Влияние состава и пористости спеченных титановых наноламинатов-композитов на механические свойства при комнатной температуре

В. Ф. Горбань, А. Н. Демидик, И. И. Иванова, М. В. Карпец, Н. А. Крылова, Э. П. Печковский, А. П. Полушко, С. А. Фирстов

Методом автоматического индентирования ($P \leq 3$ H) изучено влияние совокупного наличия пористости и частиц второй фазы в различных соотношениях на механические свойства новых керамических материалов — пористых двухфазных титановых наноламинатов-композитов Ti_3SiC_2 —TiC, Ti_3AlC_2 —TiC, Ti_4AlN_3 —TiN при комнатной температуре ($\theta = 3$ —35%, содержание TiC (TiN) — 5—70% (об.). Материалы изготовлены методом реакционного спекания. В пористых наноламинатах-композитах при содержании карбида титана TiC (TiN) < 20% (об.) увеличение пористости θ приводит к снижению прочности и повышению пластичности. Заметное повышение прочности пористых композитов отмечается при содержании TiC (TiN) > 25—30% (об.). По увеличению прочностных характеристик и сопротивления деформированию они располагаются в следующей последовательности: Ti_3AlC_2 —TiC, Ti_4AlN_3 —TiN, Ti_3SiC_2 —TiC.

Введение

Поликристаллические наноламинаты представляют собой новый тип машинообрабатываемой керамики [1—7]. В тройных соединениях, отвечающих формуле $M_{n+1}AX_n$, сочетаются лучшие свойства металлов и керамики. Как металлы, они электро- и теплопроводны, легко обрабатываются резанием при комнатной температуре, противостоят распространению трещин, не чувствительны к термическому удару, пластичны при высоких температурах. Как керамика, они имеют низкую плотность, обладают высокими значениями характеристик упругости, стойки к ползучести, имеют высокую жаростойкость и жаропрочность.

Выполненный в работе [8] анализ строения слоистых гексагональных кристаллических решеток тройных титановых соединений Ti_3SiC_2 , Ti_3AlC_2 и Ti_4AlN_3 выявил четыре особенности, которые способны оказывать влияние на механические свойства наноламинатов.

1. Повышенные значения отношения осей c/a: для Ti_3SiC_2 оно составляет 5,76, для $Ti_3AlC_2 - 6,04$, для $Ti_4AlN_3 - 7,82$. Это приводит к тому, что в этих материалах дислокации способны перемещаться только в базисных плоскостях даже при высоких температурах; материалы имеют сильно выраженную анизотропию механических характеристик и их повышенную чувствительность к скорости нагружения.

2. Присутствие дополнительных слоев атомов элемента А приводит к увеличению расстояний между атомами (по сравнению с теми, которые имеют "чистые" элементы или их двойные соединения) как внутри слоя, так и между соседними слоями атомов титана. В результате снижается

Н. А. Крылова, Э. П. Печковский, А. П. Полушко, С. А. Фирстов, 2008

[©] В. Ф. Горбань, А. Н. Демидик, И. И. Иванова, М. В. Карпец,

энергия связи между слоями разнородных атомов по сравнению с таковой между слоями атомов титана.

3. Наличие "металлической" компоненты сил связи между атомами обусловливает возможность образования и перемещения дислокаций в наноламинатах даже при комнатной температуре, то есть контролирует их характеристики пластичности. В наибольшей мере она проявляется в Ti₃AlC₂. Наноламинаты могут также иметь ионный и ковалентный типы сил связи между атомами.

4. Состав соединения. Анализ диаграмм состояния соответствующих двойных и тройных систем [9—11] показал, что состав соединения определяет температуру начала его распада, происходящего по перитектической реакции, которая контролируется температурой плавления элемента А. Например, для Ti_3SiC_2 распад начинается при $T_{\text{распада}} = 2300$ °C. Для материалов Ti_3AlC_2 и Ti_4AlN_3 температуры распада неизвестны, однако, судя по значительной разнице в температуре плавления алюминия (660 °C) и кремния (1400 °C), они должны быть существенно ниже, чем у Ti_3SiC_2 . В связи с этим одинаковая абсолютная температура испытания для трех материалов будет более высокой по отношению к температуре распада для соединений, содержащих алюминий.

На проявление этих особенностей наноламинатов при механическом нагружении особое влияние оказывают два фактора: наличие пористости и присутствие частиц второй фазы. При этом наличие пористости способствует снижению прочности, но повышению пластичности, в то время как присутствие частиц второй фазы — увеличению прочности и снижению пластичности. Регулируя соотношение этих компонентов пористого двухфазного композита, можно получать различные сочетания его механических характеристик как при низких, так и при высоких температурах [3, 6, 7].

Принципиальная возможность реализации этого направления в решении проблемы создания композитов на основе наноламинатов с такими характеристиками обусловлена следующим. Как вытекает из диаграммы состояния тройной системы Ti—Si—C [9] и многочисленных известных экспериментальных данных, получение тройных карбидов титана Ti₃SiC₂ и Ti₃AlC₂ обязательно сопровождается образованием промежуточной фазы — двойного карбида титана TiC, а формирование тройного нитрида титана Ti₄AlN₃ — соответственно двойного нитрида титана TiN.

Так, в работе [12] показано, что реакционное спекание порошковой шихты состава $TiH_2 + TiC^{(1)} + SiC$ при 1300 °C и давлении 50 МПа может проходить таким образом:

$$TiH_2 + SiC \rightarrow Ti_5Si_3 + TiC^{(2)} + H_2 \uparrow,$$
$$TiC^{(1)} + TiC^{(2)} + Ti_5Si_2 \rightarrow Ti_2SiC_2 + TiC^{(1;2)}.$$

Следовательно, получение наноламината Ti_3SiC_2 включает стадию образования карбида титана $TiC^{(2)}$. Его содержание в конечном материале можно контролировать, изменяя количество ингредиентов исходной шихты и регулируя полноту прохождения реакций с помощью режима спекания. В результате представляется возможным изготовление двухфазных наноламинатов-композитов Ti_3SiC_2 —TiC с регулируемым содержанием карбида титана, как исходного шихтового $TiC^{(1)}$, так и

образовавшегося в результате химической реакции TiC⁽²⁾ ("естественного").

Аналогичная ситуация имеет место и при реакционном спекании двух других наноламинатов-композитов — Ti₃AlC₂—TiC и Ti₄AlN₃—TiN.

Принципиальная возможность повышения прочности без существенного снижения пластичности наноламинатов-композитов Ti_3SiC_2 —TiC, Ti_3AlC_2 —TiC, Ti_4AlN_3 —TiN обусловлена, с одной стороны, наличием в них более прочных частиц карбида TiC или нитрида TiN, а с другой — проявлением микропластичности фазы-основы при нагружении даже при комнатной температуре [1, 2]. Кроме того, более прочные фазы TiC и TiN способны остановить или изменить направление движения распространяющихся микротрещин, которые образуются при нагружении.

В работе поставлена задача: изучить влияние совокупного наличия пористости и частиц второй фазы в различных соотношениях на прочностные и пластические характеристики указанных трех наноламинатов-композитов при комнатной температуре.

Методика эксперимента

Пористые двухфазные титановые наноламинаты-композиты Ti_3SiC_2 —TiC, Ti_3AlC_2 —TiC и Ti_4AlN_3 —TiN изготовляли методом реакционного спекания порошковых смесей соответственно TiH_2 + + TiC + SiC; TiH_2 + TiC + Al; TiH_2 + TiN + AlN в вакууме 10^{-2} Па в интервале температур 1250—1400 °C в течение 1—4 ч. Превышение содержания элемента A (Si или Al) в шихте соответствующих соединений в 0,9—1,4 раза по отношению к стехиометрическому составу обеспечило получение пористых материалов с контролируемыми пористостью (в пределах 3—35%) и количеством карбида титана TiC (или нитрида титана TiN) (в пределах 5—80%).

Таким образом, изменяя состав шихты и режим спекания, можно получать материал с наперед заданным соотношением пористости и количества второй фазы в конкретном наноламинате-композите. Фазовый состав материалов контролировали методом рентгеновского фазового анализа, который проводили прямым расчетом интенсивности рефлексов фаз с установлением соотношения интенсивности анализируемых линий. При компьютерном анализе дифрактограмм использовали программу Powder Cell, которая обеспечивает применение метода Ритвильда. На рис. 1 представлены типичные дифрактограммы изученных пористых наноламинатов-композитов.

Диаметр и высота получаемых цилиндрических заготовок составляли 10 мм. Размер зерна композитов находился в пределах 2—15 мкм.

Механические свойства наноламинатов-композитов определяли в процессе автоматического индентирования на установке "Микрон-гамма" [13]: трехгранная алмазная пирамида Берковича; комнатная температура; максимальная нагрузка F не превышала 3 H; осуществлялась автоматическая запись диаграммы индентирования. Точность определения глубины внедрения h индентора составляла ±2,5 нм. Микротвердость H_{IT} рассчитывали в соответствии с Международным Стандартом [14] как отношение максимальной силы нагружения F_{max} (г) к площади проекции отпечатка на глубине h_c (мкм): $H_{IT} = 0,418 F_{max}/h_c^2$ (ГПа).

Рис. 1. Типичные дифрактограммы пористых наноламинатовкомпозитов: Ti₃SiC₂—TiC, Ti₃AlC₂—TiC, Ti₄AlN₃—TiN.

Результаты и их обсуждение

Для установления закономерностей и особенностей механического поведения пористых наноламинатов-композитов Ti_3SiC_2 —TiC, Ti_3AlC_2 —TiC и Ti_4AlN_3 —TiN при комнатной температуре использовали разработанную авторами методологию обработки и анализа результатов автоматического индентирования материалов [15—18]. В ее основе — аналитически полученное, физически обоснованное и экспериментально подтвержденное фундаментальное уравнение индентирования [15, 16]

$$H_{\rm IT}/E^* = K \cdot (h_{\rm s}/h_{\rm c}), \tag{1}$$

где K = 0,687 сtg α — коэффициент формы индентора; H_{IT} — твердость по Мейеру; E^* — так называемый "эффективный" или "контактный" модуль

упругости системы материал—индентор; h_c — контактная глубина внедрения индентора в материале (в этой области отпечатка материал претерпевает упруго-пластическую деформацию); h_s — внеконтактная глубина внедрения индентора — углубление (*sink-in*) в материале вокруг индентора (в этой области отпечатка материал претерпевает только упругую деформацию).

Отношение H_{IT}/E^* названо нормированной твердостью (твердость, нормированная на "контактный" модуль упругости E^*). Эта величина может быть пересчитана в используемую в материаловедении величину H_{IT}/E — твердость, нормированную на нормальный модуль упругости. Величина H_{IT}/E^* является одной из главных характеристик сопротивления материала механическому нагружению.

Отношение h_s/h_c названо коэффициентом внеконтактной упругой деформации материала при индентировании и обозначено как $K_s = h_s/h_c$. Физический смысл этой величины состоит в том, что она характеризует только упругую деформацию материала, то есть без сочетания с пластической деформацией (как это имеет место в контактной области отпечатка). Коэффициент K_s является определяющей величиной в методе автоматического индентирования и используется для вычисления всех характеристик деформации и напряжения материала. В частности, коэффициент K_s применяется для определения таких характеристик механических свойств материала, как относительная упругая деформация $\varepsilon_{es} = K_s \cdot \varepsilon_c = K_s \cdot \ln \sin \alpha$ (α — угол заточки индентора; ε_c — деформация материала в области его контакта с индентором) и соответствующее ей напряжение $\sigma_{es} = E^* \cdot \varepsilon_{es} = E^* \cdot K_s \cdot \varepsilon_c$ [17, 18].

Кроме того, величина *К*_s используется для установления предельно возможных значений механических характеристик [15—18]:

1) $K_s^{\text{пред}} = (h_s/h_c)^{\text{пред}} = 0,5625$ — абсолютная константа индентирования (не зависит ни от материала, ни от условий индентирования);

2) $(H_{\rm IT}/E^*)^{\rm npeg} = 0.386 \cdot {\rm ctg} \alpha;$

3) $H_{\rm IT}^{\rm npeg} = 0,386 \cdot {\rm ctg} \, \alpha \cdot E^*;$

4) $\varepsilon_{es}^{npeq} = 0.5625 \cdot \varepsilon_{c} = 0.5625 \cdot \ln \sin \alpha;$

5) $\sigma_{es}^{nped} = E^* \cdot \varepsilon_{es}^{nped} = 0,5625 \cdot E^* \cdot \ln \sin \alpha$.

В таблице и на рис. 2, 3 представлены зависимости основных характеристик механических свойств изученных наноламинатовкомпозитов от пористости при различном объемном содержании частиц второй фазы TiC (TiN). Определены также предельно возможные значения твердости в конкретных условиях индентирования. Кроме того, построены тарировочная прямая (зависимость нормированной твердости $H_{\rm IT}/E^*$ от величины относительной внеконтактной упругой деформации $\varepsilon_{\rm es}$) и карта структурно-фазовых состояний (зависимость твердости $H_{\rm IT}$ от величины $\varepsilon_{\rm es}$) для этих материалов.

Анализ полученных результатов показывает, что увеличение пористости в композитах приводит к снижению их прочностных характеристик (таблица, рис. 2); снижается также и упругая деформация ε_{es} . Таким образом, уменьшается сопротивление этих материалов механическому воздействию, что характеризуется, как уже указывалось, величиной нормированной твердости H_{TT}/E^* (таблица, рис. 3).

Наличие частиц второй фазы TiC (TiN) в композитах в количестве 20—30% (об.) значительно повышает характеристики прочности пористых

Композит	Номер	θ, %	ТіС (TiN), % (об.)	<i>Н</i> _{IT} , ГПа	<i>Е</i> *, ГПа	$H_{\rm IT}/E^*$	ε _{es} , %	σ _{es} , ΓΠα	<i>H</i> _{IT} ^{пред} , ГПа
Ti ₃ SiC ₂ —TiC	1	4	12	7,54	143	0,052	1,6	2,12	25,8
	2	5	100	24,96	183	0,150	4,6	7,80	33,0
	3	7	72	10,24	108	0,098	3,0	3,20	19,5
	4	14	28	5,12	71	0,072	2,2	1,60	12,8
	5	24	30	2,40	67	0,036	1,1	0,75	12,1
	6	29	6	1,92	48	0,039	1,2	0,60	8,6
	7	30	40	3,84	69	0,055	1,7	1,20	12,4
	8	31	24	1,60	54	0,029	0,9	0,50	9,7
Ti ₃ AlC ₂ —TiC	9	10	54	5,90	89	0,066	2,0	1,81	16,0
	10	13	41	4,90	73	0,067	2,1	1,50	13,2
	11	28	20	1,50	54	0,028	0,9	0,46	9,7
Ti ₄ AlN ₃ —TiN	12	10	47	12,4	128	0,107	3,3	3,56	23,1
	13	21	6	1,24	60	0,021	0,6	0,38	10,8
	14	22	31	2,56	121	0,021	0,6	0,78	21,8
	15	34	2	1,03	23	0,017	0,5	0,32	4,1

Составы и механические свойства композитов

композитов, точнее, "сдерживает" их снижение, обусловленное присутствием пор. При содержании второй фазы 40% (об.) и более отмечается увеличение характеристик прочности и упругой деформации даже при значительной пористости $\theta = 30\%$.

Влияние совокупного наличия пористости и частиц второй фазы на механические свойства изученных наноламинатов-композитов особенно четко проявляется на карте структурно-фазовых состояний — зависимости твердости $H_{\rm IT}$ от величины относительной внеконтактной упругой деформации $\varepsilon_{\rm es}$ (рис. 3, δ). На этой зависимости можно выделить три области значений $\varepsilon_{\rm es}$ композитов, которые отличаются уровнем твердости $H_{\rm IT}$, величиной пористости и количеством содержащейся в них второй фазы: I — $\varepsilon_{\rm es} \leq 1,3\%$, II — $\varepsilon_{\rm es} \approx 1,3$ —3%, III — $\varepsilon_{\rm es} \approx 3$ —5,5%. Различная твердость $H_{\rm IT}$ композитов при одинаковых деформациях $\varepsilon_{\rm es}$ в пределах каждой области вытекает из формулы ее зависимости от характеристик упругости материалов [17, 18]

$$H_{\rm IT} = 3,256 \ E^* \ \epsilon_{\rm es}.$$
 (2)

Из (2) следует, что при одинаковых значениях деформации ε_{es} твердость H_{IT} композита определяется его контактным модулем упругости E^* (таблица, рис. 3, δ). Если это выражение представить в виде

$$\varepsilon_{\rm es} = 0,307 \ (H_{\rm IT}/{\rm E}^*),$$
 (3)

то становится понятным, что при одинаковой твердости различных композитов бо́льшая деформация ε_{es} композита может быть обусловлена уменьшением его контактного модуля упругости E^* .

Контактный модуль упругости E^* конкретного композита зависит, как видно из представленных результатов (таблица, рис. 2), от совокупного влияния пористости (увеличение θ приводит к снижению E^*) и количества частиц второй фазы (его увеличение приводит к повышению E^*). В результате положение каждого композита на карте определяется соотношением количества содержащихся в нем пор и количества (а также состава) частиц второй фазы.

Рис. 2. Зависимости твердости $H_{\rm IT}$, модуля нормальной упругости E, относительной внеконтактной упругой деформации материала $\varepsilon_{\rm es}$ и соответствующего ей напряжения $\sigma_{\rm es}$ от пористости θ наноламинатов-композитов при различном содержании частиц второй фазы TiC (TiN): \circ — Ti₃SiC₂—TiC; Δ — Ti₃AlC₂—TiC; * — Ti₄AlN₃—TiN. Числа у точек — номера композитов в таблице.

Установленные "граничные" значения пористости (при $\theta \ge 20\%$ снижающиеся прочностные характеристики композитов достигают низкого уровня и становятся независимыми от количества второй фазы) и количества второй фазы (при $V \ge 40\%$ (об.) и $\theta \ge 20\%$ прочностные характеристики композитов возрастают, несмотря на высокую пористость) позволили выделить на карте четыре структурно-фазовые области,

в каждой из которых располагаются наноламинаты-композиты с вполне конкретными соотношениями пористости и количества второй фазы,

Рис. 3. Тарировочная зависимость нормированной твердости H/E^* от относительной внеконтактной упругой деформации $\varepsilon_{es}(a)$ и карта структурнофазовых состояний (б) наноламинатов-композитов: I, II, III — области структурно-фазовых состояний. Числа у точек — номера композитов в таблице.

с определенным соотношением составляющих структурно-фазового состояния, пределами относительной внеконтакной упругой деформации ε_{es} и уровнями твердости. Такая карта существенно дополняет диаграмму структурных состояний, построенную на основе тарировочной прямой индентирования (рис. 3, *a*), принцип построения которой установлен ранее [15—18].

Таким образом, карта структурно-фазовых состояний изученных наноламинатов-композитов показывает, что абсолютная твердость H_{IT} конкретного композита обусловлена величинами его относительной внеконтактной упругой деформации ε_{es} и контактного модуля упругости E^* , которые, в свою очередь, определяются их структурно-фазовым состоянием, а именно — соотношением пористости и количества второй фазы.

Анализ соотношения механических свойств трех типов пористых наноламинатов-композитов показал, что по увеличению значений характеристик прочности и упругой деформации они располагаются в следующей последовательности (при одинаковых пористости и содержании второй фазы): Ti_3AlC_2 —TiC, Ti_4AlN_3 —TiN, Ti_3SiC_2 —TiC. Такая закономерность может быть объяснена особенностями строения их кристаллических решеток. Действительно, как показано в работах [1, 2] и проанализировано в работе [8], в кристаллической решетке соединения Ti₃SiC₂ расстояние между слоями атомов кремния и титана меньше (а значит, сила их взаимодействия больше) по сравнению с расстоянием между слоями атомов алюминия и титана в Ti₃AlC₂ и Ti₄AlN₃. Кроме того, энергия силы связи между атомами кремния в пределах слоя в Ti₃SiC₂ значительно более высокая, чем между атомами алюминия в Ti_3AlC_2 и Ti_4AlN_3 .

Выводы

Изучение механического поведения пористых наноламинатовкомпозитов Ti_3SiC_2 —TiC, Ti_3AlC_2 —TiC и Ti_4AlN_3 —TiN методом автоматического индентирования при комнатной температуре показало, что абсолютная твердость H_{IT} конкретного композита определяется тремя взаимозависимыми величинами в виде соотношения $H_{IT} = 3,256E^* \cdot \varepsilon_{es}$. Значения этих величин контролируются структурно-фазовым состоянием композита, а именно, количественным соотношением пор и второй фазы, а также составом второй фазы.

При содержании TiC (TiN) меньше 20% (об.) решающим фактором, определяющим механические свойства композитов, является пористость: ее увеличение приводит к снижению контактного модуля упругости E^* и твердости H_{IT} . При содержании TiC (TiN) > 25% (об.) роль пористости снижается и практически нивелируется при содержании TiC (TiN) \geq 40% (об.). Из всех изученных пористых наноламинатов-композитов наиболее оптимальным с точки зрения соотношения прочностных характеристик, пористости и количества второй фазы является композит Ti₃SiC₂—TiC, имеющий пористость $\theta = 24\%$ и содержащий 30% (об.) TiC.

По увеличению значений характеристик прочности пористые наноламинаты-композиты (имеющие одинаковое количество пор и второй фазы) располагаются в следующей последовательности: Ti_3AlC_2 —TiC, Ti_4AlN_3 —TiN, Ti_3SiC_2 —TiC.

- Barsoum M. W. The M_{N+1}AX_N phases: A new class of solids; Thermodinamically stable nanolaminates // Prog. Solid. Stat. Chem. — 2000. — 28. — P. 201—281.
- Barsoum M. W., El-Raghy T., Radovic M. Ti₃SiC₂: A layered machinable ductile carbide // Interceram. — 2000. — 49, No. 4. — P. 226—233.
- 3. Бродниковский Н. П., Печковский Э. П., Фирстов С. А. и др. Механическое поведение титанокремнистого карбида Ti₃SiC₂ в зависимости от структурного состояния и условий деформирования // Металлофиз. новейшие технологии. 2003. **25**, № 9. С. 1179—1200.
- 4. Zhang H., Wang Z. G., Zang Q. S. et al. Cyclic fatigue crack propagation behavior of Ti₃SiC₂ synthesized by pulse discharge sintering (PDS) technique // Scripta Materialia. 2003. **49**. P. 87—92.
- 5. *Zhou W. B., Mei B. C., Zhu J. Q.* Fabrication of high-purity ternary carbide Ti₃SiC₂ by spark plasma sintering technique // Mater. Lett. 2005. **59**. P. 1547—1551.
- Firstov S. A., Pechkovsky E. P. Structure and mechanical properties of sintered compact and porous nanolaminates (Ti₃SiC₂) in the temperature range 20–1300 °C // 2004 Powder Metallurgy World Congress, Vienna, Austria. 17–21 October 2004. Vol. 4. P. 725–730.
- 7. Горбань В. Ф., Печковский Э. П., Фирстов С. А. и др. Микро- и макроиндентирование титано-кремнистого карбида Ti₃SiC₂ // Порошковая металлургия. 2005. № 3/4. С. 93—105.
- Фирстов С. А., Печковский Э. П., Иванова И. И. и др. Влияние состава и пористости спеченных титановых наноламинатов на механические свойства при высоких температурах // Проблемы прочности. — 2006. — № 6. — С. 79—94.
- Yong Du, Julius C. Schuster, Hans J. Seifert, and Fritz Aldinger Experimental investigation and therodinamic calculation of the titanium-silicon-carbon system // J. Amer. Ceram. Soc. — 2000. — 83, No. 1. — P. 197—203.
- Hayes F. H. Titanium-aluminium-carbon system // Ternary Alloys. 1990. 3. — P. 557—566.

- Барабаш О. М., Коваль Ю. Н. Структура и свойства металлов и сплавов: (Справ.). Кристаллическая структура металлов и сплавов. — К.: Наук. думка, 1986. — 598 с.
- Konoplyuk S., Abe T., Uchimoto T., Takagi T. Synthesis of Ti₃SiC₂—TiC composites from TiH₂—SiC—TiC powders // Mater. Lett. 2005. 59. P. 2342—2346.
- Aznakayev E. Micron-gamma for estimation the physico-mechanical properties of micro-materials // Proc. of the Internat. conf. "Small Talk–2003", San Diego, California, USA, 2003. — TP.001. — P. 8.
- 14. *ISO 14577-1:2002(E)*. Instrumented indentation test for hardness and materials parameters. Part 1: Test method. Date 2002-09-22.
- 15. Фирстов С. А., Горбань В. Ф., Печковский Э. П., Мамека Н. А. Уравнение индентирования // Доп. Національної академії наук України. 2007. № 12. С. 100—106.
- 16. Фирстов С. А., Горбань В. Ф., Печковский Э. П., Мамека Н. А. Связь прочностных характеристик материалов с показателями автоматического индентирования // Материаловедение. М.: Наука и технологии. 2007. № 11. С. 26—31.
- Горбань В. Ф., Мамека Н. А., Печковский Э. П., Фирстов С. А. Идентификация структурного состояния материалов методом автоматического индентирования // Сб. докл. Харьковской нанотехнологической ассамблеи. — Т. І. Наноструктурные материалы. — Харьков, 2007. — С. 52—55.
- Фирстов С. А., Горбань В. Ф., Печковский Э. П. Предельные деформации и напряжения в наноматериалах // Сб. докл. Харьковской нанотехнологической ассамблеи. — Т. II. Наноматериалы — новые фавориты индустрии. — Харьков, 2008. — С. 145—153.