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The paper studies the dynamic description of uniaxial and biaxial ferrimagnetics with spin s =1/2 in alternative external field. The

nonlinear dynamic equations with sources are obtained, on basis on which low-frequency asymptotics of two-time Green functions in
the uniaxial and biaxial cases of the ferrimagnet are obtained. Energy models are constructed that are specific functions of Casimir
invariants of the algebra of Poisson brackets for magnetic degrees of freedom. On their basis, the question of the stable magnetic
states has been solved for the considered systems. These equations were linearized, an explicit form of the collective excitations
spectra was found, and their character was analyzed. The article studies the uniaxial case of a ferrimagnet, as well as biaxial cases of
an antiferromagnet, easy-axis and easy-plane ferrimagnets. It is shown that for a uniaxial antiferromagnet the spectrum of magnetic
excitations has a Goldstone character. For biaxial ferrimagnetic materials, it was found that the spectrum has either a quadratic
character or a more complex dependence on the wave vector. It is shown that in the uniaxial case of an antiferromagnet the Green

function of the type GSM (£,0),G, , (k,0) and G, (0,w) have regular asymptotic behavior, and the Green function of type

allp

k,0)~l/ k* and G. (O,a))~1/a), Gnm (0,a))~1/a)2 have a pole feature in the wave vector and frequency. Biaxial

Gn,lrl/; ( Salg
ferrimagnetic states have another type of the features of low-frequency asymptotics of the Green's functions. In the case of a

ferrimagnet, the ‘“easy-axis” of the asymptotic behavior of the Green functions Gxasﬁ(O,a)),G (0,0),G,, (0,0),
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k,O) have a pole character. For the case of the “easy-plane” type ferrimagnet, the asymptotics of the

(k,O) have a pole character, and the Green function G‘\M (k,®) contains

both the pole component and the regular part. A comparative analysis of the low-frequency asymptotics of Green functions shows
that the nature of magnetic anisotropy significantly effects the structure of low-frequency asymptotics for uniaxial and biaxial cases
of ferrimagnet. Separately, we note the non-Bogolyubov character of the Green function asymptotics for ferrimagnet with biaxial

anisotropy G, , (k,0)~ k"
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CIEKTPU KOJUVIEKTUBHHUX 3BYI)KEHb TA HU3bKOUYACTOTHI ACUMIITOTIKA ®YHKIIIIA IPIHA
B OJHOBICHHUX TA JBOBICHUX ®EPIMATHETHKAX
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¢yukniit I'pina gepumarneTnka B OZHOBICHOMY 1 JIBOBiCHOMY BHmajkax. [loOymoBaHo Mozeni eHeprii, sIKi € IIeBHUMH (YHKIIIMH
inBapianTiB Kasumupa anredpu nyxox IlyaccoHa Juis MarHiTHUX cTymneHiB cBoGoan. Ha iX OCHOBI BHMSICHEHO NMUTaHHS NPO CTIHKi
MarHiTHI CTaHM TaKMX MarHiTHUX cucrteM. IIpoBeneHa JiHeapu3allis 3a3HAYEHUX PIBHSAHb, 3HAWACHWH SBHUI BUIVIAN CIIEKTpiB
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G, , (k,®) micTuts 5K NMOMOCHY CKIaNOBY, TaK i peryispHy 4vacTuty. IIpoBeneHH MOPIBHSUIBHHI aHANi3 HU3BKOYACTOTHUX
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An effective method for studying magnetic systems is the Green function method. For a wide range of problems of
statistical mechanics two-time Green functions [1-4] are used, whose knowledge allows one to investigate both the
equilibrium state and the peculiarities of non-equilibrium processes, if deviations from equilibrium are small. When
finding the Green's functions for condensed states, various approximate methods are used. These include the
quasiparticle approximation, the random phase method, expansion in a small parameter and approximation with the
uncontrolled nature of the approximation [2—4]. The calculation of the Green's functions in the low-frequency region is
closely related to the behavior of the physical system at large times and possibly in two ways. One of them is the
“memory” function method [S]. Another approach is the “sources” method, which was developed for superfluid media
and degenerate magnetic systems with spin s=1/2 [6-9]. These methods were used to study the features of the two-time
Green functions of isotropic superfluid and magnetic states, or with uniaxial magnetic anisotropy of equilibrium states.

In this paper we consider the influence of magnetic anisotropy on the collective behavior of uniaxial and biaxial
ferrimagnetics. The aim of the research is to clarify the relationship of these factors with the spectra of collective
excitations and the explicit form of the Green functions of these magnetics in the hydrodynamic limit, when the wave
vector and frequency tend to zero. These data are useful in the study of the magnetic structure of these condensed media
using cold neutrons.

The study of the dynamics of ferrimagnetic materials is based on the Hamiltonian formalism, which is widely used
when considering various physical systems at the “hydrodynamic” stage of evolution [10] to describe slow
nonequilibrium processes. In the following sections degenerate equilibrium states of ferrimagnetic materials with
uniaxial and biaxial anisotropy are discussed. Nonlinear equations of the dynamics of the studied magnetic systems in
an external alternating field are obtained. The spectra of collective excitations are found and low-frequency asymptotics
of the two-time Green functions are obtained. The similarities and differences of such asymptotics, depending on the
nature of the anisotropy of the physical system, are discussed.
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DYNAMICS OF UNIAXIAL AND BIAXIAL FERRIMAGNETICS IN ALTERNATIVE EXTERNAL FIELD
Consider multi-sublattice magnetics with spin s=1/2 in the case of uniaxial and biaxial SO(3) symmetry breaking
of the equilibrium state. Normal equilibrium states of such magnetics are described by the Gibbs statistical operator
WY)=exp(Q(Y)-LA-1,S,).

Here Q(Y) is the thermodynamic potential, which is a function of the thermodynamic forces Y,associated with

additive integrals of motion. In the case of degenerate equilibrium states of magnets with one sublattice the Gibbs
statistical operator has the form

W(.£ (m)) =exp(Q(Y) - Y,/ ~Y,8, - Y F; (m))

where, according to the concept of quasi-averages, the source 13"1(m) breaking symmetry is a functional of the spin

density operator
F = J.demaﬁa (x).

Here m,is the axis of spontaneous magnetic anisotropy. In the case of several magnetic sublattices, along with the
sourcel':"l , there is another possibility of breaking the magnetic symmetry, which is determined by the source of the

form

ﬁz = J‘d3xnaﬁa(x) )

where Aa(x) is the order parameter operator. In the limit ¥, — 0 the equilibrium state v?/(ﬁl (m)) describes uniaxial
symmetry breaking of the equilibrium state. In a magnetic with several sublattices, with Y, =0, the Gibbs statistical

operator specifies the biaxial nature of the violation of the magnetic symmetry of the equilibrium state.
Two-time lagging Green functions are determined by the equality [1]:

Gy (% 1:X,1") = =6 (1=1') Spiv| a(x.),5(X.1') |

Here, the local operators in the Heisenberg representation &(X,t)zeiﬁ’&(x)e”ﬁt, l;(x,t)zeiﬁ’lg(x)e’iﬁ’ and the

Hamiltonian are definite functionals of the Bose operators of creation and annihilation. As we will see later, the
structure of the spontaneous magnetic anisotropy of the Gibbs statistical operator will significantly affect the form of

the low-frequency asymptotics of the Green functions. The linear response of a local physical quantity da, (x,t) to a

weak external disturbance is
da, (x,t) = f dt'J.d3x5d_',’(x', G, (x=x,1=t).

Here 5§(x,t) is the potential of the interaction of the magnetic system with the external field. In the Fourier
representation this ratio is written as

da; (k,w)=G,, (k,w) 6 (k,m). (1)

In the study of low-frequency asymptotics of Green's functions we do not use the formalism of quantum mechanics. To
solve this problem it is sufficient for us to obtain the equations of the dynamics of the magnetics under study in the
hydrodynamic limit. The linearized version of these equations connects the deviation of the local physical quantity du
and the potential of the external field 6 and thus allows us to find the asymptotics of the two-time Green functions in

the low-frequency wr, <<1 and small wave vectors k/ <<1 range. Here 7, is the time of randomization (the time of

establishing the local equilibrium of the magnetic system) and [ are the characteristic spatial scales of change in
physical quantities. The full Hamiltonian of the magnetic system in the presence of an external field is of the form

H(t)=H+V(t). Here H = J.d3xe(x,¢)(x',t )) is the Hamiltonian of the magnetic system, which includes strong
exchange interactions. Here (o(x',t) is a set of dynamic variables describing the magnetic system under study. The

energy of interaction of the magnetic system with the external field V' (¢) is

V() =Id3x5§(x,1)b(x,t),
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where b(x,t) is the local physical quantity. We believe that the change in the external field is rather slow, so that the
characteristic frequency of its change is small compared to 7, ' In this case, the physical system manages to adapt to

the instantaneous values of the field. In the time domain ¢ >> 7, the dependence on time of magnitude b(x,7) is
b(x,t)—)b(x,(p(x',t)) .

1>>7,

For the physical systems studied in this work, the magnetic degrees of freedom (p(x',t) are the spin vector s, and

the antiferromagnetism vector n, , whose Poisson brackets are well known [11]:
{sa(x),sﬂ (x')}:§(x—x’)£aﬁ7s},(x), )
{Sa(x)’nﬁ(xv)} =5(X—X')€aﬁ7n7(x) . 3)

Here S(x) is the Dirac delta function. The algebra of the Poisson brackets (2) has a Casimir invariant s’ . Extended

algebra (2), (3) contains two Casimir invariants: s,n, and ni. Below, in terms of these invariants, a model of the

exchange interaction of a ferrimagnet will be constructed. Formulas (2), (3) allow us to establish the dynamics of
uniaxial and biaxial ferrimagnetics:

. . de de
Sy =_VkSak +775a, n, =gaﬂy {BT—Vk aV—SJS}/'FT]na. (4)
B k°p

Here s, is the spin flux density, which has the form:

When obtaining the spin flux density we took into account the SO(3) symmetry of the strong exchange interaction:
{Sa H }: 0. Sources due to the external field are determined by the formulas:

ob

—n,.
%
0s 4

;Tbs i, J N, ={n,.V}=Ee,,

5
o, ®

n.v” = {Sa > V} = 5’5‘05/?7[

In the used method of “sources” not always external variable fields can be given an obvious physical meaning. The role
of a fictitious external field is to remove the local physical quantity of interest from the state of statistical equilibrium.
By virtue of the definition of two-time Green's functions, these external fields are not included in the final expressions
of the Green's functions.

Consider the equilibrium state of ferrimagnetic materials. The density of the exchange energy has SO(3) symmetry
and depends on two vector quantities: the spin density and the antiferromagnetic order parameter

e(s,n)=¢,(s,n)+e,(s,n,Vs,Vn).

The model of the homogeneous part of this energy e, is chosen in the following form [12]:
e (0.0,)=—Ap} 12— C@; 12+ B! 14+ D@} | 4+ E@}p; /2. 6)

Energy density arguments ¢,,¢, are related to the Casimir invariants by equalities

o =(sn) =5}, ¢, =s"—(sn) =s].

As two independent arguments of the homogeneous energy density e, =e¢, (SH,S l) it is convenient to choose the values

of the transverse and longitudinal components of the spin with respect to the anisotropy axis n[13], which are
determined by the equalities s, =n,s, +m,s, ,s,n, =s, nm=0,m=s, /s, . Conditionsofextremumandstability

aﬁ =0 % =0
a,|, 9,

Q)
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d’e d’e, d’e Pe, )
>0, 0 >0, L. 2 0| >0
ds;  Os ds, 0s,

allow us to find the corresponding values of the magnetic degrees of freedom in equilibrium.
The heterogencous density of the exchange energy will be represented in the form of two quadratic forms:

e, =J 5 (s.m)(Vs,)(Vsy)/2+K,5(s.,m)(Vn, ) (Vg )/2 .

n

Due to the transformational properties of spin vectors and antiferromagnetism and exchange energy density
relative to time reversal transformations

Is, 7" =-s,, TA,T" =-A,, TeT" =e,,
for tensor exchange integrals Jand K the relations are valid the relations
Jaﬂ(s,n)=Jaﬂ(—s,—n), Kaﬂ(s,n)=Kaﬂ(—s,—n).

From the symmetry conditions
{Bf’en}zven > {Li’en}:‘giklxkvlen’ {Sa,en}zo,

corresponding to the properties of translational invariance, as well as spatial and spin isotropy, we arrive at the
following type of inhomogeneous exchange energy of a ferrimagnet:

e,=JVVs, ) /12490, Vs, ) 12+ KV (Vn, ) /2. (8)
For positive definiteness of a non-uniform exchange energy, the constants of this exchange must be greater than zero:

JV>0,0% >0,k >0. Using further the form of energy (8), we obtain the linearized equations of dynamics

ob ob
&, ==, (TOAG 5"+ (10, )" +K(1)A&zﬂn2)+§8aﬁ{@s2 +%n3}

, de ob de
o, = gaﬂyng[{iJ ~JUAG ; + .»;EJ +&,, ﬁ&zy. )

Further, based on them, we obtain the spectra of magnetic excitations and calculate the low-frequency asymptotics of
the Green functions of a ferrimagnetic with uniaxial and biaxial anisotropy.

SPECTRA OF COLLECTIVE EXCITATIONS AND LOW-FREQUENCY ASYMPTOTICS OF GREEN’S
FUNCTIONS IN UNIAXAIL FERRIMAGNETICS

Consider magnetic states with uniaxial anisotropy, where in equilibrium sg =0. Equations (9) in this case are
simplified and have the form:

_ ) db
&a = _gaﬁyng{K ! A&’lﬂ +§gzzﬂy g],
B

. ob
i,y = E,pnl| A5 —JVAG  +E | (10)
s
For ferrimagnetics the deviation of a local quantity a from an equilibrium state is of the form
da da
a=—0&,,+—on,.
os, * om, °

a a

From the linearized equations (10), we obtain Fourier-images of the deviation of the spin vector and the
antiferromagnetism vector s, on, from equilibrium states:
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My =— i Eopyt 7{’4‘% +&—— ﬁ] gDaﬂ{Bﬂﬂ s +Cy, %]’

where matrices 1§, é,f) are determined by formulas
B, =kkY55,0),  C, =-icey,n!, D, (k,0)= 08, — AK k55, (")

Using the written formulas, we obtain expressions for the low-frequency asymptotics of the two-time Green's functions
of antiferromagnetics with uniaxial anisotropy:

sz(l)5;ﬂ (no )

Gs,,Sp (ka 0)) = A(k, a)) s
6. (k)= " )
e Ak,o)’ T Ak, )

.The expressions given above coincide with
0
the previously obtained Green's functions of [14]. The above formulas demonstrate a rather simple asymptotic structure
of Green functions in uniaxial antiferromagnets. In particular, the relations are true

. d
Here are the notation A(k,@)=a@* —k’k*, k> =KY4>0 and 4= Zaig
s

O, (n° 5\’
Gs,,s/, (k,O) = _#’ Gs,,n/, (k,O) = 07 Gn,,np (k,O) =- kfli(l)) 4

. 0 A 1 0
G, 0.0)=0, G, (00)=-"2" g (O,w)=w-
a"p ) a"p 0]

SaSp
SPECTRA OF COLLECTIVE EXCITATIONS AND LOW-FREQUENCY ASYMPTOTICS OF GREEN’S
FUNCTIONS BIAXIAL FERRIMAGNETICS
We now consider the equilibrium states that are characterized by biaxial magnetic anisotropy with the axes n
and m . The conditions of extremum and stability (7) for the energy density model (6) lead to equilibrium states:

2 aZ

1) antiferromagnetic: s; =0,s, =0. The state is stable if O = 0 ez" =-4>0, —620 =—C>0;
Silo Si

2) ferrimagnetic of easy axis type: s, = C/D,s, =0. The state is stable if O =—-4+ EsH2 >0,C>0;

3) ferrimagnetic of easy plane type:s;, =0,s, =A/B. The state is stable if Q=-A+3Bs] >0,

2
T _ vk >0,
s

The state of a ferrimagnet with magnetic degrees of freedom in equilibrium s, # 0,5, #0 we do not consider in

the article. The linearized equations of the dynamics of a magnetic system in an external field, valid near the above
three biaxial equilibrium states, in the Fourier representation have the form:

ia)&azkzeaﬁy{sLm J® n & nﬁ+J 59 +K! &ﬁnf,}-i-df iy is2+a_bn2 ,
s, ong
iwdn, =1ang{ —s)n, }+ OLe .5, aab ny.

Here mxn =1. Next, acting in a similar way, we obtain the expression of the two-time asymptotic behavior of the
Green function in terms of the basis Green functions:

da
os

ob  da ob  da ob  da ob
G\ vﬂ( ’a))7+87Gnmnﬂ (k’w)7+7wanﬂ (k’w)i-‘riGnn,sﬂ (k’w)ai (ll)

G (ko) = P o a o a
s 5 ng  Os, g on, s

0(

The general structure of the low-frequency asymptotics of the Green's functions can be represented as



52
EEJP 12019 A. Glushchenko, M. Kovalevsky et al

G (k,a)):D;;(k,a))A;ﬁ(k,a)),

SasSp

G, ., (ko)=-i0lim.D,)(k,®)B,,/w,

Ny hp

G, ., (ko)=D, (k,w)B,. (12)

Sqalg

The notation is entered here:

D, (k,0) = i3, + kzng(s)lgnf, - sz(l)EaMsg - isz(l)ngmgi /o,

. 2
lsz(l) L (.0 K (SI?) K70 070 0 0
Ay, (K, 0) = P 5,87(11 )+ 7 Myly + €4S, > By, =Epph,y .

Let us analyze the Green's functions for the above three states of magnetism and find the explicit dependence of
these functions on the wave vector and frequency. For the case of 1) antiferromagnet with biaxial anisotropy, the
following form of the basis Green functions is obtained:

kZK(l)

— 2ol 0 2 070
Gx”,sﬁ (k,a))_w(a) 5aﬂ(ll )—k K'Zlalﬂ),
2700 . PSR
G,y (60) =2 G (o) =" S G ). (13)
“’” Ak, @) v o Ako)o "

Here A(k,a))za)2 —k’x” .The magnetic system in this state is characterized by the Goldstone spectrum @ = kk .
Comparing these formulas with the Green's functions of a uniaxial antiferromagnet, we see that the asymptotics of the
Green's functions G, , (0,0),G, , (0,®) coincide. Asymptotics G, , (£,0),G,, (0,@) coincide qualitatively, but they
have different anisotropy patterns. The asymptotics of the Green function of an antiferromagnetic with biaxial

anisotropy G, ,, (k,0) can be represented as G, ,, (k,0) =G (k,0)+ G (k,0) . The regular part coincides with the

SaSp SaSp

. . . 0 .1 .
Green function of a uniaxial antiferromagnet. The pole part has the form GE: vj) (k,0)= hm—sz(l)lf,lg. There is also no

w0

coincidence of the asymptotic behavior of the Green function G, , (k,0). For a uniaxial antiferromagnet, this value

Sehg

. .. . R |
vanishes, and for a biaxial case it has a pole character G, , (k,0)=—il,m; lim—.
o -0 )

The case 2) ferrimagnetic of easy axis type: condition det D=0 leads to the excitation spectrum &’ = k’x+k*x”,
here k; =J (l)s‘?. If the exchange integrals of the interaction differ significantly in magnitude, then in the limit of a)
K" >> 7" we obtain a linear spectrum @=k« . In the other limiting case b) K" << J"we arrive at a quadratic
spectrum @ = kZKH . In case a) the Green's basic functions coincide with the formulas of an antiferromagnet with biaxial

anisotropy. In case b) these functions are:
KK05(n")  ice,,n)

Gs N (k’a))_ oy >
- A(ko) A (ko)
o1’
G, ., (kw)=5G , (ko), G, ., (ko)= —Wﬂw) :
i UKs

Here A (k, a)) =w - k4KH2 . Let us give particular cases of the form of the asymptotics of the Green functions:

oL, (n’ . 0
GS n (k’o)__ uﬂz( ) s Gs n (0,07):_% El
n’ﬂ kx o w
o o
G”u’”/!( ’0) - k4](2ﬂ ’ Gna,fz/i (0,&)) = a)zﬁ .

We see that the asymptotics of the basis Green's function G, (k,0) with respect to the wave vector has a non-

aslp
Bogolyubov character. Note that such a stronger feature of the asymptotic behavior of the Green function Gnmnﬂ (k,O)

does not contradict the inequality G, - 1/k* [7]. This theorem sets a restriction on the asymptotic behavior of

Green's functions from below fork — 0.
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For the case 3) ferrimagnetic of the easy plane type the basis Green functions are found, in which to simplify the
calculations we neglected the exchange integral J ).

G (k,a))szKLngm;Hw[Amgl; - Ly )],

St A (ko) (ko) A (ko
0
Gn ) (k’w):@’
" Ak, )
2. 0¢l 0 14 1. 070 _ 0 0
6. (haymrct[ i L) Kl [E KO osten)) "
o Ak,o) A, (ko) A, (ko) A (ko)o

Here Ak,0)=a’ -k’x*, A (k,0)=&’ —k'x}, x, =J (')sﬂ. Such a magnetic state has two spectra of collective

excitations w=kk and w=k’k, . We write out a particular form of the asymptotics of the basis Green's functions

using (14):
0. 0 e 0
Gv n (k’o):_niﬂ b Gv n (O,a)):_l aﬁyn}/ >
e kx| s w
o0 oL is'e . m’
— a’p _Zap _ L%aB
Grrmrr/; (k’o) - _sz(l) > Gn,,,nﬁ (0,0)) - wz > Gsd,sﬂ (k’ a)) - a)7 : *

From (14) it also follows that the asymptotic behavior of the Green function lim G, (k, ) can be represented as two
w—0 7
terms limG, (k, )= Gﬁ’efz (k,0)+ Gf””fz (k,@—0). The first of these is regular at@w— 0, and the second term
w— @ @ @
contains a pole feature in frequency:
K(l)lglg ) SE(?,;; (m°) K(l)mgmf,

G(reg) k,a) — _
S5 ( ) kzki kZKL /8 >

iK (1)n2[§

") (k,@—0)=—
K|

SasSp

In the limit s} — 0 the asymptotics of the basis Green's functions (14) coincide with formulas (13) for the

antiferromagnetic equilibrium state. A similar limit sﬁ) — 0 does not lead to expression (14) to formulas of a biaxial

antiferromagnet, since, in obtaining these formulas, we completely neglected the influence of the exchange
integral K W

CONCLUSIONS
The article considers the problem of the influence of a weak alternating field on the evolution of uniaxial and
biaxial ferrimagnets and nonlinear dynamic equations that take into account the properties of the SO(3) symmetry of
exchange interactions. On the basis of these equations, the “hydrodynamic” asymptotics of the two-time Green
functions are calculated in explicit form with respect to the wave vector and frequency. The presented research results
demonstrate the importance of the specific anisotropy of the magnetic system in the description of the collective
properties of the studied magnets. An analysis of the asymptotic behavior of the Green function of the type

G, (k,0)~1/k" in a ferrimagnet with biaxial anisotropy shows that such features can arise in other magnetic states for

which the contribution of the zero approximation in gradients to the linearized equation of the order parameter is absent.
These words also allow you to know the spectra of the collective magnetic waves, the character of the magnetic
anisotropic characteristics of the Grain that give you the ability to design the neutron neutron processes in the
magnitudes of the neutrons in magnetics.
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