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Modeling and Simulation of Particulate Processes

Particulate processes can be modeled by means of populations balances. This is an important
class of nonlinear partial differential equations with many applications in chemical and biochemi-
cal engineering. Major challenges are multidimensional problems, coupling with nonideal flow
fields and feedback control. Possible solution approaches to these problems are presented and il-
lustrated with different types of process applications including fluidized bed spray granulation,
crystallization and influenza vaccine production processes.

Ïðîöåññû â ìàêðî÷àñòèöàõ ìîæíî ìîäåëèðîâàòü, èñïîëüçóÿ ïîïóëÿöèîííûé áàëàíñ.Îí
ïðåäñòàâëÿåò ñîáîé âàæíûé êëàññ íåëèíåéíûõ äèôôåðåíöèàëüíûõ óðàâíåíèé â ÷àñòíûõ
ïðîèçâîäíûõ è øèðîêî ïðèìåíÿåüñÿ â õèìè÷åñêîé è áèîõèìè÷åñêîé èíæåíåðèè. Îñíîâ-
íûìè ïðîáëåìàìè ïðè ýòîì ÿâëÿþòñÿ ìíîãîìåðíûå çàäà÷è, âçàèìîñâÿçü ñ íåèäåàëüíûìè
ïîëÿìè òå÷åíèÿ è óïðàâëåíèå ñ îáðàòíûìè ñâÿçÿìè. Â ðàáîòå ïðåäñòàâëåííû âîçìîæíûå
ïîäõîäû ê ðåøåíèþ ýòèõ çàäà÷ íà ïðèìåðå ðàçëè÷íûõ ïðîöåññîâ, òàêèõ êàê ãðàíóëÿöèÿ â
êèïÿùåì ñëîå, êðèñòàëèçàöèÿ è ïðîöåññû ïðîèçâîäñòâà âàêöèí îò ãðèïïà.

K e y w o r d s: partial differential equations, population balances, control, model reduction,

proper orthogonal decomposition, direct quadrature method of moments.

Introduction. Particulate products like crystals, granules, and powders play a
major role in process industries. Typical examples are pharmaceuticals, deter-
gents, pigments, polymers etc. They represent about 60 % of the produced value
in the chemical industry. Typical production processes comprise crystallization,
granulation, and polymerization among others. Function and effectiveness of
particulate products often depend on particle properties - such as size, porosity,
morphology or composition. Main objective of our research in this field of appli-
cation is to devise new methods and tools for modeling, simulation and control
of particulate processes aiming at the directed adjustment of desired product
properties.

This is a challenging issue due to nonuniformity of particle systems, where
particles differ with respect to individual properties, and product properties are
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represented by the collective behavior of the
particle population. From the theoretical
point of view particulate processes belong
to a special class of distributed parameter
systems, so called population balance sys-
tems. They are described by nonlinear partial
differential equations (PDE) often coupled to
integro differential equations describing the
surrounding medium (see e.g. [1]).

The paper will address main challenges

for modeling, simulation and control of par-

ticulate processes and present recent solution approaches developed in our group

at the Max Planck Institute and the Otto von Guericke University in Magdeburg.

Theoretical concepts will be illustrated with practical application examples in-

cluding granulation, crystallization and vaccine production in cell cultures.

Modeling of particulate processes. The generic structure of particulate

processes is illustrated in Fig. 1 for a crystallization process. It consists of a con-

tinuous phase — also sometimes called the medium — and a disperse particle

phase, which interacts with the continuous phase through an exchange of mass,

energy and momentum.

Particles are characterized by their specific properties like particle size,

morphology or composition, for example. These properties are summarized in a

vector of internal coordinates x. Typically, particles are nonuniform (see also

Fig. 1) giving rise to a property distribution like a particle size distribution, for

example. In case of spatial inhomogeneity of the continuous phase an additional

vector of external space coordinates r is required for the mathematical desc-

ription of the system. Kinetic processes in the particle phase may comprise nu-

cleation, i.e. formation of new particles, particle growth, aggregation and brea-

kage processes.

Microscopic models based on discrete element methods are computatio-

nally very expensive and therefore currently not well suited for model based pro-

cess design and process control purposes [2]. Therefore, focus in this paper is on

a more macroscopic approach using population balances [1]. In general form the

population balance equation reads

�
�t

n t n n h t dV

dV i

( , , ) ( � ) ( � ) ( , , )x r r x x x rr x x

x

�� �� � � ��
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where n t( , , )x r is a number density, which depends on external and internal

variables and evolves over time. The equation consists of an accumulation term,
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Fig. 1. Crystallization process



convection in the direction of the external (space) variables r and convection in

the direction of the internal state variables x. The latter corresponds to the kinetic

processes contributing to the continuous change of particle properties like

growth processes, for example. The convolution type of integral on the right

hand side represents aggregation and breakage processes. Furthermore, material

transport across the system boundaries is taken into account. The population ba-

lance is coupled with corresponding material, energy and momentum balances

of the continuous phase, including spatial gradients in r and integral interaction

with the particle phase. Specific examples will be given later in this paper.

Major challenges to be discussed subsequently comprise:

• problems with multiple internal coordinates;

• coupling with nonideal flow fields leading to problems with internal and

external coordinates;

• process control.

Nonlinear dynamics and control of fluidized bed spray granulation

processes. First, focus is on process control. As an application example continu-

ous fluidized bed spray granulation as illustrated in Fig. 2 is considered. The pro-

cess consists of a granulation chamber, where the particles are fluidized with a

stream of hot air. From the top a liquid suspension is sprayed onto the particles

giving rise to particle growth. Particles are removed continuously from the granu-

lation chamber and classified into a product fraction, fractions of undersized and

oversized particles. Oversized particles are ground with a mill and returned to-
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Fig. 2. Fluidized bed spray granulation process with external product classification



gether with the undersized particles to the granulation chamber giving rise to

new nuclei for particle growth. On the one hand, this mode of operation is very

economic since it avoids the supply of external nuclei. On the other hand, it may

lead to dynamic instability in the from of self sustained oscillations [3]. This im-

plies oscillating product properties like particle size L, which is usually not ac-

ceptable from the practical point of view. Therefore, a new method was develo-

ped for stabilization by means of feedback control.

The model equations are given by:

�
�

�
�

�
n

t
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n

L
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Fig. 3. Open loop simulation results: a — stable (coarse grinding with� M = 0.9 mm); b — un-
stable (fine grinding with � M = 0.7 mm)



which assumes that the injected liquid suspension �me is equally distributed over

the available total particle surface. The withdrawal �n follows from a total mate-

rial balance assuming constant bed mass. T L1( ) and T L2( ) are the sigmoid classi-

fying functions of the sieves. For the nomenclature of the flow rates � , � , �n n nP O 
we refer to Fig. 2.

Although the model is rather simple it contains all necessary ingredients to

reproduce the nonlinear oscillations. It further shows the important influence of

the mill grade � M on process stability as illustrated in Fig. 3. For coarse milling

the process is settling down to a stable steady state. In contrast to this, the fine

milling triggers instability [4]. This further indicates that the mill grade is a suit-

able handle to stabilize the process by means of feedback control.

For the present class of processes a new control method was developed. It is

a Lyapunov type of approach based directly on the nonlinear PDE (1) and uses

the mill grade as a lumped handle. Stability is proven in the integral sense, for the

norm of the difference of the overall particle surface wrto to its given reference.

It should be noted that this quantity is not a norm of the number density n L t( , )

but a weaker error measure called a discrepancy. It was shown that this integral

stability implies pointwise convergence of n L t( , ), if the corresponding zero dy-

namics are stable as shown in Fig. 4 for the moments � i
iL n L t dL�

�

�
0

( , ) , i = 0. 2

and the number density n L t( , ). The figure also shows the control error e and the
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Fig. 4. Closed loop simulation results: without control; ···· with control



manipulated variable � M . For unstable zero dynamics an additional robust pa-

rallel compensator can be used for stabilization. The details are given in [5].

The method is rather simple and intuitive and applies to a large class of

problems. Application was also demonstrated for fluidized bed spray granula-

tion with internal product classification [6], spray coating in a Wurster coater [7]

and continuous crystallization [8]. Experimental validation is in progress.

Nonlinear model reduction for particulate processes with nonideal flow

fields. Models are becoming more involved, when spatial inhomogeneities play

a major role leading to problems with internal and external coordinates. A typi-

cal example is the crystallization process in a tube described in [9]. Model equa-

tions are given by the population balance coupled to the Navier Stokes equation,

i.e. the momentum balance, as well as energy and material balances of the con-

tinuous phase. Internal coordinate is again the particle size L which is comple-

mented with two external coordinates summarized in the vector r to describe the

spatial position in the crystallizer.

These kinds of models are usually too complex for online applications in

the process control or process design. Therefore, nonlinear model reduction is

inevitable. Proper orthogonal decomposition was used for the first time for this

class of processes in [9, 10]. The main idea is to approximate the solution of the

coupled system of equations by means of a series expansion

n L t t L
i

n

i i( , , ) ( ) ( , )r r�
�



1

� �

with basis functions � i which depend on external and internal coordinates only

and time dependent weights� i . The basis functions were generated from offline

simulations with the full reference model using a finite element approach. The

reduced model equations for the time dependent weights were obtained by

Galerkin projection. Best point interpolation was used for the approximation of

nonlinearities to avoid expensive online evaluation of multidimensional inte-

grals during runtime. With this approach the system order could be reduced by

four orders of magnitude compared to the discretized PDE reference model. The

computation time for online application could be reduced by three orders of

magnitude, once expensive offline calculations are completed.

Recent work is concerned with automatic generation of reduced order mo-

dels by means of proper orthogonal decomposition [11]. As an application a

novel type of fluidized bed crystallizer as described in [12, 13] is considered

among others.

Multidimensional modeling of influenza vaccine production processes.

The third application example is concerned with biotechnological processes for
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the production of influenza vaccines.

Virus influenza is a serious disease

killing many people every year. Vac-

cination is currently the best option to

protect against infection. Since influ-

enza viruses are changing continu-

ously, flexible production processes

are required. Therefore production in

mammalian cell cultures is becoming

more and more important [14]. In this

type of process, first a culture of mam-

malian cells is grown. At the begin-

ning of the production process the cell culture is infected with virus seeds. Typi-

cally, in technical production processes, the amount of virus is low compared to

the number of cells in the culture. Therefore in the beginning of the process only

a part of the cells is infected. The virus replicates inside the infected cells and

new virus is released to the medium and thereby infects step by step also the

other cells. With time, active virus will also degrade and exhausted cells will die.

The production process is stopped when the virus yield goes through a maxi-

mum. Then the bioreactor is harvested and the vaccine can be produced from the

virus yield.

As indicated by measurements with flow cytometry the cell to cell variabi-

lity is a major feature of this process which is addressed here with distributed

population balance models [15]. For this purpose two different approaches are

available:

1. Top down approach using global kinetics for virus infection, virus repli-

cation and virus release, which are fitted to experimental data using an inverse

problem approach [15, 16].

2. Bottom up approach starting from detailed single cell kinetics.

The latter accounts in more detail for available biological knowledge and

therefore provides more insight into the underlying biological processes and

their interaction. Dynamics on the single cell level are described by a vector of

physiologically relevant components such as a viral genome or viral proteins,

which change over time. Since the amount of these quantities differs from cell to

cell, these state variables on the single cell level translate into internal coordi-

nates on the population level leading to multidimensional population balance

equations. External coordinates are neglected here due to perfect mixing of the

medium in the bioreactor.

Numerical solution of multidimensional population balance models of cel-

lular systems can be very challenging, if N the number of internal coordinates is
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large. Standard discretization techniques using finite differences, finite volumes

or finite elements are typically limited to N in the order of 5. Monte Carlo simu-

lation which is another popular solution method in this field is typically limited

to N in the order of 10. For higher dimensional problems a new quadrature method

of moments was developed. It combines monomial cubatures with the method of

characteristics [17, 18]. With this approach the computational costs increase only

polynomially with N, in the simplest case even only linearly. For large N, this is a

drastic reduction in computational costs compared to standard Gaussian cubatures,

where the computational costs increase exponentially with N.

In the remainder, application is demonstrated for a relatively simple five di-

mensional problem, which was adopted from [19] and modified slightly. The

replication kinetics are illustrated in Fig. 5. Relevant species are the viral ge-

nome gen, the template of the viral genome tem, which is used for synthesizing

new genome and structural proteins str. Generation of template and structural

proteins is catalyzed by viral enzymes v1 and v2. Viral genome and structural

proteins are merged to build new viruses which are released to the medium.

The model equations are.

• Infected cells

�

�

i t

t
i t k U t V t I kc
c c ic

( , )
{ � ( , )} ( ) ( ) ( )

x
x x xx� �� � �inf cd, ( ) ( , )x xi tc , (2)

where �x in the first term on the r.h.s. corresponds to the reaction rates on the sin-

gle cell level according to
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The second term on the r.h.s of equation (2) corrpesponds to infection and is

proportional to the number of uninfected cells and the number of free viruses.

The third term corresponds to cell death.

• Uninfected cells

dU t

t
k U t V t k U t k U tc

c U c U cc c

( )
( ) ( ) ( ) ( )

�
� � � �inf gro, cd, .

In contrast to the infected cells, uninfected cells Uc and free virus V are de-

scribed by ordinary differential equations. The number of uninfected cells de-

creases due to infection and cell death.
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• Free virus in the medium

dV t

t
r i t d k U t V t k V tc c V

( )
( ) ( , ) ( ) ( ) (

�
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x

x x xrel inf deg, ).

The number of free viruses increases due to release of newly formed virus from

infected cells and decreases due to infection and virus degradation.

Results for the first two moments of viral genome and template are shown in

Fig. 6 for different types of cubatures. The reference solution is obtained by

Monte Carlo sampling with 104 samples. Compared to a monomial and a Gaus-

sian cubature with 66 and 243 abscissas, respectively. Both show similar perfor-

mance with some deviation from the reference solution. By far the best match

was obtained with a monomial cubature with mixed Gaussian model densities

with 121 abscissas.

Currently the approach is applied to a detailed model of the single cell kine-

tics with about 30 state variables translating into 30 internal coordinates. The

model aims at identifying targets or genetic modification of the cell line to im-

Modeling and Simulation of Particulate Processes

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2016. Ò. 38. ¹ 5 31

Fig. 6. Simulation results for the viral replication processes in Fig. 5: m t x i t dl k k
l

c, ( ) ( ) ( , )� �
x

x x x;

— Monomial (N  = 66); Gauss (N  = 243); Monomial+GMD (N  = 121);

� Monte-Carlo (N  = 104);



prove influenza vaccine production within a joint research project with partners

from academia and industry.
Conclusions. It was shown that population balance systems are an impor-

tant class of distributed parameter systems with many applications in chemical
and biochemical engineering. Modeling, simulation and control of population
balance systems turns out to be challenging, in particular for multidimensional
problems with multiple internal and/or external coordinates. Several solution ap-
proaches were presented which were developed in our research group at the Max
Planck Institute and the Otto von Guericke University in Magdeburg during the
last years. Nevertheless, there are still many opportunities for productive re-
search in this field.
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Ïðîöåñè îáðîáêè ÷àñòîê ìîæíà ìîäåëþâàòè, âèêîðèñòîâóþ÷è ïîïóëÿö³éíèé áàëàíñ. Â³í
º âàæëèâèì êëàñîì íåë³í³éíèõ äèôåðåíö³àëüíèõ ð³âíÿíü ç ÷àñòèííèìè ïîõ³äíèìè òà
øèðîêî çàñòîñîâóºòüñÿ â õ³ì³÷í³é òà á³îõ³ì³÷íî¿ ³íæåíåð³¿. Îñíîâíèìè ïðîáëåìàìè òóò º
áàãàòîâèì³ðí³ çàäà÷³, âçàºìîçâ’ÿçîê ç íå³äåàëüíèìè ïîëÿìè òå÷³¿ òà êåðóâàííÿ ç³ çâîðîò-
íèìè çâ’ÿçêàìè. Ó ðîáîò³ ïðåäñòàâëåí³ ìîæëèâ³ ï³äõîäè äî âèð³øåííÿ öèõ çàäà÷ íà ïðèê-
ëàä³ ð³çíèõ ïðîöåñ³â, òàêèõ ÿê ãðàíóëÿö³ÿ â êèïëÿ÷îìó øàð³, êðèñòàë³çàö³ÿ ³ ïðîöåñè
âèðîáíèöòâà âàêöèí â³ä ãðèïó.
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