q  describe the hadronic tensor 

(0)H  for the case of two–particle final state. The expressions of the structure functions in terms of the 

electromagnetic form factors of the transition 1 2h h   can be found in the Section “PHOTON ENERGY 

DISTRIBUTION” for some particular final states. After calculation of the convolution of the (0)L  and g   tensors 

we have for the distribution (neglecting terms proportional to the electron mass)  
 

4 3 2 4 2 2

4
1 2

1 1
32 ( ){1 [ 2 2( ) ]}

d
x A q q q q k q k

dxd t tq





        


     (103) 

 
Let us choose the z  axis along the electron momentum, and the photon momentum in the xz  plane. Then integrating 
over the whole range of the photon azimuthal angle we obtain  
 

2
5 3 2

4 2 2 2

1 2 2 2
2(2 ) ( )[1 ]

1 e

d x x
x A q

dxdc q x c

  


 
  


     (104) 

 

where 2 21 4e m s   , c cos  ,   is the angle between the electron and photon momenta.  

Integrating this expression over the photon polar angle within the range 1 2m E      , where 

2( ) m E   , we obtain the following expression for the differential cross section  

 
2 4 2

5 3 2 1 2
1 22 4 2

1 2

(1 )(1 )1 1
2(2 ) ( )[( )(1 ) ]

(1 )(1 )1

c cd q q s
A q c c ln

s c cdq sq q s

  
  

    
  

    (105) 

 

where i ic cos  . Let us rewrite this formula in another form introducing the total cross section of the 1 2e e h h    

reaction. We have  
 

3 2 4 2
2 1 2

1 22 2 2
1 2

(1 )(1 )2 1
( )[( )(1 ) ]

3 (1 )(1 )1

c cd q q s
R q c c ln

s c cdq sq q s

    
    

  
    (106) 

 
where we define  
 

2 2 2 2 2 2 21 2
1 2 14

( ) 1 1
( ) ( ) 4
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e e h h
R q q M M M q

e e q
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2 2 2 2 2 2 2 2
1 1 2 1 22 2

1

1
{ 3 ( ) [( ) 4 ] ( )}

4
H q q M M M q H q

M q
       

 
If we integrate the expression (104) over the photon polar angle within the following range 

min minm E           we obtain the following result for the differential cross section of the 1 2e e h h     
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reaction  
 

3 4 2 2
2

2 2 2

14 1
( )[ (1 ) ]

3 11
m

m
m

cd q s q
R q ln c

c sdq sq q s

   
   

 
      (108) 

where min
mc cos  . If we put 1 2h h NN , then 2 2 2 2 2( ) ( 2)[2 ( ) (1 ) ( ) ]MN ENR q G q G q          and the expression for 

2d dq  for the case 1 2h h NN  coincides with the one obtained in Ref. [30].  

 
CONCLUSIONS  

The emission of the hard photon by the electron or positron is considered in the e e N N      . The 

nucleon polarization and the differential cross sections for some experimental conditions have been calculated.  
The case of the emission of the collinear (with respect to the direction of the electron beam momentum) photon is 

considered separately. The differential cross section, the nucleon polarization, the correlation coefficients for both 
polarized nucleon and antinucleon (provided the electron beam is unpolarized or longitudinally polarized), the transfer 
polarization from the longitudinally polarized electron beam to the nucleon have been calculated.  

We have calculated the photon energy distribution for the reaction 1 2e e B B    , where 1 2( )B B  is some baryon 

(antibaryon) for the case of the collinear (with respect to the direction of the electron beam momentum) photon, emitted 

in the initial state. As 1 2B B  final state we considered some channels, namely: two spinless mesons (for example, 

K K     ), two spin–one particles (for example, dd    ), the 1(1260)a  and (1232)N  channels. The photon 

energy distributions have been calculated in terms of the electromagnetic form factors of the 1 2B B   transition.  
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