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In this paper the stability of the non-uniformly rotating cylindrical plasma in the axial uniform magnetic field with the vertical 
temperature gradient is investigated. In the approximation of geometrical optics a dispersion equation for small axisymmetric 
perturbations is obtained with the effects of viscosity, ohmic and heat conductive dissipation taken into account. The stability criteria 
for azimuthal plasma flows are obtained in the presence of  the vertical temperature gradient and  the constant magnetic field. The 
Rayleigh-Benard problem for stationary convection in  the non-uniformly rotating layer of the electrically conducting fluid in the 
axial uniform magnetic field is considered. In the linear theory of stationary convection the critical value of the Rayleigh number 

сRa  subject to the profile of  the inhomogeneous rotation (Rossby number Ro ) is obtained. It is shown that the negative values of 
the Rossby number < 0Ro  have a destabilizing effect, since the critical Rayleigh number сRa  becomes smaller, than in the case of 
the uniform rotation = 0Ro , or of the rotation with positive Rossby numbers > 0Ro . To describe the  nonlinear convective 
phenomena the local Cartesian coordinate system was used, where the inhomogeneous rotation of the fluid layer  was represented as 
the rotation with a constant angular velocity 0Ω


 and azimuthal shear 0 ( )U x


 with linear dependence on the coordinate x . As a result 

of applying the method of perturbation theory for the small parameter of supercriticality of the stationary Rayleigh number  a 
nonlinear Ginzburg-Landau equation was obtaned. This equation describes the evolution of  the finite amplitude of perturbations by 
utilizing the solution of the Ginzburg-Landau equation. It is shown that the weakly nonlinear convection based on the equations of 
the six-mode (6 )D Lorentz model transforms into the identical Ginzburg-Landau equation. By utilizing the solution of the Ginzburg-
Landau equation, we determined the dynamics of unsteady heat transfer for various profiles of the angular velocity of the rotation of 
electrically conductive fluid.  
KEY WORDS: magnetorotational instability, Rayleigh-Benard convection, nonlinear theory, Ginzburg-Landau equation 
 

НЕСТІЙКОСТІ В СЕРЕДОВИЩІ, ЯКЕ НЕОДНОРІДНО ОБЕРТАЄТЬСЯ З ТЕМПЕРАТУРНОЮ 
СТРАТИФІКАЦІЄЮ У ЗОВНІШНЬОМУ ОДНОРІДНОМУ МАГНІТНОМУ ПОЛІ 
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Досліджується стійкість циліндричної плазми, що неоднорідно обертається в аксіальному однорідному магнітному полі з 
вертикальним градієнтом температури. У наближенні геометричної оптики отримано дисперсійне рівняння для малих 
осесиметричних збурень з урахуванням ефектів в'язкості, омічної та теплопровідної дисипації. Знайдено критерії стійкості 
азимутальних течій плазми при наявності вертикального градієнта температури і постійного магнітного поля. Розглянуто 
задачу Релея-Бенара для стаціонарної конвекції в шарі електропровідної рідини, що неоднорідно обертається в аксіальному 
магнітному полі. У лінійній теорії стаціонарної конвекції отримано критичне значення числа Релея сRa  в залежності від 
профілю неоднорідного обертання (числа Росбі Ro ). Показано, що негативні значення числа Росбі < 0Ro  надають 
дестабілізуючий ефект, оскільки критичне число Релея сRa  стає меншим, ніж у разі однорідного обертання = 0Ro  або 
обертання з позитивними числами Росбі > 0Ro . Для опису нелінійних конвективних явищ використовувалася локальна 
декартова система координат, в якій неоднорідне обертання шару рідини представляється у вигляді обертання з постійною 
кутовою швидкістю 0Ω


 і азимутальним широм 0 ( )U x


, профіль швидкості якого є локально лінійним. В результаті 

застосування методу теорії збурень за малим параметром надкритичності стаціонарного числа Релея отримано нелінійне 
рівняння типу Гінзбурга-Ландау, що описує еволюцію кінцевої амплітуди збурень. Показано, що розглянута слабонелінійна 
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конвекція на основі рівнянь шести-модової (6 )D  моделі Лоренца перетворюється в ідентичне рівняння Гінзбурга-Ландау. 
Використовуючи рішення рівняння Гінзбурга-Ландау, ми визначили динаміку нестаціонарного переносу тепла для різних 
профілів кутової швидкості обертання електропровідної рідини. 
КЛЮЧОВІ СЛОВА: магнітообертальна нестійкість, конвекція Релея-Бенара, слабонелінійна теорія, рівняння Гінзбурга-
Ландау 
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Исследуется устойчивость неоднородно вращающейся цилиндрической плазмы в аксиальном однородном магнитном поле с 
вертикальным градиентом температуры. В приближении геометрической оптики получено дисперсионное уравнение для 
малых осесимметричных возмущений с учетом эффектов вязкости, омической и теплопроводной диссипации. Найдены 
критерии устойчивости азимутальных течений плазмы при наличии вертикального градиента температуры и постоянного 
магнитного поля.  Рассмотрена задача Рэлея-Бенара для стационарной конвекции в неоднородно вращающемся слое 
электропроводящей жидкости в аксиальном однородном магнитном поле. В линейной теории стационарной конвекции 
получено критическое значение числа Рэлея сRa  в зависимости от профиля неоднородного вращения (числа Россби Ro ). 
Показано, что отрицательные значения числа Россби < 0Ro  оказывают дестабилизирующий эффект,  так как  критическое 
число Рэлея сRa становится меньше, чем в случае однородного вращения = 0Ro  или вращения с положительными 
числами Россби > 0Ro . Для описания нелинейных конвективных явлений использовалась локальная декартовая система 
координат, в которой неоднородное вращение слоя жидкости представляется в виде вращения с постоянной угловой 
скоростью 0Ω


 и азимутальным широм 0 ( )U x


, профиль скорости которого локально линеен. В результате применения 

метода теории возмущений по малому параметру надкритичности стационарного числа Рэлея. получено нелинейное 
уравнение типа Гинзбурга-Ландау, описывающее эволюцию конечной амплитуды возмущений. Показано, что 
рассматриваемая слабонелинейная конвекция на основе уравнений шести-модовой  модели Лоренца преобразуется в 
идентичное уравнение Гинзбурга-Ландау. Используя решение уравнения Гинзбурга-Ландау, мы определили динамику 
нестационарного переноса тепла для различных профилей угловой скорости вращения электропроводящей жидкости. 
КЛЮЧЕВЫЕ СЛОВА: магнитовращательная неустойчивость, конвекция Рэлея-Бенара, слабонелинейная теория, 
уравнение Гинзбурга-Ландау 
 

Fluid flow caused by a temperature gradient in the gravitational field, known as the phenomenon of free 
convection [1-3], plays an important role both in natural phenomena and in engineering and industrial applications. For 
several decades, free convection in liquid layers or the Rayleigh-Benard convection has been theoretically and 
experimentally investigated. Of particular interest are the problems related to the effect of rotation and magnetic field 
on the Rayleigh-Benard convection, for example, because of their applications to the theory of vortex and magnetic 
dynamo [4-6]. Convection, in which the axis of rotation of a medium and that of the uniform magnetic field coincide 
with the direction of the gravity vector, was well studied in [1-2]. The case when the directions of the axes of rotation 
and that of magnetic field are perpendicular to each other, and perpendicular to the direction of the gravity vector, is 
also of interest for solving some astrophysical problems. Such a formulation of the problem corresponds to the 
convection in the fluid layers located in the equatorial region of a rotating object, where the azimuthal magnetic field 
plays a significant role. The linear theory of such convection was first formulated in [7–8]. The linear theory of rotating 
magnetic convection for an arbitrary deviation of the axes of rotation and that of the magnetic field from the vertical 
axis (field of gravity) was developed in [9]. The studies listed above constitute a linear theory that provides information 
on the convection onset. It is obvious that linear models do not provide information on the final amplitude of 
convection. This amplitude occurs when interaction between several perturbation modes takes place. Therefore, it is 
important to realize the physical mechanism of nonlinear effects and to quantify the heat and mass transfer in terms of 
finite amplitudes. Up to date, there is no rigorous nonlinear model that can be solved analytically. Currently, to 
construct a nonlinear theory of convection, the perturbation method developed in [10] is widely used. This work shows 
that the initial heat transfer by convection depends linearly on the Rayleigh number, and then, at higher Rayleigh 
numbers, the heat transfer is slightly different from the linear case. The authors of [10] called this process weakly 
nonlinear, where the nonlinearity depended on the linear case. The weakly nonlinear theory of convection was further 
developed with regard to modulation of the parameters that control the convection process, what is very important for 
solving many technological problems. Different  types of modulation, such as rotation [11–14], gravity [15–17], 
temperature [18–20] and magnetic field [21–22], were studied for stationary weakly nonlinear convection in various 
media: porous media, nanofluids, and so on. In these papers [11–22] the effect of modulation of the parameters 
(rotation, gravity, temperature, magnetic field) on the heat and mass transfer in convective media was determined. 
Despite the enormous amount of works on the Rayleigh-Benard convection, there is still a certain gap in the study of the 
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influence of inhomogeneous (or differential) rotation on convective processes. The interest to these studies is primarily 
caused by various astrophysical problems. It is known that the majority of various space objects consisting of dense 
gases or liquid (Jupiter, Saturn, Sun, etc.) rotate non-uniformly, i.e. different parts of the object rotate around a common 
axis of rotation with different angular velocities. Differential rotation is also observed in galaxies, accretion disks, and 
extended rings of planets. Besides, such large-scale vortex structures as typhoons, cyclones and anticyclones, etc. also 
rotate non-uniformly. 

The stability of the inhomogeneous rotation of the ideally conducting medium in the magnetic field was first 
considered in [23–24]. These works also show that a weak axial magnetic field destabilizes the azimuthal differential 
rotation of plasma, and when the condition 0</2 dRdΩ is satisfied, a magneto-rotational instability (MRI) or standard 
MRI (SMRI) in the non-dissipative plasma occurs. Since this condition is also satisfied for Keplerian flows 3/2−Ω R , 
the MRI is the most likely source of turbulence in the accretion disks. The MRI discovery stimulated numerous 
theoretical studies. The first theoretical studies that dealt with the problem of accretion flows were carried out in the 
approximation of a non-dissipative plasma with the radial thermal stratification [25] and the magnetization of the heat 
fluxes [26] taken into account. In [27] the stability of the differentially rotating plasma in the axial magnetic field was 
studied with simultaneous consideration of both dissipative effects (viscosity and Ohmic dissipation) and thermal radial 
stratification of plasma. MRI in a spiral magnetic field, i.e. with nontrivial topology was studied in [28–29]. While 
studying the MRI, the differential rotation of the medium is simulated by the Couette flow between two cylinders 
rotating at different angular velocities (Fig. 1a), which is convenient for carrying out laboratory experiments [30].  

 

а) б) 
Fig.1. a) geometry of the problem for standard MRI: two concentric cylinders with radii 1=inR R  and 2=outR R  rotating with 
velocities 1=inΩ Ω  and 2=outΩ Ω . 0zB - axial magnetic field directed vertically upwards; b) Convective Busse dynamo model for 
a layer of the electrically conductive fluid in the rotating magneto-convection. 

In [31] various models of thermal convection in rapidly rotating fluids penetrated by strong magnetic fields are 
discussed. A special attention is paid to the probability, that the magnetic field can be supported by the dynamo action, 
but not by the electric currents applied externally. In [31] an overview of two dynamo models is given. This is the 
Childress-Soward flat layer model [32] and the annulus model by Busse [33]. The Childress-Soward model operates in 
the convective flat layers of fluid located in moderate and subpolar latitudes (Fig. 2a) of the space object. 

For the terrestrial dynamo, the Busse model operates in the equatorial layers, where the azimuth magnetic field 
plays a significant role. The electrically conductive fluid rotates in the annular region located between the solid core and 
the Earth crust. The theory of this process was developed in [33–35], where the model of rotating cylinders was used. 
According to this theory [35] the outer cylinder rotates at a constant angular velocity 2Ω , while the inner one remains 

stationary 0=1Ω  (Fig. 1b). Convective flows (Benard cells) occur in the fluid layer between the cylinders due to the 

temperature difference between the inner inT  and outer outT cylinders inout TT > . The difference in the heights of the 

inner 1h  and outer 2h  cylinders leads to a similar effect of the Coriolis force on β -plane. 
These models do not completely solve the problems of geodynamo, for example, the problem of magnetic field 

inversions. Unlike the Childress-Soward and Busse models, the stability of a non-uniformly rotating layer of the 
electrically conducting fluid in the axial magnetic field, in which the lower surface of the layer )( dT is hotter than the 

upper one )( uT  (Rayleigh-Benard problem): ud TT > , was studied in [36] (Fig. 2b). In [36] a chaotic regime based on 
the nonlinear dynamics equations of a six-dimensional phase space was studied. The analysis of these equations 
revealed the existence of a complex chaotic structure – a strange attractor. Besides, a convection mode was determined, 
in which some chaotic change in direction (inversion) and amplitude of the perturbed magnetic field occurs, with the the 
medium inhomogeneous rotation taken into account.  
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а) б) 
Fig.2. a) A layer (thickness h ) of the electrically conductive fluid of the astrophysical object that rotates at a non-uniform velocity 

)(RΩ


 in the axial magnetic field 0B


 (analogous to the Childress-Soward dynamo model); b) geometric description of the 
convective dynamo simulated by Couette-Taylor flow in a thin layer of the electrically conducting fluid. 

The aim of this work is to study local instabilities in rotating flows in the presence of a constant vertical magnetic 
field and the temperature gradient in the field of gravity, as well as the development of a linear and weakly nonlinear 
theory of the stationary convection in a non-uniformly rotating layer of the electrically conductive fluid in the axial 
uniform magnetic field. 

The results obtained in this work can be applied to various astrophysical and geophysical problems, which 
consider magnetic convection in rotating layers of the Earth interior, the Sun, hot galactic clusters, accretion disks and 
other objects. 

 
LOCAL INSTABILITIES IN A MAGNETIZED ROTATING FLOW WITH 

WEAK TEMPERATURE STRATIFICATION 
Basic equations of small perturbations evolution  

Let us consider the flow dynamics of a non-uniformly rotating conductive fluid (plasma) in a constant 
gravitational g and magnetic 0B  fields  with a constant vertical temperature gradient AeconstT −∇ ==0 , where 

0>A  is a constant gradient, e  is a unit vector directed vertically upwards along Z  axis. The stationary flow of the 
non-homogeneously rotating fluid will be simulated by the Couette-Taylor flow, located between two rotating cylinders 
with the angular velocity of rotation )(RΩ : 

 ,
)(

)(=)( 2
1

2
2

2

2
2

2
121

2
1

2
2

2
11

2
22

RRR
RR

RR
RRR

−
Ω−Ω+

−
Ω−ΩΩ  

where outinoutin RRRR ΩΩΩΩ =,=,=,= 2121 - radius and angular velocity of rotation of the inner and outer 
cylinders, respectively. 

To describe the motion of a viscous incompressible electrically conducting fluid we use the equations of magnetic 
hydrodynamics in the Boussinesq approximation [1-2]: 

 
2

2

0 0

1 1( ) = ( ) ( )
8 4

v Bv v P B B eg T v
t

β ν
ρ π πρ

∂ + ∇ − ∇ + + ∇ + + ∇
∂

     
 (1) 

 2( ) ( ) =B v B B v B
t

η∂ + ∇ − ∇ ∇
∂

    
     (2) 

 2( ) =T v T T
t

χ∂ + ∇ ∇
∂


 (3) 

 = 0,  = 0div B div v
 

 (4) 
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where β  is the coefficient of thermal expansion, const=0ρ  is the density of the medium, ν  is the coefficient of 

kinematic viscosity, πση /4= 2c  is the coefficient of magnetic viscosity, σ  is the coefficient of electrical 
conductivity, χ  is the coefficient of the medium thermal conductivity. 

We assume that the uniform (constant) magnetic field 0B


 is directed along the axis OZ . The field will be further 

called axial in the cylindrical coordinate system ),,( zR φ . The direction of the magnetic field coincides with the axis 

of rotation of the fluid OZΩ

 , which rotates in the azimuthal direction with velocity 0 = ( )v R R eφΩ 

. The stationary 
state of the system satisfies the following equations: 

 0.=,=1,1= 2
0

2

0
0

0

0

0

2

dz
TdTg

dz
dp

dR
dpR β

ρρ
−Ω  (5) 

Equation (5) shows that the centrifugal equilibrium is established in the radial direction, and the hydrostatic one – 
in the vertical direction. 

Our main task is to consider the problem of the stability of small perturbations of physical quantities ( , , , )u b p θ


 
against a background of the stationary state (5). By representing all the quantities in equations (1)-(4) as the sum of the 
stationary and perturbed parts 0=v v u+  

, 0=B B b+
 

, ppP +0= , θ+0= TT , we obtain the evolution 
equations for small perturbations in the linear approximation: 

2 0
0

0
2

0 0
2

0

4
0

0

t

t

t

BM v eg u

B M v b
A e v

ν β
πρ

η
χ θ

Ω

Ω

 ⋅∇∂ − ∇ + + ⋅∇ −       − ⋅∇ ∂ − ∇ − + ⋅∇ ⋅    − ⋅ ∂ − ∇ + ⋅∇   
 
 


  

 
 

0

0

4
0 ,
0

B bp
π

ρ

 ⋅+ 
 ∇= −  
 
  
 



 

(6) 

where indication MΩ  for the matrix of the non-uniform rotation is entered [28]:  

 

0 0

= 0 0

0 0 0

dM R
dRΩ

−Ω 
 Ω Ω+
 
 
 

. 

Perturbed fields ,u b


also satisfy the solenoid condition: 

 = 0,  = 0.div b div u
 

 (7) 

As long as the medium is stratified by temperature and rotates with an inhomogeneous angular velocity, a justification 
for the applicability of the limit of geometric optics on the bases of the asymptotic WKB (Wentzel - Kramers – 
Brillouin) method [37] should be provided.  
 

Asymptotic WKB method and geometric optics approximation 
Let us consider the limit of the medium weak stratification when the spatial scale of the medium heterogeneity 

1

0

0

1=
−









dz
dT

T
L far exceeds the typical perturbation scale (wavelength) 

||
2=
k
πλ : λL . In the short-wave limit 

( λL ) an approximation of geometrical optics is performed, and therefore all the perturbed quantities in equations 

(6-7) can be represented by the dependence of the form: exp( )ikr tγ+


, where k


 is the wave vector, γ  is the 
amplification (or attenuation) factor of the disturbances [38]. 

According to [28–29] we present a more rigorous justification of the short-wave approximation using the 
asymptotic WKB method. For this purpose we represent the solutions of the linearized system of equations (6) in the 
form of an asymptotic series in the small parameter ε  ( 1)<0 ε : 
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(0) (1)

(0) (1)
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 (8) 

where ),,(= zRx φ  are the cylindrical coordinates recorded in vector form; ),( txΦ  is a scalar function, called the 

phase (or eikonal) of the perturbed quantities oscillations; ( )nu , ( )nb


, )(nθ , )(np  ( 0,1,...=n ) are the amplitudes of 
disturbances. The dissipative processes, when using the asymptotic expansion (8), have an effect in the second order of 
ε  smallness [28-29], i.e. 2 2 2= , = , =ν ε ν η ε η χ ε χ   . For convenience, we introduce the indication for the 
derivative along the fluid flow lines:  

 0 .D v
Dt t

∂≡ + ⋅∇
∂


 

Substituting decompositions (8) into the system of equations (6), we obtain the system of local differential 
equations for 1−ε and 0ε  orders: 
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 ∇+  
 
  
 



 

Solenoid conditions (7) take the form: 

 (0) = 0u ⋅∇Φ
,   (0) (1) = 0u iu∇⋅ + ⋅∇Φ 

, (11) 

  

 (0) = 0b ⋅∇Φ


,   (0) (1) = 0b ib∇⋅ + ⋅∇Φ
 

 . 

Next, multiplying equations (9) alternately by Φ∇ , (0)u , (0)b  and applying equations (11) we obtain the following 
relations: 

 ( )
2

(0) (0) (0) (0)
0

0

( ) 1 = 0, = 0, = 0,
4

D Dp B b b
Dt Dt

θ
ρ π
∇Φ Φ Φ ⋅ + ⋅ ⋅∇Φ ⋅∇Φ 
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(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)0
0

0

( ) = 0, ( ) = 0, = 0,
4

BD D Du u b u b u B u u u
Dt Dt Dt

θ
πρ
⋅∇ΦΦ Φ Φ⋅ − ⋅ ⋅ − ⋅∇Φ ⋅ ⋅

         
 

(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)0
0

0

( ) = 0, ( ) = 0, = 0.
4

BD D Du b b b b b B u b b
Dt Dt Dt

θ
πρ
⋅∇ΦΦ Φ Φ⋅ − ⋅ ⋅ − ⋅∇Φ ⋅ ⋅

       
 

Due to the fact that 0≠Φ∇ , (0) 0u ≠
, (0) 0b ≠


, 0(0) ≠θ  we obtain: 

 (0) (0)
0 0

1= ( ), = 0, = 0.
4

Dp B b B
Dtπ
Φ− ⋅ ⋅∇Φ

 
 (12) 

According to (12) the system of equations (10) becomes much simpler. 

 
(1)

2 (0) (0) (0) (1)0 0

0 0

( )( ) =
4 4
B B bD iM u b eg p

Dt
ν βθ

πρ ρ πΩ

 ⋅∇ ⋅∇Φ + ∇Φ + − − − +  
   

    

 2 (0) (0)
0( ) ( ) = 0D M b B u

Dt
η Ω

 + ∇Φ − − ⋅∇ 
 

    (13) 

 2 (0) (0)( ) = 0D A e u
Dt

χ θ + ∇Φ − ⋅ ⋅ 
 

   

The second relation in (12) is the Hamilton-Jacobi equation with the initial condition: )(=,0)( 0 xx ΦΦ . Acting on 

this equation by operator∇  we obtain the eikonal equation: 

 ( )0 = 0,t v∂ ∇Φ +∇ ⋅∇Φ
 

or 

 0=)()()(
2

2

22

φφφφ φ ∂∂
Φ∂Ω+

∂
Φ∂Ω+








∂∂
Φ∂Ω+

∂
Φ∂

∂
Ω∂+Φ∇∂

z
Re

R
Re

R
R

R
e zRt  

the initial condition for this equation is: )(=,0)( 0 xx Φ∇Φ∇ . It is known that the phase gradient Φ∇  is by 
definition a wave vector: 

 = = ,R R z zk e k e k e kφ φ∇Φ + +


 

then for the components of vector k  we obtain the following equations: 

 .)(=,)(=,)(=
z
k

RRk
k

Rk
k

RRk
R

k zttRt ∂
∂

Ω−∂
∂
∂

Ω−∂







∂
∂

Ω+
∂
Ω∂−∂ φφ

φ
φ

φ φφ
 (14) 

From these equations it follows that for the axisymmetric perturbations ( 0=/= φφ ∂Φ∂ Rk ) the wave vectors  

Rk  and zk  do not depend on time, i.e. they can be considered constant. Besides, it is known (see, for example, [37]) 
that geometric optics is approximated locally, where the amplitude and direction of the wave remain almost unchanged 
at the distance of the order of the wavelength λ , hence the wave vector k


 (or phase gradient Φ∇ ) can be considered 

constant: | |=k const


. Since the approximation of geometrical optics is well satisfied for the axisymmetric 

perturbations, the perturbations (0)u , (0)b


, (0)θ , (1)p  in equations (13) can be represented as plane waves: 

 

(0)

(0)

(0)

(1)

exp( )R z

u U
Hb t ik R ik z

Pp

γ
θ

   
   
   = + +   Θ
        




. (15) 
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After substituting (15) into the system of equations (13) we obtain the system of equations for the amplitudes of the 
perturbations , , ,U H PΘ

 
:  

 0

0 0

( )( ) 2 =
4

R R
R

i kB H ikU u Pν φγ ω
πρ ρ

+ − Ω −


  (16) 

 0

0

( )
( ) 2 (1 ) =

4R

i kB H
U Ro U φ

ν φγ ω
πρ

+ + Ω +


 (17) 

 0

0 0

( )( ) =
4

z z
z

i kB H ikU P gνγ ω β
πρ ρ

+ − + Θ


  (18) 

 0( ) = ( )R RH i kB Uηγ ω+


 (19) 

 0( ) = ( ) RH i kB U R H
Rη φ φγ ω ∂Ω+ +
∂


 (20) 

 0( ) = ( )z zH i kB Uηγ ω+


 (21) 

 zAU=)( Θ+ χωγ  (22) 

 0== zzRRzzRR HkHkUkUk ++  (23) 

In equations (16)-(23) the indications for the total pressure 
(1)

0=
4

B HP P
π
⋅+

 
 , viscous 2= | |kνω ν


, ohmic 

2= | |kηω η


and heat conductive 2= | |kχω χ


dissipation frequency ( 2 2 2| | = R zk k k+


) are introduced, Ro is the 

hydrodynamic Rossby number, characterizing the heterogeneity of the medium rotation:
R

RRo
∂
Ω∂

Ω2
= .  

Using the method of elimination of variables, the system of equations (16)-(23) is reduced to the equations for 

zR UUU ,, φ :  

 
2 2

0
2 2

0

( ) 2 = 0
4 ( ) | | | | ( )

z z R z
R

kB k Ak k UU U g
k kν φ

η χ

γ ω β
πρ γ ω γ ω

 
+ + − Ω +  + + 


   (24) 

 
2 2

0 0
2

0 0

( ) ( )2 (1 ) = 0
4 ( ) 4 ( )R

kB kBRo R U U
R ν φ

η η

γ ω
πρ γ ω πρ γ ω

   ∂ΩΩ + + + + +      + ∂ +   

  
 (25) 

 
2 2

0
2 2

0

( )2 = 0
4 ( )| | | | ( )

z R R
z

kBk k g AkU U
k kφ ν

η χ

βγ ω
πρ γ ω γ ω

 
Ω + + + −  + + 


   (26) 

So, the task to provide the stability of a rotating magnetized flow with temperature stratification leads to the 
problem of finding the eigenvalues of γ  from the system of equations (24)-(26).  

 
Analysis of the dispersion equation 

The condition for solving the system of equations (24)-(26) is that its determinant equals zero, then we obtain the 
dispersion equation: 

22 2 2 2( )( ) ( )( )( ) ( ) (1 )( )A A ANν η ν η χ χ ηγ ω γ ω ω γ ω γ ω γ ω ω γ ω ξ γ ω   + + + ⋅ + + + + + − − + +     

 
[ ] [ ]×Ω−++⋅+Ω−++⋅+−+ )4()()4()())((1 22222222222222 κωωγκξκωωγκωγξξ ηηη AAAN  

 
[ ] 0=))((1)())()(( 222

ηχχην ωγξωγωωγωγωγ +−−+++++× AA N  (27) 
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Here Aω  is Alfven frequency, 
0

2
0

2
222

4
==
πρ

ω Bkck z
AzA , AgN A β=  is Vaysel-Brent frequency, dependent on the 

temperature gradient, Ro+Ω 12=κ  is epicyclic frequency, =
| |

zk
k

ξ  . 

Equation (27) after simple algebraic transformations splits into two dispersion equations of the following form: 

 0=))(( 2
Aωωγωγ ην +++  (28) 

 [ ]−Ω−+++++++ 222222222 4))(()))((()( AAA ωξωωγκξωωγωγωγ ηηνχ  (29) 

 [ ] 0=))(())((1 222
AAN ωωγωγωγξ ηνη ++++−−  

The dispersion equation (28) describes the attenuation of Alfven waves in plasma with viscous and ohmic 
dissipation. In this equation, the influence of rotation and temperature stratification on the perturbation increment is not 
observed, therefore, we begin to analyze the dispersion equation (29). In some extreme cases, this equation gives the 
results, which are known by this time. 

1). Let us consider the purely hydrodynamic limit, when the medium is homogeneous by temperature ( 0=A ), 
non-dissipative, and rotates at the angular velocity )(= RΩΩ  (Couette flow) in the absence of the magnetic field, 
then from equation (29) we get: 

 0=222 κξγ +  (30) 

From the above it follows that the necessary and sufficient condition for the stability of the rotating shear flow 
(Rayleigh criterion, see, for example, the review in [39]) is the reality of the epicyclic frequency 0>2κ  or the 
realization of the inequality 1> −Ro . For the flow with the Rossby profile 1= −Ro , the axisymmetric perturbations 
in this extreme case are neutrally stable 0=γ . 

2). Taking into account the stratification by temperature ( 0≠A ) and 0=== ηχν , from equation (29) we get: 

 0=
|| 2

2
2222

k
kN R

A −+ κξγ  (31) 

In this case, the temperature stratification can either stabilize 0)<( 2
AN  or destabilize 0)>( 2

AN  the stable 

Couette flow ( 0>2κ ), depending on the direction of the temperature gradient. 

3). Within the limits of the ideal magnetic hydrodynamics ( 0=== ηχν ) with 0=A , 00 ≠B


, 0≠Ω


, 
Chandrasekar [23] and Velikhov [24] have shown that the magnetic field destabilizes the Couette flow. Indeed, from 
equation (29) for this case we have: 

 0=4)()( 2222222222
AAA ωξωγκξωγ Ω−+++  (32) 

or 

 222
4422

22 4
4

=
2 AA ωξκξκξωγ Ω+±++  (33) 

From the above it follows that at moderate amplitudes of the magnetic field Ω<Aω , the cumulative effect 

determined by the magnetic field is destabilizing, i.e. the development of instability currents at 0>2κ is assumed to be 
possible. This effect is the cause of the standard MRI. 

4). With the temperature stratification taken into account, the equation (32) will take the form: 

 ( ) 0=4)()(1)( 222222222222
AAAA N ωξωγξκξωγ Ω−+−−++  (34) 

For the radially temperature-stratified plasma, when replacing 2 2(1 )AN ξ− −  by 22Nξ  

( 







Γ

− Γ
0

00

0

2 ln1=
ρρ
p

dR
d

dR
dpN , Γ  is the adiabatic exponent), this equation was derived in [25] and actively studied 

in [40]. 
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5). With only the rotation and the magnetic field in a homogeneous ( 0=A ) dissipative medium taken into account, 
the equation (29) is transformed into the dispersion equation of the following form: 

 0=4))(()))((( 222222222
AAA ωξωωγκξωωγωγ ηην Ω−++++++  (35) 

This equation was studied in detail in [41–43], and its generalization, with the radial thermal stratification of the 
medium taken into account, was presented in [27]. 

6). In the absence of the rotation and the magnetic field, in the case of a nonconductive medium, from equation (29) 
we obtain the dispersion equation: 

 0=)(1)( 222 ξωωωωγγ χνχν −−+++ AN  (36) 

When utilizing the dimensionless variables γνγ 2h
→ , khkR → , nhkz π→  in equation (36), we obtain the 

Rayleigh equation describing free convection in the liquid layer with thickness h . Its solution has the form, given 
in [2]: 

 ,
)(Pr

)(
Pr2

1)Pr()(
Pr2

)Pr(1= 222

2
2222

2
222

nk
Raknknkn π

ππγ
+

++





 −±++−  (37) 

where n  is an integral number characterizing the scale vertically. The magnitude of the instability increment nγ  

depends on the dimensionless numbers of Rayleigh 
νχ
β 4

= ALgRa , Prandtl 
χ
ν=Pr , and the wave number 

222= nkK π+ . The condition for the stability of small perturbations lies in the positiveness of the radicand, which 
corresponds to the Rayleigh numbers 0>Ra . 

In contrast to [27], the dispersion equation (29), which we derived, takes into account the thermal dissipation 
(terms with χω ) and vertical stratification (terms with AN ) by temperature in the field of gravitation. Let us analyze 
the stability by writing down the dispersion equation (29) in the form of the fifth degree polynomial relative toγ : 

 0,=)( 54
2

3
3

2
4

1
5

0 aaaaaaP +++++≡ γγγγγγ  (38) 

where the coefficients 543210 ,,,,, aaaaaa  have the appropriate form: 

 1,=0a  

 ,)2(=1 χνη ωωω ++a  

 ),(2)(1)(14)2()(= 222222
2 νηχνηην ωωωξξωωωωω ++−−+Ω++++ AA NRoa  

−++++++Ω+++ )(2)(/2))((18))(2(= 22222
3 ηνχηνχχηνηην ωωωωωωωωωξωωωωω AA Roa  

 ),)(2(1 22
νη ωωξ +−− AN  (39) 

−++Ω+++Ω+Ω−+ χηνχηηνη ωωωωωξωωξωξωωω 222222222222
4 2)(18))((144)(= RoRoa AAA  

 ),2)((1 2222
AAN ωωωωξ ηνη ++−−  

 ).)((1))(44)((= 2222222222222
5 νηηηηνηχ ωωωωξωωξωξωωωω +−−+Ω+Ω++ AAAA NRoa  

The dispersion equation (39) is the equation of the fifth degree relative to γ , so the analytical determination of its 
roots in general case is not possible. However, the conclusion about stability of the perturbations described by equation 
(39) with real coefficients can be made without solving it, but only by analyzing its coefficients using the Routh-
Hurwitz or Lienar-Shipar criteria [44]. In the latter criterum the number of determinant inequalities is approximately 
half as much as in that of Routh-Hurwitz, therefore its application is advisable. The Liénard-Chipart criterion for the 
perturbations asymptotic stability, described by the algebraic equation (38), is as follows. For )(γP polynomial  to 
have all roots with negative real parts, it is necessary and sufficient that: 
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a) all the coefficients of )(γP polynomial were positive: 0>na , 50= n ; 

b) the inequalities for the Hurwitz determinants were  satisfied: 0>1−Δn , 0>3−Δn  ..., where mΔ denoted 
the Hurwitz determinant of m order: 

 

m

m

a
a
a
a
a

a
a
a
a

a
a

⋅
⋅⋅
⋅⋅
⋅⋅
⋅⋅

⋅⋅⋅

Δ
2

3

4

5

0

1

2

3

0

1

0
0=  

By using the algorithm of Leenard-Shepard we obtain necessary and sufficient conditions for stability of the non-
uniformly rotating plasma with the constant temperature gradient: 

 0>0,>5,0=0,> 42 ΔΔnan  (40) 

Here, the determinants 2Δ  and 4Δ  are correspondingly equal: 

,=
1

= 321
2

31
2 aaa

a
aa

−Δ  

})({}2)({=

10
0

01
0

= 532125514
2
132134

42

531

42

531

4 aaaaaaaaaaaaaaa

aa
aaa

aa
aaa

+−−+−−Δ  (41) 

Substituting the values of coefficients na   from (39), into the conditions of (40) we find the following 
inequalities: 

1) ( 0>1a )   0>)2( χνη ωωω ++  , this inequality is performed automatically; 

2) ( 0>2a )  
2

2 2 2 2 2
2( ) 2( ) 4 (1 ) 2 ( ) >

| |
R

A A
kRo N
kν η η ν χ η νω ω ω ω ω ξ ω ω ω+ + + + Ω + + +    

This inequality shows that viscous, ohmic and thermal conductivity dissipation naturally lead to stabilization of the 
plasma flows stability. The stabilizing factors are also: the uniform magnetic field (Alfven effect), non-uniform rotation 
(if the profile of the angular velocity of rotation is close to 2)( −Ω RR   ( 0>2κ ) and the temperature gradient 
at 0<A . In the limits of the nondissipative and homogeneous electrically conducting fluid in the uniform magnetic 
field this inequality transforms into the well-known Velikhov stability criterion [24]: 

 0;>
2

22
2 κξω +A  

3) inequality 0>3a :  

 +++Ω+++ /2))((18))(2( 222
χηνηην ωωξωωωωω RoA  

 

2
2 2 2

2( ) 2 ( ) > (2 )
| |

R
A A

kN
kχ ν η χ ν η η νω ω ω ω ω ω ω ω ω+ + + + +  

does not contain any new conditions for stabilization of disturbances; 
4) inequality 0>4a :  

 +Ω+++ 222222 42)( AA Roωξωωωωωω χηνην  

                                        )2(
||

>)2)((14 22
2

2
2222

A
R

A k
kNRo ωωωωωωωξ ηνηχνη ++++Ω+  

5) 0>5a ,  or 
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)(4

4)(
=0,>

)(
1 2222

22222

22

22

2

2

η

ηην

χη

ηνη

ωωξ
ωξωωω

ωωω
ωωωω

+Ω
Ω++

−
+
+

⋅⋅+−
A

A
cr

A

A

z

R

cr

T

cr

Ro
k
k

Ro
Ro

Ro
Ro

  (42) 

The parameter crRo in inequality (42) corresponds to the critical value of the Rossby number Ro for the standard MRI 

(SMRI), which was obtained in [29]. The dimensionless parameters: TaPrRaNRo AT /=/4= 22 Ω  is the  thermal 

number of Rossby, the numbers: νχβ /= 4ALgRa  – of Rayleigh, 242 /4= νLTa Ω  – of Taylor on the typical scale 
of stratification L , χν/=Pr  is the Prandtl number. 

Now we turn to the stability conditions b) consisting of inequalities with Hurwitz determinants (40). For the 
determinant 0>2Δ  we get: 

 
2

2222233

>
2)(2)(3)(8)2(

k
kAg RAA β

ωω
ωω

ωω
ωωωωωωωωωωωωω

χν

χ

χν

ηννηχχνηηννη

+
−

+
++++++++

 (43) 

In this inequality a new destabilizing term (the second fraction) has appeared, which has a significant impact, 
provided that the Prandtl number Pr 1  is small. Under the condition Pr 1≈  and Pr 1  the perturbations 
stabilization by the magnetic field in a dissipative medium takes place. After substituting the values of coefficients na  
into the expression for the Hurwitz determinant 4Δ , we obtain the last of the stability conditions: 0>4Δ . We do not 

give the explicit form of inequality 0>4Δ  because of the cumbersome form of the included expressions. However, 

note that the stability criterion 0>4Δ  contains the previous stability criterion (43).  
 

RAYLEIGH-BENARD PROBLEM FOR A THIN LAYER OF THE INHOMOGENEOUSLY ROTATING 
MAGNETIC PLASMA 

Formulation of the problem and basic equations 
The system of equations (6) obtained in the previous section will be used to describe convective phenomena in the 

thin layer of the inhomogeneously rotating conducting medium (plasma) with thickness )( inout RRh − . The 

temperature of the lower part of the layer is denoted by ,dT  and the upper one – by ,uT while ud TT >  is the heating 
from the bottom (Fig. 3). 

 
Fig. 3. The geometry of the problem for the inhomogeneously rotating magnetoconvection. The electrically conductive fluid fills the 
layer between two rotating cylinders with angular velocities inΩ  and outΩ , respectively. The bottom surface of the layer has the 

temperature dT , and the top one - uT : ud TT > . 

Such a formulation of the problem generalizes the classical Rayleigh-Benard problem for free convection. For this 
problem the typical scale of the medium inhomogeneity in the horizontal plane is larger than in the vertical direction 

hR LL  . Therefore, we will be able to apply the local WKB method for the disturbances depending on the horizontal 

coordinates ),( φR . We expand all the quantities into the Taylor series in the vicinity of the fixed points ),( 00 φR , 

leaving the terms of the zero order in the local coordinates 0=R R R−   , 0=ϕ ϕ ϕ− . As a result, we obtain the 
system of differential equations (6) with constant coefficients. In this case the following relations will be taken into 
account: 
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 0 0= ( ),RΩ Ω  
2

2 2
2 2 2

0 0

1 1 ,D
R R R R ϕ
∂ ∂ ∂∇ → + + +
∂ ∂ ∂


  

 
dD
dz

≡


 , 

 

 ,12= 2
0

2
0

22








−








∂
∂−








∇















∇
R

R

R

R

R
b
u

Rb
u

Rb
u

b
u

φ

φ

φ
 

 

 .12= 2
0

2
0

22








−








∂
∂+








∇















∇
φ

φ

φ

φ

φ
φ b

u
Rb

u
Rb

u
b
u

R

R  

Like in the previous section, our studies will be restricted to the axisymmetric perturbations 0=/ φ∂∂ . Then all the 
perturbations in the system of equations (6) can be represented in the form of plane waves. 
 

 

( )
( )= exp( )
( )
( )

u U z
H zb t ikR

z
P zp

γ
θ

   
   
    +
   Θ
       


 





 (44) 

then, in the short-wave approximation 
0

1
R

k , neglecting the terms 2
00

1
RR

ik − , we obtain 

 ( )2 2 1 2Pr = 0R RD k U TaU Pm Ha DH ikPϕγ −− − + + −
     (45) 

 ( )2 2 1 2(1 ) Pr = 0RD k U Ta Ro U Pm Ha DHϕ ϕγ −− − − + +
 

  (46) 

 ( )2 2 1 2Pr = 0z zD k U Pm Ha DH Ra DPγ −− − + + Θ−
      (47) 

 ( )2 2 1Pr = 0R RD Pm k H PmDUγ −− − +
 

  (48) 

 ( )2 2 1Pr = 0RD Pm k H PmDU TaPmRoHϕ ϕγ −− − + +
 

  (49) 

 ( )2 2 1Pr = 0z zD Pm k H PmDUγ −− − +
 

  (50) 

 ( )2 2Pr = 0,zD k Uγ− − Θ+


  (51) 

 = 0,z RDU ikU+


 = 0,z RDH ikH+


  (52) 
The system of equations (45)-(52) is written down in a dimensionless form, in which the dimensionless values retain the 
form of dimensional ones: 

 ( ) ( ) ),,,(,,),,,(,,, 1
0

11
zRzRzRzR HHHBHHHUUUhUUUzhz φφφφ χ −−− →→→  

 
2 2

1
2

0

( ) , , , .h hAh P P t t
h t t
ν

ρ νχ ν
−   ∂ ∂ Θ→Θ → → →    ∂ ∂  
   

In equations (45)-(52) the following dimensionless parameters are introduced χν/=Pr  is the Prandtl number, 

ην/=Pm  is the Prandtl magnetic number, the numbers: 242
0 /4= νhTa Ω  is of Taylor, νηπρ00 4/= hBHa  is 

of Hartmann, νχβ /= 4AhgRa is of Rayleigh on the scale h . Then, instead of the Hartman number Ha  we will use 

the Chandrasekhar number 2= HaQ . Using the equation of the solenoidal character of fields (52), we exclude 

pressure P from equations (45) and (46):  

 2 2 2 2= D ik TaP Ra U
D k D k ϕ

Θ⋅ + ⋅
− −


     (53) 
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In order to reduce the number of variables, we introduce indications for z -component of the vortex - 

φξ ikUrotU z =)(= , of the current - φζ ikHrotH z =)(=  and for z -component of the velocity - zUW = . With 
the new indications taken into account equations (45)-(52) will take the form: 

 2 2 2 2 2 2 2( )( ) ( ) =zD k D k W Q D k DH TaD k Raγ ζ− − − + − − Θ
       (54) 

 2 2( ) (1 ) = 0D k Ta Ro DW QDγ ζ ξ− − + + +
    (55) 

 2 2 1( ) Pr = 0zD Pm k H PmDWγ −− − +
 

 (56) 

 2 2 1( ) Pr = 0zD Pm k PmD TaPmRoDHγ ξ ζ−− − + −
  

  (57) 

 2 2( Pr ) = 0,D k Wγ− − Θ+


 (58) 

where 1= Pr .Q Pm Q−  We complete equations (54)-(58) with the following boundary conditions: 
for "free" (free-free boundaries) surfaces at 0,1=z : 

 2= = = 0, = = = 0zW DH D W Dζ ξΘ
  

  (59) 

and for “rigid” (rigid-rigid boundaries) surfaces at 0,1=z : 

 = = = 0, = = = 0zW H DW Dζ ξΘ
 

  (60) 

Equations (54)-(58) with boundary conditions of (59)-(60) describe the linear (for small perturbations) convection in the 
thin layer of the non-uniformly rotating magnetized fluid. 
 

STATIONARY CONVECTION FOR FREE BOUNDARIES 
Chandrasekhar variation principle 

Let us consider the stationary convection mode, i.e. when the system is in a neutral state 0=γ . In this case, the 
problem of the eigenvalues of equations (54)-(58) lies in finding the critical Rayleigh numbers Ra  that satisfy the 
following equation: 

 ( )22 2 2 2 2 2 2 2 2 2 4( ) ( ) (1 )( ) =D k D k QD Ta Ro D k D TaRoPmQD W − − − + + − −  
     

  (61) 

 ( )2 2 2 2 2= ( )k Ra D k QD W− − −
 

  

with boundary conditions: ( )= = 0pW D W


 ( = 2,4,6,8,10p ) at = 0.1z . According to these boundary conditions, the 
even derivatives of the function W  at the surface boundaries 0=z  and 1=z  should become zero. 

We formulate the problem of finding the eigenvalues (the Rayleigh number Ra ) of equation (61) using the 
Chandrasekhar variational principle. For this, from the system of equations (54)-(58), provided that 0=γ , we exclude 
the perturbations for the components of the vortex ξ  and current ζ . As a result we get:  

 2 2 2 2 2 2( ) ( ) =zL D k W QL D k DH TaDL k RaLζ− + − − Θ
          (62) 

 2 2 2= (1 )( ) Pr ,zL Ta Ro D k DW TaQ RoD Hζ − + − −
   

 (63) 

                                                2 2 1( ) Pr = 0zD k H PmDW−− +
 

  (64) 

                                                 2 2( ) = 0,D k W− Θ+


  (65) 

where the operator  is 2 2 2 2= ( )L D k QD− −
  

. 
We multiply the equation (62) from the left by W and integrate it by z : 

 
1 1 1

2 2 2 2 2 2 2 2

0 0 0

( ) ( ) (1 ) ( )zWL D k W dz Q WL D k DH dz Ta Ro W D k D W dz− + − + + − +  
         (66) 
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1 1
3 2

0 0

=zTaQPrRo WD H dz k Ra WL dz+ Θ 
 

 

With equations (64) and (65) taken into account, equation (66) takes the form: 

( )
1 12

2 2 2 2 2 2 2 2

0 0

Pr(1 )( ) [( ) ] =z z zW L Ta Ro D k D W dz TaQRo D H k H D H dz
Pm

+ + − + − 
    

1
2 2 2

0

= ( )k Ra D k L dz− − Θ Θ
 

  (67) 

In equation (67) we carry out partial integration for several times using the boundary conditions of (59). As a 
result, we obtain` the  expression for Ra , as the ratio of positive definite integrals: 

 ,Pr)(11= 3

2

21
4

2 







⋅+⋅++ ITaQRo

Pm
IRoTaI

Ik
Ra  (68) 

where indications for integrals 0>1,2,3,4I  are introduced: 

 
1

4 2 4 2 2 2 3 2 6 2 8 2
1

0

= [( ) 6 ( ) 4 ( ) 4 ( ) ]I D W k D W k D W k DW k W dz+ + + + +
   

      

                         
1 1

3 2 2 2 2 4 2 2 2 2

0 0

2 [( ) 2 ( ) ( ) ] ( ) ,Q D W k D W k DW dz Q D W dz+ + + + 
   

  

                                
1 1

2 2 2 2 2 2 2 2
2 3

0 0

= [( ) ( ) ] , = [( ) ( ) ] ,z zI D W k DW dz I D H k DH dz+ + 
   

  

                  
1

3 2 2 2 2 4 2 6 2
4

0

= [( ) 3 ( ) 3 ( )I D k D k D kΘ + Θ + Θ + Θ +
   1

2 2 2 2

0

[( ) ( ) .Q D k D dzΘ + Θ
 

  

Now we will consider the variation of the Rayleigh number Raδ  subject to the variations Θδδδ ,, zHW . In the 
first order of the variations smallness we get: 

 −







⋅+⋅++ 3

2

21
4

2
Pr)(11= ITaQRo
Pm

IRoTaI
Ik

Ra δδδδ  

                                                          =Pr)(1 2
4

2
4

3

2

21 Ik
IITaQRo

Pm
IRoTaI δ









⋅+⋅++−  (69) 

                                  







⋅−⋅+⋅++ 4

2
3

2

21
4

2
Pr)(11= IRakITaQRo
Pm

IRoTaI
Ik

δδδδ  

Next, we find variations of the integrals 1,2,3,4Iδ  . 

                                             
1 1

2 2 2 2
1 2

0 0

= 2 , = 2 ( ) ,I L W W dz I D D k W W dzδ δ δ δ⋅ − ⋅ 
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1 1

2 2 2 2 2
3 4

0 0

= 2 ( ) , = 2 ( ) ,z zI D D k H H dz I D k L dzδ δ δ δ− ⋅ − − Θ⋅ Θ 
   

  

and then we substitute them into equation (69). Using equations (64)-(65) and boundary conditions of (59), we obtain 
the final expression for Raδ : 

 ×
4

2
2=
Ik

Raδ  (70) 

1
2 2 2 2 2 2 2 4 2

2 2
0

( ) (1 )( )
( )

WdzD k L W Ta Ro D k D W TaRoPmQD W k RaLW
D k
δ 

 × − + + − − + ⋅   − 


     
   

From the above it follows that 0=Raδ  for any arbitrary variation 0≠Wδ , if 

 2 2 2 2 2 2 2 4 2( ) (1 )( ) = ,D k L W Ta Ro D k D W TaRoPmQD W k RaLW− + + − − −
     

  

i.e. equation (60) is satisfied. Then the function W , by which Ra  is expressed (see equation (68)), is a solution for the 
problem of the characteristic values of equation (60). 

 
Exact solutions to the problem of characteristic values 

We choose a function W , that satisfies the free boundary conditions of (59), in the following form: 

 ),1,2,3=(sin= 0 nznWW π  (71) 

where constW =0 is the disturbances amplitude of z - velocity component. 

By restricting to the single-mode approximation ( 1=n ), while substituting (71) into (76), we obtain the 
expression for the critical value of the Rayleigh number cRa  of stationary convection: 

))((
))((

))((
)()()(= 22222

22222

22222

2222

2

222

2

322

Qkk
QPmkTaRo

Qkk
Tak

k
Qk

k
kRac ππ

πππ
ππ

πππππ
++
+++

++
+++++

 (72) 

In the new variables 

,=,=,=,= 4141212

2

ππππ
cRaRTaTQQkx  

introduced by Chandrasekhar [1], equation (72) takes the form:  

 
))((1

)(1)(1)))((1(1=
1

2
111

22
1

2

1 Qxx
TRoPmQTRoxQxxR

++
+++++++

 (73) 

The function )(1 xR  takes extreme values for the corresponding x, which satisfy the following equation: 

( )
2

1
2

111
2

1
2

1
24

11
23

))((1
)3)(1(1

))((1
1)()(1)(1=132

Qx
QxxTRoPmQ

Qx
QxxRoTQxx

++
++++

++
−−+⋅++−+  (74) 

Figure 4 shows diagrams of the dependence of the stationary Rayleigh number 1R , determined by equation (73), 

on the wave numbers 22/= πkx  for the fixed parameters of the magnetic field 1Q  and of the rotation 1T . Curves 
1,2,3  in Fig. 4 correspond to the case of the uniform (or solid-state) rotation 0=Ro , and they completely agree with 
the results of Chandrasekhar [1]. 
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Fig. 4. Dependence of the Rayleigh number 1R  on the wave numbers 2 2= /x k π  for the Rossby numbers = 0Ro  with constant 

parameters: curve 1 –  1 = 40Q , 5
1 = 10T ; curve 2 – 1 = 100Q , 5

1 = 10T ; curve  3 – 1 = 200Q , 5
1 = 10T . 

The diagrams in Figures 5 and 6 show the dependence of the Rayleigh number cRa  on k/π , and are plotted for 
different Rossby numbers Ro . The diagram in Fig. 5 corresponds to the parameters = 500Ta , = 100Q . Here we can 
see that with an increase in the positive profile of the Rossby number Ro , the minimum value of the critical Rayleigh 
number also increases, i.e. the threshold of the instability development rises. On the other hand, for the negative rotation 
profiles: of Keplerian 3/4)=( −Ro  and of Rayleigh 1)=( −Ro , we observe a decrease in the critical Rayleigh 
number, i.e. a lower threshold of the instability development, as compared to the case of the uniform 0)=(Ro  and 

non-uniform 2)=(Ro  rotation. The diagrams in Fig. 6a,b are plotted respectively for Taylor numbers 410=Ta  and 
510=Ta . From these diagrams it follows that with the rotation increase (Taylor number Ta ) with a negative Rossby 

profile 0)<(Ro , no extreme values of the Rayleigh number are observed. 
Now let us find out how the inhomogeneous rotation affects the process of stationary convection by calculating the 

derivative dRodR /1 : 

 
2

1 1 1
2

1

((1 ) )( ) = = .
((1 ) )

dR T x Q Pmf x
dRo x x Q

+ +
+ +

  

 

Fig. 5. Dependence of the Rayleigh number cRa  on k/π  for different Rossby numbers Ro  with constant parameters: = 100Q , 
= 500.Ta  The Prandtl magnetic number is assumed to be equal to one: = 1Pm . 

The function graph ( )f x  is shown in Fig. 7. It shows that with the increase in the Taylor number 1T  (from 5000  to 
510 ) at the fixed value of the magnetic field 100=1Q , the rate of variation of the value dRodR /1 increases towards 

small x  (long-wave disturbances 1−k ), which is true for positive values of the Rossby number 0>Ro . 
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а)        б)  
      

Fig. 6. Dependence of Rayleigh number cRa  on k/π  for different Rossby numbers Ro  with constant parameters: a) = 100Q , 
4= 10 .Ta   b) = 100Q , 5= 10Ta . The magnetic Prandtl number is assumed to be equal to one: = 1Pm . 

                           
 

Fig. 7. The diagram of the 1/dR dRo variation rate dependence on the wave numbers 2 2= /x k π for different values of the Taylor 
number 1T with constant parameters 1 = 100Q  and = 1Pm . 

Fig. 8 shows graphs of variations in the Rayleigh number 1R  from the value Ro in the interval [-1, 2]. These grahs 
show that the rotation with a negative angular velocity profile 0<Ro  has a destabilizing effect on the development of 
stationary convection. 

а)         б)  

Fig. 8. Dependence of the Rayleigh number 1R  on the Rossby number Ro  for various wave numbers π/= kx  with constant 

parameters: a) 50=1Q , 100=1T , 1=Pm ; b) 100=1Q , 1000=1T , 1=Pm . 

Without considering the thermal processes, i.e. when there is no preheating 0=Ra , from equation (72) we 
obtain the threshold value of the hydrodynamic Rossby number Ro  for the standard MRI (SMRI) taking into account 
dissipative processes (see, for example, [29]): 
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 222
2242

4222242
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)(= π
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++− ka
PmHaaTa

TaaHaaaRocr  

When turning to the dimensional variables    2
2

2

2

2

42

2

4

222

4

22

,4,, ξπ
ωω

ωπ
ωω
ωπ

νηην

→Ω→→→
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Ta
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PmHa
a
Ha AA  

we find the expression for crRo  [29]:  

 .
)(4

4)(
= 2222

22222

η

ηην

ωωξ
ωξωωω

+Ω
Ω++

−
A

A
crRo  

Therefore, in the extreme case, when 0=Ra , a magneto-rotational instability arises in the inhomogeneously rotating 
layer of the electrically conducting fluid in the continuous magnetic field. 

Then, using solution (71) from equations (56) and (58) we define the expression for the perturbations of the 
magnetic field zH  and temperature Θ  through amplitude 0W : 

                         z
k

WzW
k

PmH z π
π

π
π
π sin=,cos

)(Pr
= 22

0
022 ⋅

+
Θ⋅

+
 (75) 

These solutions satisfy the free boundary conditions of (59). Then we find the expressions for the components of 
the vortex ξ  and current ζ  from equations (55) and (57), which, when using (56), take the form:  

                                        2 2 1 2 2( ) (1 ) Pr ( ) = 0zD k Ta Ro Pm D k H QDζ ξ−− − + − +
     (76) 

                          2 2 1( ) Pr = 0zD k PmD TaPmRoDHξ ζ−− + −
  

  (77) 

Acting on equation (76) by operator 2 2D k−


, and on equation (77) by operator QD
 , and then subtracting one 

equation from the other, we’ll find the equation for the currentζ :  

 2 2 2 2 1 2 2 2 2( ) (1 ) Pr ( ) Pr = 0z zD k QD Ta Ro Pm D k H TaQ RoD Hζ − − − − + − + 
   

   (78) 

Substituting the solution for zH  from equation (75) into this equation we get: 

 ( ) zW
Qkk

QPmRoTakRoTa π
πππ

πππζ cos
)()(

))((1= 0222222

3222

⋅
+++

+++
 (79) 

Now we proceed to the definition of the equation for the vortex component ξ  from equations (76)-(77). For this, we act 

on equation (76) by operator Pm1Pr− , and on equation (77) by operator 2 2D k−


, then subtracting one equation from 
the other, we find the equation for ξ :  

 ( )2 2 2 2 2 2( ) 1 (1 ) ( ) = 0zD k QD Ta Ro Pm D k DHξ − − + + − − 
   

  (80) 

Similarly, for this equation too, using the solution for zH  from (75), we obtain: 

 
( )

( ) zW
Qk

PmPmRoTa π
ππ

πξ sin
Pr)(
)(11= 02222

2

⋅
++
−+−  (81) 

The obtained expressions (79) and (81), respectively, for the components of the vortex and of the current, satisfy 
the boundary conditions of (59).  

 
Topological characteristics of stationary solutions 

Note, that the stationary solutions obtained above for the hydrodynamic ( ξ,W ) and magnetic ( ζ,zH ) fields 

have a non-trivial topology. The average hydrodynamic helicity =g vrotvdVΗ 
 

 has the meaning  of a measure of 



23
Instabilities in a Non-Uniformly Rotating Medium with Stratification of the Temperature...          EEJP 1 2019

“knotting” of the velocity field v  and, similarly, the current helicity =c BrotBdVΗ 
 

 is defined as a measure of 

“knotting” of the magnetic field force lines B


 [45]. We calculated the helicity of gΗ  and cΗ  for the deterministic 
fields (of the velocity and magnetic field) of stationary roll convection with averaging over the whole layer 
volume (V ). As the calculations show, the current helicity cΗ  has an opposite sign relative to the hydrodynamic 

helicity gΗ , and as a result, stabilizes the operation of the dynamo [46] due to generation of the hydrodynamic helicity 
by rotating the electrically conductive fluid. 

The hydrodynamic helicity plays an important role in α -effect onset, due to which large-scale magnetic and 
vortex fields are generated (see, for example, [6]). In the theory of turbulent dynamo [45] the mean helicity of the 
velocity field is the result of averaging over the ensemble of realizations of a random field in the given volume of fluid. 
Helicity naturally arises in the turbulence of a rotating body. The physical mechanism of the helicity origin is described 
in [47] by the example of the the Sun convective zone. In the northern hemisphere of the convective zone, the rising 
substance will expand and rotate under the action of Coriolis forces, resulting in a left-handed spiral movement. The 
sinking substance is compressed, and under the action of Coriolis forces is forced to rotate in the opposite direction, also 
making a left-handed spiral movement. It is obvious, that in the southern hemisphere the right-handed spiral movements 
will prevail. The uncompensated right-handed and left-handed movements lead to non-zero helicity. In other words, the 
properties of the turbulent velocity field are non-invariable with respect to the parity transformation, i.e. transition from 
the right coordinate system ),,( zyx  to the left one ),,( zyx −−−  (reflective non-invariance of the field v ). The 

α -coefficient estimate values for the conditions of the Sun convective zone range from a few cm/s to 410 cm/s, what 
means a greater degree of uncertainty when transferring the results of the calculations for the dynamo models to the real 
solar conditions [48-49]. However, as the astronomical observations show [50], the Sun convective zone has an evident 
orderliness, i.e. a developed cellular structure of different scale. In [49] a numerical simulation of cell-like flows, which 
are similar to the really observed ones, were carried out, what allowed calculating directly the velocity field average 
helicity. The helicity was averaged in [49] over the volume, and not over the ensemble of realizations, as long as the 
velocity field in such a formulation of the problem is deterministic. The analysis of the helicity of such quasi-ordered 
convective flows can reduce the spread in the estimate values, which are used in the theory of the medium fields 
dynamo. 

Thus, the results of the calculation of the average hydrodynamic and magnetic helicity of stationary fields give all 
grounds for the development of the theory of convective dynamo in a non-uniformly rotating conducting medium with 
the external magnetic field. 
 

WEAKLY NONLINEAR STAGE OF STATIONARY CONVECTION 
To describe the nonlinear convective phenomena in the inhomogeneously rotating layer of the electrically 

conducting fluid, it is convenient to turn from the cylindrical coordinate system ),,( zR ϕ to the local Cartesian 

),,( ZYX one. If we consider a fixed region of the fluid layer with a radius 0R and angular velocity of 

rotation )(= 00 RΩΩ , then the coordinates 0= RRX − correspond to the radial direction, )(= 00 ϕϕ −RY – to 
azimuthal, and zZ =  - to vertical (see Fig. 9). 

  а)                    б)  
 
Fig. 9. a) Cartesian approximation of the problem for a non-uniformly rotating magnetic convection, inhomogeneous rotation in the 

local Cartesian coordinate system consisting of rotation with constant angular velocity 0Ω


 and shearing velocity 0U OY ; 
b) Scheme of the shear flow in rotating flows, the flow being approximated in the local Cartesian coordinate system as a linear shift 
with velocity )(0 XU , with the value of the flow being limited by coordinates ][0, LX ∈ and ][0,hZ ∈ , and by coordinate 

Y being unlimited. 
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In this case, the fluid layer inhomogeneous rotation can be represented locally as the rotation with the constant 
angular velocity 0Ω


and azimuthal shear [51], whose velocity profile is locally linear 0 0= yU q Xe− Ω

 
, where 

Rddq ln/lnΩ−≡  is the dimensionless shear parameter, determined from the profile of the angular velocity of 

rotation qRRR −ΩΩ )/(=)( 00 . The shear parameter q is bound up with the hydrodynamic Rossby number 

R
RRo
∂
Ω∂

Ω2
=  by the relation Roq 2= − . Note, that the accretion disks with a shear parameter 3/2=q  

3/4)=( −Ro correspond to the Keplerian disk, 2=q  1)=( −Ro  corresponds to the disk with a constant angular 
momentum or the Rayleigh rotation profile.  The case of 1=q  1/2)=( −Ro  corresponds to the system with a flat 
rotation curve, and that of 0=q  0)=(Ro - to the homogeneous (or solid- state) rotation with a constant angular 
velocity. 

The equations for the perturbations of the velocity ( , , )u u v w=  of the magnetic field ( , , )b u v w=


   and the 
temperature θ in the local Cartesian coordinate system take the following form: 

( ) 2
0 0 0 0

0 0

1 1( ) 2 ( ) = ( ) ( )
4

u uq X u U u u u p B b b b g e u
t Y

βθ ν
ρ πρ

∂ ∂− Ω + ∇ + Ω × + ∇ − ∇ + ∇ + ∇ + + ∇
∂ ∂

           

                                    2
0 0 0( ) ( ) ( ) ( ) =b bq X B u b U u b b u b

t Y
η∂ ∂− Ω − ∇ − ∇ + ∇ − ∇ ∇

∂ ∂

        
 (82) 

                                 2
0 0( ) ( ) =q X u T u

t Y
θ θ θ χ θ∂ ∂− Ω + ∇ + ∇ ∇
∂ ∂

 
  

                                                                  = 0, = 0divu divb


  

here the pressure p includes the perturbed magnetic pressure
ππ 48

= 0
2 Bbbpm


+ : = mp p p+ . 

Like in the previous sections, we will consider the dynamics of axisymmetric perturbations, when all the perturbed 
quantities in equations (82) will depend only on two variables ),( ZX . In this case it is convenient to represent the 

vector fields u  and  b


by scalar stream functions ψ  and φ : 

                                   = ,u
Z
ψ∂−
∂

   =w
X
ψ∂
∂

,   
  

= ,u
Z
ϕ∂−
∂


    

=w
X
ϕ∂
∂


  
 

For convenience, in equations (82) we turn to the dimensionless variables, which we mark with an asterisk. 

 ,=,=,=),,(=),( *
0

**
2

** φφχψψ
ν

hBthtzxhZX      * * *
0= , = , = ,v v v B v Ah

h
χ θ θ    

and performing some simple mathematical operations, we obtain a system of nonlinear equations for the 
inhomogeneously rotating magnetoconvection [36]: 
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1 2 1 1Pr = Pr ( ( , ) ( , ))vPm v Ro Ta J v J v
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In equations (83) the asterisk is omitted. In the absence of the thermal phenomena, the system of equations (83) was 
used to study the nonlinear saturation mechanism of the standard MRI [52]. The system of equations (83) is 
complemented by the following boundary conditions: 

 2= = 0, = 0, = 0, = 0, = 0 при = 0,dv dv z
dz dz

ϕψ ψ θ∇    

                                     2= = 0, = 0, = 0, = 0, = 0 при = 1.dv dv z
dz dz

ϕψ ψ θ∇                           (84) 

Further, we apply the system of equations (83) and  boundary conditions of (84) to study the weakly nonlinear 
convection mode. 

 
Equation of finite amplitude for the stationary convection 

The weakly nonlinear theory of convective instability describes the evolution of perturbations of not too high, but 
finite amplitude. The small amplitude of convective cells is superimposed on the main flow. If this amplitude is of the 

)( 1εO order, then the interaction of cells with one another leads to the second harmonic and to nonlinearity of the 

order )( 2εO , and then to nonlinearity )( 3εO , etc. Here the nonlinear terms in equations (83) are considered as a 
perturbed response for the linear convection problem. In this case the Rayleigh parameter Ra , which controlls the 
convection is close to critical cRa , i.e. to steady state of convection. The influence of the unstable modes is small, and 
therefore our task is to obtain equations describing the interaction of these modes. The general scheme for formulation 
of the weakly nonlinear theory is as follows. Since the small parameter of our problem is the relative deviation of the 
Rayleigh number Ra  from the critical value cRa : 

 1,=2 
c

c

Ra
RaRa −ε  

then all the perturbed values V in the equations of the type = ( | )LV N V V−


 are represented as a series in the 
perturbation theory: 

 (1) 2 (2) 3 (3)V V V Vε ε ε→ + + +  , 

where ( | )N V V  are the nonlinear terms. 
The equations for the perturbations in various orders of ε  take the form: 

 1 (0) (1): = 0,L Vε


  

                                                                     2 (0) (2) (1) (1): = ( | )L V N V Vε −


  

                                                          3 (0) (3) (2) (0) (1) (2) (2) (1): = ( | ) ( | )L V L V N V V N V Vε − − −
 

  

The condition for solving this chain of nonlinear equations is known as Fredholm’s alternative (see, for example, [53]) 

 †, . . = 0V R H  (85) 

Here †V  is a non-trivial solution of the linear self-adjoint problem † † = 0LV


, where †L


 is a self-adjoint operator, 
which is determined from the following relation: 

 † † †, , ,V LV LV V≡
 

 (86) 

 where , is the inner product, which here has the following definition: 

 ,=,
/2

0=

1

0=

dxdzgfgf
ck

xz

⋅
π

 

..HR  are right sides of the perturbed equations with nonlinear terms. We apply these general principles of solving 
nonlinear equations to our problem. For simplicity we will take into account the nonlinear terms in (83) only in the heat 
balance equation. As will be shown below (see Appendix), this approximation is equivalent to the application of the 
Galerkin approximation of the minimal order (118) to equations (83). We represent all the variables in equations (83) as 
an asymptotic expansion: 
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2
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We assume that the amplitudes of the perturbed quantities depend only on the slow time t2= ετ . Substituting the 
expansion of (87) into the system of equations (83), we solve it for different orders of ε . In the lowest order, we get the 
equation: 

 1 = 0,LM


 (88) 

where 
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, L


 is the matrix operator of the form: 
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The solutions of the system of equations (88) with the boundary conditions of (84) have, respectively, the form: 
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The amplitude )(τA  is still unknown. The critical value of the Rayleigh number cRa for the stationary 
magnetoconvection in a non-uniformly rotating electrically conducting medium is found from the first equation of the 
system (88) and has the form of formula (72) obtained in the linear theory: 
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For the second order of ε , we have the following equation:  

 2 2= ,LM N


 (90) 
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Using solutions of (89) and boundary conditions of (84), we find solutions to equations (90): 
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To analyze the intensity of the heat transfer, a horizontally-averaged heat flux is introduced at the boundary of the layer 
of electrically conducting fluid (Nusselt number): 
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 (92) 

The heat flow intensity (of Nusselt number) will be analyzed after the expression for the amplitude )(τA is obtained. 
For the third order of ε  we find: 
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The solvability condition (an alternative of Fredholm) for the equations of the third order )( 3εO is found from 
equation (85): 
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where indcations are introduced 
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                        (95) 

When performing integration in (94), we obtain a nonlinear equation for the amplitude )(τA , which refers to the 
Ginzburg-Landau equation or the Bernoulli differential equation with constant coefficients: 

 3
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Here the constant coefficients 1,2,3A  have the form: 
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The equation of the form (96) was obtained in many papers, where the weakly nonlinear mode of stationary 
convection was studied (see, for example, [14–20]). In contrast to these works, in our result (96) the non-uniform 
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rotation 0)( ≠Ro of the electrically conducting fluid was taken into account. The analytical solution of equation (96) 

with a known initial condition (0)=0 AA can be obtained using the Lagrange method (variations of the constant): 

 0

2 23 3 2
0 0

2 2 1

( ) =
21 exp

AA
A A AA A
A A A

τ
τ   

+ − −   
   

 (98) 

Assuming the initial amplitude to be equal to 0.7=0A  and cRaRa ≈2 , by using the solution of (98), we can 

determine the variation in the heat transfer (of Nusselt number Nu ) with timeτ . The diagram of dependency )(τNu is 
presented in Fig. 10. The diagram clearly shows the establishment of the final value )(τNu  due to the relationship  
between the number )(τNu  and the amplitude )(τA  (see equation (92)). The excess of number Nu over the unit is 
caused by the convection occurrence. Fig. 10 shows that in the course of time the heat transfer intensity proceeds most 
smoothly for the case of the non-uniform rotation with a negative profile ( 0<Ro ). Fig. 11 presents the diagram of the 
Nusselt number Nu versus the Rossby number Ro . Here we see (curves 1-4) that the heat transfer intensity increases 
in the direction of positive Rossby numbers ( 0>Ro ). 

 
Fig. 10. The dependence of the Nusselt number Nu on time τ for different values of Rossby numbers Ro with constant 

parameters: 80=1Q , 5
1 10=T , 9500=1R , 1=Pm , 10=Pr . 

 

                 
 

Fig. 11. Dependence of the Nusselt number Nu on the Rossby numbers Ro with constant parameters: 80=1Q , 5
1 10=T , 

9500=1R , 1=Pm , 10=Pr ; 1,2,3,4  curves correspond to times 5,10.1,0.3,0.=τ . 
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CONCLUSION 
Applying the Lyenard-Shepard algorithm, we obtained the stability criteria for the inhomogeneously rotating 

plasma in the axially uniform magnetic field with a vertical temperature gradient under the condition of weak 
stratification. This problem was also investigated for thin rotating layers of the magnetized fluid with different 
temperatures on the layer surfaces (the Rayleigh-Benard convection). 

A linear and weakly nonlinear theory of stationary convection in the non-uniformly rotating electrically 
conducting fluid in the axial magnetic field was developed. In the linear approximation, or in the first order in the small 
parameter of supercriticality of the Rayleigh number cc RaRaRa )/(= −ε , we obtained an expression for the 

critical Rayleigh number cRa , which in the limit of the uniform rotation 0=Ro  coincides with the known results of 

Chandrasekhar [1]. In the absence of the temperature gradient 0)=(Ra  we obtaine the known criterion for MRI 
occurrence [29].  The case of the negative profile of the inhomogeneous rotation 0<Ro  leads to some decrease in the 
instability threshold, and thus has a destabilizing effect on the instability development. And on the contrary, the positive 
rotation profiles 0>Ro  increase the critical value of the Rayleigh number, thus making a stabilizing effect on the 
convection development. In the third order of ε , we obtained the nonlinear Ginzburg-Landau equation, describing the 
evolution of the perturbation amplitude )(τA . The analysis of this equation solution has shown, that the flow intensity 
increases with the medium rotation at the positive Rossby numbers 0>Ro . In addition, it is shown that the weakly 
nonlinear convection, based on the equations of the six-mode )(6D Lorentz model from [36], is transformed into the 
identical Ginzburg-Landau equation. 

In conclusion, we note, that the helicity properties of the stationary fields (vortex and magnetic) create 
preconditions for the development of the theory of convective dynamo in the rotating conducting medium with the 
external magnetic field and shear flow. 

 
APPENDIX 

 
DERIVATION OF GINZBURG-LANDAU EQUATION FROM 6D-LAURENTZ EQUATIONS 

In [36] the nonlinear system of equations (83) was solved by the Galerkin method utilizing the minimal order 
expansion in x and z  - directions for the values ψ , φ , v , v  and θ : 

                                                     ),(sin)(sin)(=),,( zkxtAtzx πψ  

                                                           ),(cos)(sin)(= zkxtEv π  

                                                           ),(cos)(sin)(=),,( zkxtBtzx πφ  (99) 

                                        = ( )sin( )sin( ),v F t kx zπ   

                                                          ),(2sin)()(sin)(cos)(=),,( ztDzkxtCtyx ππθ +  

where Lhk /2= π is the dimensionless wave number, L  is the typical layer length in the horizontal direction, and A , 
B , C , D , E , F  are the amplitudes of the perturbations. As a result of expansion of (99) substitution into equations 
(83), with the properties of the functions orthogonality taken into account, we obtain the Lorentz equations for the six-
dimensional )(6D  phase space [36]: 
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 (100) 

where a dot above denotes the time differentiation 2=t a t . For convenience, the following indications are introduced 
into (100):  
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and amplitudes A , B , C , D , E , F were rescaled in the form: 
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Following the method of [54], we represent all the perturbed values in equations (100) as an expansion into a 
series in the small supercriticality parameter ofε : 

  2 3
1 2 3= , = [ , , , , , ]TrX X X X V U W Y Zε ε εΧ + + + Χ  (101) 

++ 2
2

0= RRR ε  

The amplitudes of the perturbed quantities depend only on the slow time 2= tτ ε  . For the first order of ε , after 
substituting expansion (101) into (100), we obtain a linear system of equations: 
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where L  matrix has the form: 
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The solutions of equations (102) have, respectively the form: 
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 (103) 

For the second order of ε , we have the following equation: 

 2 21 22 23 24 25 26 2 2 2 2 2 2 2= [ , , , , , ] , = [ , , , , , ] ,Tr TrL X V U W Y ZΧ ℜ ℜ ℜ ℜ ℜ ℜ Χ  (104) 

where the nonlinear terms have, respectively, the form: 

 1 1
21 22 23 24 25 1 1 26 1 1= 0, = 0, = 0, = 0, = Pr , = Pr .X Z X Y− −ℜ ℜ ℜ ℜ ℜ − ℜ   

The solutions of equations (104) have the form: 
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 (105) 

Next we turn to the equations of the third order of ε : 

 3 31 32 33 34 35 36 3 3 3 3 3 3 3= [ , , , , , ] , = [ , , , , , ] ,Tr TrL X V U W Y ZΧ ℜ ℜ ℜ ℜ ℜ ℜ Χ  (106) 

where the nonlinear terms have, respectively, the form: 
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The condition of solvability (Fredholm alternative) of the nonlinear equations (106) in the third order of ε , according 
to the definition in (91), has the following form: 
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The elements of the matrix † † † † † †
1 1 1 1 1 1= [ , , , , ]TrX Y Z U VΧ  are the solutions of the linear self-adjoint problem 

† †
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From equation (107) we get a non-linear equation for amplitude ( )A τ , here the equation completely coincides 
with the Ginzburg-Landau equation (96): 

 3
1 2 3 = 0AA A A A A
τ
∂ − +
∂

 (108) 

Here the type of coefficients 1,2,3A  completely coincides with expressions (97). When deriving equation (108), we 

utilised the relationship of the rescaled derivative over the slow time: τ : 2
1= .
aτ τ

∂ ∂
∂ ∂

 

Thus, applying the asymptotic expansion of the perturbation theory to the )(6D  Lorentz equations (100), we 
obtained the Ginzburg-Landau equation, which is identical to equation (96) obtained in the weakly non-linear theory for 
the finite amplitude. 
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