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White Noise in Some Simulation
Problems of Information Signals*

À ñonstructive method of information signal mathematical models characterization on the white
noise basis is developed. Linear random processes, linear random processes with periodic struc-
tures, linear autoregressive processes, linear autoregressive processes with periodic structures are
represented as examples of the method application.
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Introduction. Many information signals like vibrations, acoustic emission sig-
nals, control signals, etc., can be represented as a response of some linear system
to the white noise action [1-6]. Now we try to make the white noise models more
exact and make more detailed mathematical descriptions, definitions, and practi-
cal applications of the white noise processes. The first detailed investigation of
white noise processes was made by K. Ito in 1954 [1]. However, the beginning
of the white noise theory can be traced back to the 1930’s to the works of A.
Kolmogorov [2] and A. Khinchin [3], where the processes with independent in-
crements closely related to white noise were considered.

White noise definition. In the most simple case, in technical applications,
white noise can be defined as a generalized process with noncorrelated values
{ ( ), }� t t T� such that [7]

M t[ ( )]� �0, M t t[ ( ) ( )] ( )� � � � � �� � 2 , (1)

where � �( ) is a Dirac delta function. The stochastic process is generalized and
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stationary. The correlation function of the process is also a generalized one and
is determined as

R ( ) ( )� � � �� 2 , ��T, (2)

where �2 0
 is an intensity of the white noise. In the case of the nonstationary
white noise, the parameter �2 will depend on time t. White noise allows a spect-
ral decomposition

�
�

��( ) ( )t e dzi t�
�

�

�
1

2
,

where z ( )� is a process with noncorrelated increments.
The infinitesimal “elementary oscillations” e dzi t� �( )have equal infinites-

imal mean power and are mutually noncorrelated at any frequencies ( )� be-
cause of noncorrelated increments of the process z ( )� . The mean square of
their infinitesimal amplitude has a mathematical expectation M dz| ( ) |� 2 �
� � �2d ,� � � �( , ).

The Gilbert stochastic process with representation (2) is called Loeve
harmonizable process. However, the white noise cannot be considered as the
Loeve harmonizable stochastic process, because it is not a Gilbert process: it
does not have finite variance or finite mean power. Nevertheless, in a general
sense, the white noise can be considered as a harmonizable one. Then, its gener-
alized harmonizable correlation function can be derived from (2) and is deter-
mined as

R e di t( ) ( )�
�

� ���
�

�


�
1

2
2 .

Thus, the white noise with continuous time has constant spectral power density
at infinite frequency bound and equals S ( )� �� 2,�� � �( , ), i.e., the power of
every infinitesimal harmonic component equals � �2d .

The general power of all these harmonic components at any finite frequency
bound is proportional to the value of the latter and equals infinity at the infinite
frequency bound. Therefore the white noise with continuous time is not physi-
cally possible. White noise processes with continuous time are closely related to
those with independent increments, which even in the case of continuous time
can be considered as non-generalized processes.

A process with independent increments is one whose random variables{ ( )}� tn

have the property that, if t tn1 � �... ( )n � 3 the differences � �( ) ( ),...t tm m � 1
..., ( ) ( ),..., ( ) ( )� � � �t t t tn n0 1 1   , T� � �( , ) are mutually independent.

The value of �( )t0 is a limit value of the process �( )t , if t T0 � 
 �min or
t T0 � � �max . It is this kind of processes with independent increments, which is
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generally considered in the theory of random processes [8]. For these pro-
cesses t0 is usually taken at a zero point, and �( )0 is considered to be of
nonrandom value.

For the processes with continuous time the values of the white noise process
in the strong sense and of the process with independent increments are con-
nected by an equation

� � � �( ) ( )t d

t

� �
0

, t� �[ , ]0 ,

where {�( )t , t� �[ , )0 } is a white noise in the strong sense with continuous time.
The increments� �( )at the non-crossing intervals are independent. If there exists

a difference limit for � � � � � �s s( ) ( ) ( )�  , i.e., �
� � �

�
�

�
�

 �
lim

( )
| |s

s

s0
, then the limit

process � � is the white noise process in the strong sense with continuous time.
However, in a general sense, such a derivative does not exist and the white noise
with continuous time can be considered as a generalized process.

In contrast to the white noise with continuous time, the processes with inde-
pendent increments are physically possible. Homogeneous characteristic func-
tion of the process with independent increments {�( )t , t T� } is determined as

f u t Meiu t
�

�( , ) ( )� . (3)

The one-dimensional characteristic function f u s( ; , )� of the increments � � �s ( )
is determined as f u s Meiu ts

( ; , ) ( )� � �� . A remarkable feature of the characteristic
function (3) of the homogeneous processes with independent increments is that
the corresponding distribution function belongs to the class of infinitely divi-
sible ones, as described by Levy. A canonical representation of the characteristic
function in the Levy form is

ln ( , ) | |f u t t i u u e
iu x

x

iu x
�

���
� �

�  �  
�

�
��

�
��

�

�

�
2

2
22

1
1

dL x( )
�
�
�

 �

!
"
�

#�
, t� � �( , ),

where � and � 
0 are some constants, � �sign tL x( ) is a Poisson jump spectrum

in the Levy form. It is noteworthy that f u t f u t�( , ) ( ; , )$ 0 . The above represen-
tation of the characteristic function can be regarded as the main result of the the-
ory of the white noise with continuous time. Unfortunately, it has not yet found a
wide application.

As was mentioned, the white noise with continuous time is a generalized
stochastic process and it is not described by a distribution function, since such a
function does not exist. The notions of the Gaussian or Poisson white noise indi-
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cate that the integral between boundary time intervals has the corresponding
Normal or Poisson distribution, respectively.

White noise forms the basis of linear stochastic processes. The latter can be
considered as a result of a linear filtration of white noise processes of different
distributions. An account of the theory of linear stochastic processes was given
in [7, 9].

Linear random process. In our paper we discuss a problem of statistical
simulation of such signals. The problem, in general wording, consists in obtai-
ning a sequence of pseudo random values with the given probability characteris-
tics. The proposed problem solving approach is based on the Linear Random
Process Theory [4] and it can be considered to be a development of genera- ting
process method [7]. At first we state some knowledge of the Theory, and clas-
sify the simulating processes. Then we define concretely the simulation problem
statement and discuss a method of solving.

A linear random process (LRP) is a functional of the following form

% & � � �( ) ( , ) ( )t t d�
�

�

� , t� � �( , ),

where & �( , ) ( , )t L� � �2 with respect to � for all t is a non-stochastic real

Hilbert function; � �( ), �( )0 0� , �� � �( , ) is a Hilbert stochastically continu-
ous random process with independent increments that is often called a generat-
ing process. While solving many problems including statistical simulation it is
convenient to consider the LRP as a response of a linear filter with the impulse
transient function& �( , )t to the action of the white noise '� �( ). It is understood
that '� �( ) is a generalized derivative of the corresponding process with independ-
ent increments.

It is known [4] that any stochastically continuous process with independent
increments can be represented as a sum of two stochastically independent com-
ponents which may be not present simultaneously: Gaussian and Poisson. We
call the components as processes of the Gaussian and Poison types. The first
type contains the homogeneous (Wiener) and non-homogeneous Gaussian pro-
cesses with independent increments. Simple Poisson processes, renewal pro-
cesses and their linear combinations, generalized Poisson processes with inde-
pendent increments belong to the second type. Being generated by each of the
mentioned processes LRP possess some typical properties. This fact is taken as a
principle of the classification. For example, it can be shown that, if the generat-
ing process is of the Gaussian type, the corresponding LRP is a Gaussian sto-
chastic process. The Poisson type of generating process leads to LRP describing
impulse currents. We call such processes the impulse LRP.
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The type of integral representation kernel & �( , )t also influences typically
the probability properties of the resulting process. As has been mentioned above,
the physical meaning of some forming filter’s impulse transient function can be
attached to the & �( , )t . For example, the exponential kernel corresponds to the
case of a low pass filtration, and the exponential cosine kernel corresponds to the
band pass filtration case. By analogy with the forming filter’s type we often call
the corresponding LRP the RC- and RLC-noises.

Using a characteristic function of a linear stochastic process, one can per-
form a full analysis of the output signals of linear systems: calculate moments
and distribution functions, analyze connections between input and output cha-
racteristics of the linear circuit [7, 9]. White noise and corresponding linear sto-
chastic processes can be generalized for the multivariate cases, i.e., the cases of
stochastic white fields and linear stochastic fields.

Linear random process with periodic structures. We have to deal with
non-stationary random processes in applications to many cases. Investigations
of the periodic correlated random processes structure and statistical parameter
estimations, at the correlation theory level have been developed by Ogura [8].
Random periodic processes were discussed for the first time by Slutskiy [10].
These processes can be defined in the following way. A real random process%( )t ,
t� � �( , ) is called the real periodic random process, according to Slutskiy, if the
fixed number T 
0 exists for the process % ( )t , such that the finite dimension
vectors ( ( ), ( ),..., ( ))% % %t t tn1 2 and ( ( ), ( ), ..., ( ))% % %t T t T t Tn1 2� � � are sto-
chastically equivalent, in a wide sense, for all whole numbers n
0, where
t t1 2, ,... is a set of separability of the process % ( )t .

The main purpose of this paper is to make the periodic non-stationary ran-
dom process more exact in an infinitely divisible class by detailed mathematical
investigation of the problems connected with the description, definition, and
practical application of the process.

According to [11, 12], for the processes with continuous time, the values of
the white noise process in a strong sense { ( ), [{ ( ) } ]}� � �P 0 0 1� � , �� � �( , )
and those of the process with independent increments {�( )t , t� � �( , )} are

connected by the equation � � � �( ) ( ) ( )t d

t

� �
0

, t� � �( , ), � �( ) is stochastically

equivalent to� �( ) . In our case, �( )t is a non-homogeneous Hilbert process with
independent increments. There exists a T 
0 for the process �( )t , which is the
basis for fulfillment of the following properties:

d t d t T� �1 1( ) ( )� � , d t d t T� �2 2( ) ( )� � ,

d d L x t d d L x t Tx t x t( , ) ( , )� � , ( � � �t ( , ), (4)
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where �1( )t and �2( )t are the first cumulant functions of the process �( )t , while
L x t( , ) is a Poisson jump spectrum in the Levy form, T is a correlation period,
and� �( ) is called a periodic white noise. A logarithm of a characteristic function
of the real random process �( )t in the Levy form is

ln ( , ) ( )
( )
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D t
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d L x tx ( , ) , t� � �( , ),

where D t t2( ), ( )� are some variables, � �sign t and L x t( , ) is the Poisson jump
spectrum in the Levy form.

Non-stationary linear random processes can be defined by application of non-
stationary random periodic processes as with independent increments [4, 12]

% & � � �( ) ( , ) ( )t t d�
�

�

� , t� � �( , ), (5)

where & � �( , ) ,t L� 2 is a real nonrandom periodic numerical function on t that

has the property
�

�

� � �& � � �)
2( , ) ( )t d , for every fixed t � � �( , ); {� �( ),

�( ),0 t� � �( , )} is called generating process. The properties (4) are carried out
for�( )t [11]. Generalization to the complex case proceeds in the traditional way.

Logarithms of the characteristic function of the linear random process (5) in
the Levy form are represented in [12, 13]. Random periodic processes can be
widely used in many applications: the problem of detection of signals from
noise, classification of information signals, and many others. Using the model
one can generate pseudorandom series with the required probabilistic characte-
ristics in infinitely divisible class of distributions.

Linear autoregressive process. The method may be used for construction
of the discrete-time mathematical models of information signals. Let us consider
some properties of linear processes of autoregression in greater detail. Autoreg-
ression linear processes may be set in the following way:

% % �t

j

p

j t j ta� �
�

*
1

, t Z� ,

where { , , , }a a j pj j + �0 1 are the autoregression parameters; p is the autoreg-
ression order;{ , }, t t Z� is the stationary random process with discrete time and
independent values, which has the infinitely divisible distribution law
P{ }� 0 0 1� � . This process is often referred to as the generating process. It is pro-
posed that the process , t is stationary in the narrow sense and ergodic theorems
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are fulfilled [14]. It is also assumed that the solutions of the characteristic equa-
tion - ( ) ...z a a z a zp p

p� � � �1 1 , on the complex plane lie within the unit disk
[14]. Then, the difference equation (1) has the only stationary solution

% & � ,
�

�t t�
�

�

*
0

( ) ,

where { ( ), }& � ��Z is some numerical sequence, which is referred to as a
pulse-transition function or the kernel of the random process % t . It is assumed
that the following relationship is fulfilled

�

& �
�

�

* � �
0

2( ) .

Consequently, the autoregression linear process% t of order p may be considered
as the process of the sliding average infinite order. The kernel& �( ) is related to
the parameters of autoregression{ , , }a j pj �1 [13].

Autoregression processes are widely practiced when constructing mathe-
matical models of information signals of different types and during their analysis
and synthesis. To classify such processes their energy characteristics are used
very often, but in problems of classification of stochastic information signals in
the case of non-Gaussian distribution, the information, which energy spectra
(within the framework of the first two moments) possess is often not enough for
reliable recognition and classification of such signals. Then it is expedient to use
information on higher moments (integral characteristics) or statistical characte-
ristics of distributing such signals.

Stationary autoregressive processes have found wide application in solving
different radio engineering problems [13-15]. However, many processes in
radiophysics, radiolocation, telemetry, hydroacoustics, meteorology, astrono-
my, biomedical systems and, consequently, the random functions describing
such processes possess the characteristics repeating in time or space. Such pro-
cesses can be used to describe, for example, signals at the mixer output, where a
periodic oscillation and stationary noise are applied to the mixer inputs; the sig-
nals of parametric amplifiers with repetitive pumping, signals of nonlinear
self-oscillatory systems, output signals of linear systems with cyclically varying
parameters, and magnetic noises during the cyclic ferromagnetic magnetization
switching. By the period of process variation is usually meant a time or space in-
terval of complete repetition of variations of process characteristics, though the
proper values (realizations) of such random process may not have the same
properties. In this case for mathematical simulation it is expedient to apply the
random processes with periodic structures.
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Linear autoregressive process with periodic structures. The present pa-
per also deals with the consideration of singularities and specific properties of
linear autoregressive processes with periodic structures. Such processes are the
generalization of linear stationary autoregressive processes [16]. The peculiarity
of the given processes is the possibility of their use for the description of
non-Gaussian periodic random signals.

Real random process { , }% t Z� defined over the set of integers Z �
� {..., , , , ...}1 0 1 is called the autoregressive process with periodically varying
autoregression parameters. It can be written as follows: % %t ta t�  �1 11( ) ...
... ( )�  �a t pp t p t% � , where a tp ( ) are the autoregression parameters alternating
in time with the same period, i.e., a t a t T1 1( ) ( )� � , ..., a t a t Tp p( ) ( )� � , p
0,
p Z� ( �t Z, is the order of autoregression, � t is the random process with discrete
time and independent values having an infinitely divisible distribution law.

It was shown in [16] that the Hilbert autoregressive process with cyclically
time varying autoregression parameters having the same period T 
0 generated
by a random process with independent values and completely divisible distribu-
tion law represents a linear random process with discrete time and periodic ker-
nel (in terms of t).

Let us consider a linear autoregressive process having the periodic structure
of the generating process. Such process satisfies the following difference equa-
tion: % % �t t t p ta a� � � � 1 1 ... , t Z� , where { , , }a j pj �1 are the autoregression
parameters, p is the order of autoregression, � t is the generating process having
the properties presented below.

Let us assume that � �� �t t t 1, t Z� is the first difference of generating
process � t . Let us also assume the existence of such T 
0 that for all � and t the
following relationships are fulfilled:

� � � �1 1( ) ( )� �T ; � � � �2 2( ) ( )� �T , d L x d L x Tx x( , ) ( , )� �� � ,

where � �1( ) and � �2( ) are the first cumulant functions of the process �t ; L x( , )�
is the Poisson spectrum of jumps in the Levi formula for the process � t . It was
shown in [14] that the linear autoregressive process with periodic generating
process is a periodic random process in a strict sense.

Conclusion. The above considered models of random processes can be ap-
plied for the simulation of information signals of expert systems different types,
various cyclically changing radiophysical processes, random signals in biome-
dical investigations, etc., t Z� .

The autoregressive processes with cyclically time-varying autoregression
parameters having the same period and a periodic generating process can be also
referred to periodic random processes in strict sense. The method could be ap-
plied to develop other types of mathematical models such as considered in the
papers [17-18].
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Â.Ì. Çâàðè÷, Ì.Â. Ìèñëîâè÷

Á²ËÈÉ ØÓÌ Â ÄÅßÊÈÕ ÇÀÄÀ×ÀÕ
ÌÎÄÅËÞÂÀÍÍß ²ÍÔÎÐÌÀÖ²ÉÍÈÕ ÑÈÃÍÀË²Â

Çàïðîïîíîâàíî êîíñòðóêòèâíèé ìåòîä çàâäàííÿ ìàòåìàòè÷íèõ ìîäåëåé ³íôîðìàö³éíèõ
ñèãíàë³â íà îñíîâ³ á³ëèõ øóì³â. ßê ïðèêëàä ïîáóäîâè ìàòåìàòè÷íèõ ìîäåëåé ³íôîð-
ìàö³éíèõ ñèãíàë³â ðîçãëÿíóòî ë³í³éí³ âèïàäêîâ³ ïðîöåñè, ë³í³éí³ âèïàäêîâ³ ïðîöåñè ç
ïåð³îäè÷íèìè ñòðóêòóðàìè, ë³í³éí³ ïðîöåñè àâòîðåãðåñ³¿, ë³í³éí³ ïðîöåñè àâòîðåãðåñ³¿ ç
ïåð³îäè÷íèìè ñòðóêòóðàìè.

Ê ë þ ÷ î â ³ ñ ë î â à: á³ëèé øóì, ë³í³éíèé âèïàäêîâèé ïðîöåñ, ë³í³éí³ âèïàäêîâ³ ïðîöåñè ç
ïåð³îäè÷íèìè ñòðóêòóðàìè, ë³í³éí³ ïðîöåñè àâòîðåãðåñ³¿.

Â.Í. Çâàðè÷, Ì.Â. Ìèñëîâè÷

ÁÅËÛÉ ØÓÌ Â ÍÅÊÎÒÎÐÛÕ ÇÀÄÀ×ÀÕ
ÌÎÄÅËÈÐÎÂÀÍÈß ÈÍÔÎÐÌÀÖÈÎÍÍÛÕ ÑÈÃÍÀËÎÂ

Ïðåäëîæåí êîíñòðóêòèâíûé ìåòîä çàäàíèÿ ìàòåìàòè÷åñêèõ ìîäåëåé èíôîðìàöèîííûõ
ñèãíàëîâ íà îñíîâå áåëûõ øóìîâ. Â êà÷åñòâå ïðèìåðà ïîñòðîåíèÿ ìàòåìàòè÷åñêèõ ìî-
äåëåé ðàññìîòðåíû ëèíåéíûå ñëó÷àéíûå ïðîöåññû, ëèíåéíûå ñëó÷àéíûå ïðîöåññû ñ
ïåðèîäè÷åñêèìè ñòðóêòóðàìè, ëèíåéíûå ïðîöåññû àâòîðåãðåñèè, ëèíåéíûå ïðîöåññû
àâòîðåãðåññèè ñ ïåðèîäè÷åñêèìè ñòðóêòóðàìè.

Ê ë þ ÷ å â û å ñ ë î â à: áåëûé øóì, ëèíåéíûé ñëó÷àéíûé ïðîöåññ, ëèíåéíûå ñëó÷àéíûå
ïðîöåññû ñ ïåðèîäè÷åñêèìè ñòðóêòóðàìè, ëèíåéíûå ïðîöåññû àâòîðåãðåñèè.
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