Влияние скоростной циклической термообработки на структуру литого сплава Zr—1Nb

Н. В. Минаков, В. Ю. Пучкова, Г. Е. Хоменко, С. В. Данько

Исследовано влияние режимов скоростной циклической термообработки (СЦТО) на структуру сплава Zr—1Nb украинского производства в литом состоянии. СЦТО выполняли на установке скоростного рентгеноструктурного анализа — приборе реального времени СРСА-ПРЧ, а также в солнечной печи.

Введение

Исследование влияния режимов скоростной циклической термообработки (СЦТО) на свойства сплава Zr—1Nb в деформированном состоянии [1, 2] показало перспективность ее использования для измельчения зерна. Предложен режим СЦТО: нагрев до температуры 951 °C (β-область), охлаждение до 717 °C (α-область), приводящее к измельчению зерна до размеров 8—12 мкм при микротвердости ~231 HV [1].

Структура литого сплава Zr—1Nb крупнозернистая, размер зерен более 5 мм, тело зерен состоит из α-матрицы с β-прослойками, обогащенными ниобием, по границам зерен наблюдается сегрегация кислорода и азота [3]. В таком состоянии сплав непригоден к использованию. С целью улучшения этой структуры необходимо провести термомеханическую обработку сплава. Для выбора оптимальных режимов проводили постадийное исследование фазовых превращений в условиях скоростного циклического нагрева. Для решения поставленной задачи необходимы комплексные исследования особенностей фазового превращения в литом сплаве Zr—1Nb на СРСА-ПРЧ для тонких образцов и СЦТО в солнечной печи для массивных образцов.

Материалы и методика

Для исследования использовали тонкие образцы литого сплава Zr—1Nb толщиной 1 мм (меньше размера зерна) для установки скоростного электронагрева ПРЧ-РСА и массивные цилиндрические Ø13x24мм для солнечной печи СГУ-2.

СЦТО для тонких образцов проводили с постепенным понижением на 20—30 °С максимальной температуры нагрева сплава с каждым последующим нагревом (рис. 1). Таким образом, уменьшалась доля материала, претерпевшего фазовое превращение, и исключалось образование более высокотемпературных структурных составляющих.

Нагрев образца происходил за счет пропускания через него переменного электрического тока, остывание — посредством излучения тепла в пространство камеры установки и теплопередачи в захваты. Для анализа фазовых превращений представление данных в координатах температура T — время τ мало информативно. Удобнее проводить исследования в координатах производная температуры от времени ($dT/d\tau$ — температура) (рис. 2). Это позволяет оценить величину и знак теплового эффекта

© Н. В. Минаков, В. Ю. Пучкова, Г. Е. Хоменко, С. В. Данько, 2009

фазового превращения, то есть определить, происходит превращение с поглощением или с выделением тепла.

Для СЦТО на массивных образцах сплава Zr—1Nb использовали солнечную печь СГУ-2. Солнечные лучи концентрировались на торец образца. Эффективная площадь зеркала печи СГУ-2 составляла 1,5 м². Мощность солнечного излучения зависела от уровня солнечной радиации и находилась в пределах 933—1140 Вт. Температуру образца контролировали с помощью хромель-алюмелевой термопары, расположенной в канале по оси цилиндра, спай располагался на расстоянии 6 мм от торца образца.

Результаты и их обсуждение

Температурный интервал фазового превращения литого сплава Zr—1Nb украинского производства определяли на установке ПРЧ-РСА при нагреве и охлаждении. Анализ дифференциальных термограмм (рис. 2) показывает, что на кривых нагрева (кривые 1, 2) можно выделить два пика тепловыделения: малый — с максимумом при 760—780 °C, соответствующий

Рис. 2. Термограмма нагрева литого сплава Zr—1Nb: температура остановки нагрева (°C): *a* — 989; *b* — 970; *c* — 953; *d* — 938; *e* — 920; *f* — 901; *j* — 880.

распаду и превращению метастабильной β_{Zr}^* -фазы, и второй — с максимумом при 877—855 °C, соответствующий $\alpha_{Zr} \rightarrow \beta_{Zr}$ -превращению. В равновесных условиях температура начала фазового превращения в сплаве Zr—1Nb составляет 850 °C [4].

При первом нагреве максимальная величина теплового эффекта наблюдается при 877 °С, при повторных — при температуре несколько ниже — при 855 °С. Можно предположить, что циклический нагрев приводит к увеличению доли метастабильных фаз, распад которых активирует фазовое превращение в условиях скоростного электронагрева. Кривые второго и последующих скоростных электронагревов совпадают (рис. 2, кривая 2).

В работе [5] показано, что для сплава Zr—2,5Nb при нагреве и охлаждении со скоростью 5 °С/мин фазовое превращение не является обратимым. В температурном интервале 760—600 °С подвижность атома ниобия ограничена и не превышает 1 мкм за время 5 мин (время охлаждения в калориметре от 760 до 600 °С). Это приводит при охлаждении к образованию метастабильной β_{Zr}^* -фазы, обогащенной ниобием (10—15%). Для разложения метастабильной фазы $\beta_{Zr}^* \rightarrow \alpha_{Zr} + \beta_{Nb}$ необходим отжиг длительностью более 100 ч при 600 °С [6]. Данные работ [5, 6] использованы для анализа полученных нами результатов.

Кривые охлаждения *a*, *b* на рис. З характерны для полностью завершенного фазового превращения при нагреве. На термограмме имеется активационный участок с медленным ростом производной температуры во времени и пик массового превращения. Термограммы c - j получены для сплава, в котором $\alpha \rightarrow \beta$ -фазовое превращение при нагреве не завершено. Для них активационный участок отсутствует, $\beta \rightarrow \alpha$ -фазовое превращение начинается сразу без переохлаждения. Это можно объяснить тем, что не требуется расходовать энергию на создание центров превращения, поскольку они сохранились от незавершенного фазового превращения

ты расположены неравномерно и при снижении температуры нагрева превращения не происходит в зонах, обедненных ниобием, что подтверждается исследованиями микроструктуры [1].

Анализ рис. 2, 3 и данных предыдущих исследований [1, 2] показал, что температурный интервал фазового превращения в ходе СЦТО для литого и деформированного сплавов совпадает. Сравнение структур тонких образцов литого сплава Zr—1Nb и сплава в деформированном состоянии после СЦТО на установке ПРЧ-РСА в температурном интервале 950—711 °C (10 циклов) показало, что в литом сплаве не происходит перекристаллизации первичных литых зерен (рис. 4, *a*, *б*). Однако металлографический анализ выявил внутри этих зерен наличие блочной структуры с различной ориентацией эвтектических колоний. При этом размер блоков составляет ~100 мкм (рис. 4, *a*, *б*). Отметим, что, согласно результатам наших предыдущих работ [1, 2], после электронагрева образцов, находящихся в деформированном состоянии, образуется однородная мелкозернистая рекристаллизованная структура, которая состоит из α -фазы с размером зерна 8—12 мкм.

К сожалению, использование методов деформационной обработки для улучшения структуры литого материала не всегда возможно. Поэтому с этой целью опробована возможность применения скоростной термообработки в солнечной печи, где требуемая температура достигается за счет воздействия концентрированной солнечной энергии.

Для исследования влияния СЦТО с использованием концентрированной солнечной энергии на структуру литого металла выбрано пять режимов в интервале температур 1100—610 °С с понижением температуры

Рис. 4. Структура литого сплава Zr—1Nb: *а* — исходный; *б*, *г* — после СЦТО на ПРЧ-РСА (тонкий образец); *в* — после СЦТО в солнечной печи (1 — отверстие под термопару, 2 — исходная структура, 3 — структура после СЦТО).

в каждом последующем режиме на 50 °С. Проведенная СЦТО в солнечной печи в интервале температур 950—750 °С позволила измельчить грубую литую структуру с 5—7 мм до 1—0,5 мм (рис. 4, *в*), что, вероятно, можно объяснить как влиянием фазового наклепа, так и напряжениями, возникающими в результате разницы коэффициентов термического расширения сплава по разным кристаллографическим направлениям.

Выводы

При электронагреве образцов литого сплава Zr—1Nb фазовое превращение завершается при температуре 950 °C, при охлаждении — при 710 °C. В условиях скоростного нагрева максимальное количество тепла выделяется при первом нагреве при 877 °C. Для последующих нагревов температура максимального тепловыделения несколько ниже (855 °C), поскольку во время охлаждения в ходе СЦТО формируется неравновесная структура. Последующее $\alpha \rightarrow \beta$ -превращение проходит при более низкой температуре.

При охлаждении обнаружено существенное изменение вида термограммы в зависимости от максимальной температуры нагрева. При уменьшении температуры нагрева снижается высокотемпературный пик, тогда как низкотемпературный изменяется незначительно. Это может свидетельствовать о том, что легирующие элементы расположены неравномерно и при снижении температуры нагрева превращения не происходит в зонах, обедненных ниобием. Последнее подтверждается исследованиями микроструктуры.

Электронагрев литых образцов не приводит к перекристаллизации первичных литых зерен, однако внутри них наблюдается блочная структура с различной ориентацией эвтектических колоний. Размер блоков составляет ~100 мкм

Показано, что при СЦТО в солнечной печи с использованием концентрированного солнечного излучения в температурном интервале 950—750 °C (5 циклов) происходит измельчение исходной литой структуры с уменьшением размера зерен в 5—10 раз.

- 1. Минаков Н. В., Пучкова В. Ю., Хоменко Г. Е. Влияние циклических скоростных нагревов на структуру и механические свойства Zr—1Nb сплавов // Мех. и термич. обраб. металлов (в печати).
- Мінаков М. В., Пучкова В. Ю., Хоменко Г. Е., Картузов В. В. Дослідження особливостей руйнування Zr—Nb сплавів методами фрактальної геометрії // Электронная микроскопия и прочность материалов. — К.: Ин-т пробл. материаловедения НАН Украины. — 2007. — Вып. 14. — С. 78—82.
- 3. Данько С. В., Минаков Н. В., Пучкова В. Ю. и др. Исследование фазовых превращений и их влияния на структуру сплава Zr—1Nb при скоростных нагревах // Там же. 2008. Вып. 15. С. 58—69.
- Okamoto H. Nb—Zr (Niobium Zirconium) // J. of Phase Equilibria. 1992. 13(5). — P. 577.
- 5. *Toffolon-Masclet, Guilbert T., Brachet J. C.* Study of secondary intermetallic phase precipitation/dissolution in Zr alloys by high temperature–high sensitivity calorimetry // J. Nucl. Mater. 2008. **372.** P. 367—378.
- 6. *Toffolon C., Brachet J. C., Hamon D.* Vieillissement thermique des alliages de zirconium-niobium en phase α (570 °C) // J. Phys. 2001. **11**. P. 1—6.