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Abstract 

The Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 mandated 36 billion gallons of 
renewable fuel use annually by 2022. Within the RFS, the system of Renewable Identification Numbers (RINs) was created 
by the Environmental Protection Agency (EPA) to facilitate compliance with the mandate. Understanding the RIN prices can 
provide key insights regarding the impact of RFS2 on biofuels markets and their resulting impact on energy, agriculture, and 
welfare. Despite the importance of the RIN market, prior research is limited to using partial equilibrium models to predict 
RIN supply, demand, and prices. Utilizing a newly available dataset on actual RIN prices, the author applies a structural 
Vector Auto Regression (VAR) model to examine the dynamics of gasoline, corn, and conventional ethanol RIN prices. The 
author finds that during the sample period (2009:01-2011:03) conventional ethanol RIN prices are mainly driven by gasoline 
price shocks instead of corn price shocks. The author also finds that a positive conventional ethanol RIN price shock leads to 
a statistically significant decline in corn price while its impact on gasoline price is not significant.  
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Introduction © 

The production of biofuels, particularly ethanol, has 
grown significantly in the past decade in the US, dri-
ven by rising crude oil prices, policies aimed at energy 
independence, and environmental concerns. An impor-
tant element of US biofuel policy is the Renewable 
Fuel Standard (RFS). The RFS originated with the 
Energy Policy Act of 2005 (EPAct), but the Energy 
Independence and Security Act (EISA) of 2007 in-
creased the RFS mandate and created sub-mandates 
for four categories of biofuels, resulting in the current 
RFS legislation, hereafter referred to as RFS2. Since 
the origination of the RFS, corn-based ethanol produc-
tion increased from 3.9 billion gallons in 2005 to 13.2 
billion gallons in 2010 in the US (Renewable Fuel 
Association). Meanwhile, the share of corn used for 
ethanol increased from less than 15% for the 2005/06 
marketing year to about 40% for 2010/2011 (USDA 
Economic Research Service). If the RFS2 which man-
dated 36 billion gallons of renewable fuel use annually 
in 2022 is met, ethanol use will comprise about 25% of 
gasoline consumption in the coming years. This will 
have important consequences for agriculture and ener-
gy commodity markets.  

The system for Renewable Identification Numbers 
(RINs) was developed by the US Environmental Pro-
tection Agency (EPA) to ensure compliance with the 
RFS mandates. The RINs are used by obligated parties 
to demonstrate compliance with their pro rata share of 
a particular year’s mandate. The RINs are commonly 
referred to as the currency of compliance. Understand-
ing the RIN market is critical for understanding the 
impact of the RFS mandates on agriculture, energy, 
and welfare.  

                                                      
© Lihong Lu McPhail, 2012. 
The views expressed are those of the author and should not be attributed 
to the Economic Research Service or US Department of Agriculture. 

To date, research on RINs has focused on simulating 
RIN prices, supply, demand, and stocks. Partial equili-
brium simulation models of the US agriculture, bio-
fuel, and RIN markets have been utilized to address 
this issue including Thompson, Meyer and Westhoff 
(2008a, 2008b, 2009a, 2009b, 2010), Babcock (2009a, 
2009b), and Donahue, Meyer, and Thompson (2010). 
While these studies shine considerable light on the 
nature of the RIN market, their results are sensitive to 
the choice of the model used to conduct the study, 
specifically, assumptions about elasticities.  
More generally, a broader stand of research has 
applied time series analysis to investigate the com-
plex relationship between agriculture and energy 
prices. Structural Vector Auto Regression (VAR) 
models have been increasingly employed to investi-
gate issues confronting energy and agricultural mar-
kets. Compared to reduced form VARs, structural 
VAR models enable us to decompose variables into 
economic shocks and provide meaningful interpreta-
tion of the results. Killian (2009) proposed a struc-
tural VAR model of the global crude oil market, and 
decomposed the real price of crude oil into three 
components: crude oil supply shocks, shocks to 
aggregate demand for all industrial commodities, 
and demand shocks specific to oil. To examine evo-
lution of US retail gasoline prices, Killian (2010) 
developed a structural VAR model of the global 
crude oil market and the US retail gasoline market. 
McPhail (2011) extended Killian (2010) to include 
the US ethanol market and found that a policy-
driven ethanol demand expansion causes a decline 
in crude oil and US gasoline prices. 
For this study, we develop a structural VAR model 
of US gasoline, corn, and conventional ethanol RIN 
markets to examine how RIN prices respond to corn 
and gasoline price shocks and whether corn and 
gasoline prices respond to conventional ethanol RIN 
price shocks.  
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We attempt to gain a rigorous empirical understand-
ing of RIN prices by examining the dynamics of 
gasoline, corn, and conventional ethanol RIN prices. 
We utilize newly available daily conventional etha-
nol RIN price data from Hart Energy Ethanol and 
Biofuels News based on national survey of blenders 
and brokers.  

We find that a positive gasoline price shock causes 
conventional ethanol RIN price to decrease, while a 
positive corn price shock lowers conventional etha-
nol RIN price. We also find that during the sample 
period (2009:01-2011:03) conventional ethanol RIN 
price variation is mainly driven by gasoline price 
shocks, while corn price shocks account for very 
little of RIN price variation. Our results also show 
that a positive conventional ethanol RIN price shock 
leads to a statistically significant decline in corn 
price while its impact on gasoline price is not statis-
tically significant.  

The remainder of the paper is organized as follows. 
The next section provides background information 
on the RIN market. Section 2 lays out the concep-
tual framework to understand RIN prices. Section 3 

describes the empirical strategy. Section 4 describes 
the data. Section 5 reports impulse response analy-
sis. Section 6 reports variance decomposition analy-
sis. The last section concludes. 

1. Background 

The RFS2 of the EISA (2007) created sub-mandates 
for four types of biofuels: biomass-based diesel 
(hereafter referred to as biodiesel), cellulosic biofu-
els, advanced biofuels, and total renewable fuel. The 
four mandates are defined by eligible feedstock 
types, production process, and lifecycle greenhouse 
gas emission reduction targets. The four mandates 
also have a hierarchy. For example, the total RFS for 
2011 is 13.95 billion gallons, of which 12.6 billion 
gallons are the unrestricted portion of the mandate 
(indicated by implicit non-advanced biofuels, maxi-
mum, in Figure 1) which conventional ethanol is 
qualified to meet, and the rest has to come from ad-
vanced biofuels. For the advanced biofuels RFS, 
EISA specifies the required volumes for biodiesel 
and cellulosic biofuels, while the rest can be met by 
other advanced biofuels that satisfy the feedstock and 
greenhouse gas reduction requirement.  

 
Source: EISA (2007). 
Note: Biodiesel RFS was specified through 2012. Subsequent years “shall not be less than the applicable volume for calendar year 2012.”  

Fig. 1. Renewable fuel standard by type 

On November 30th of each year, the EPA calculates 
annual percentage standard by dividing the volume of 
renewable fuel required by the EISA for the follow-
ing year by the volume of gasoline and diesel pro-
jected to be consumed in that year according to the 
Energy Information Administration (EIA). In 2011, 
the percentage standard for cellulosic biofuel is 
0.003%, the percentage standard for biodiesel for 
2011 is 0.69%, the percentage standard for advanced 
biofuel is 0.78%, and the percentage standard for 
renewable fuel is 8.01%1. Due to four percentage 

                                                      
1 http://www.epa.gov/otaq/fuels/renewablefuels/420f10056.htm. 

standards, obligated parties have four renewable vo-
lume obligations (RVOs). Each RVO is calculated by 
each percentage standard times the annual volume of 
gasoline and diesel is produced or imported.  

The obligated parties are any party that produces or 
imports gasoline and diesel in the 48 states, which 
also includes blenders that produce gasoline from 
non-renewable blendstocks2. Every year obligated 
parties are required to meet their RVO through the 

                                                      
2 However, there are exceptions for producers and importers who pro-
duce or import less than 10,000 gallons per year. 
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accumulation of RINs. A RIN is a 38-character nu-
meric code that is generated by the producer or im-
porter of renewable fuel representing gallons of 
renewable fuel produced or imported and assigned 
to batches of renewable fuel. These RINs must be 
transferred with renewable fuel as ownership of a 
volume of renewable fuel is transferred through the 
distribution system. Once the renewable fuel is ob-

tained by an obligated party or actually blended into 
a motor vehicle fuel, the RIN can be separated from 
the volume of renewable fuel and then either used 
for compliance, held for future compliance, or 
traded. Figure 2 shows the movements of biofuels 
and RINs. The system for RINs was developed by 
the EPA to ensure compliance with the RFS man-
dates. 

 
Fig. 2. Movements of biofuels and RINs 

If an obligated party has not acquired sufficient RINs 
to meet its RVOs, then under certain conditions it can 
carry a deficit into the next year so long as the full 
deficit and obligation is covered in the next year. If an 
obligated party acquires more RINs than it needs to 
meet its RVOs, then it can transfer the excess RINs to 
another party or retain the excess RINs for compliance 
with its RVOs in the following year subject to the 20% 
rollover cap. The rollover cap says that no more than 
20 percent of a current year obligation can be satisfied 
using RINs from previous year. These options reduce 
their cost of meeting their own RVOs. There are also 
non-obligated parties who, when registered with the 
EPA, are also allowed to trade RINs. RINs are valid 
for compliance purposes for the calendar year in which 
they are generated, or the following calendar year 
(within the rollover limit defined above), so a RIN 
expires if unused after two years. 

The RINs are the basic units for compliance for the 
RFS program, so it is important that parties have 
confidence when generating and using them. The 
EPA has developed a new system called the EPA 
Moderated Transaction System (EMTS) to manage 
RIN transactions1. EMTS provides a mechanism for 
screening RINs and a structured environment for 
conducting RIN transactions2. Parties must first 
register with EPA. Once registration occurs, parties 
will have to create an account via EPA’s Central 
Data Exchange (CDX). Once individual accounts 
are established within EMTS, parties will be able to 
submit transactions. For example, a renewable fuel 
producer can electronically submit a volume of re-

                                                      
1 Under RFS1, parties made various errors in generating and using RINs. 
2 Starting July 1, 2010, renewable fuel producers and importers, gaso-
line and diesel refiners, renewable fuel exporters, RIN owners, and any 
other RFS2 regulated party must use EMTS. 

newable fuel produced or imported, as well as a 
number of the RINs generated and assigned. EMTS 
will automatically screen each batch and either re-
ject the information or allow RINs created in the 
RIN generator’s account. After RINs have entered 
the system, parties may then trade them. The seller 
posts a sale of a number of RINs at certain price. 
Then buyer logs into EMTS and accepts transaction 
assuming it is correct. Upon acceptance, buyer’s 
RIN account is automatically increased by the num-
ber of RINs sold at X price. RIN transactions are 
required to be verified and certified on a quarterly 
basis. The RIN price is one of the new information 
required to be submitted under RFS23. 

As we discussed above, there are at least four types of 
RINs needed to be generated to meet four RVOs. 
However, in this paper, we focus on conventional 
ethanol RINs because of the following. First, the sam-
ple on daily biodiesel RIN prices is very short, which 
limits the validity of our analysis. Second, currently 
there is no cellulosic biofuel RINs generated4. For the 
2010 compliance period, the EPA reduced the required 
volume of cellulosic biofuels from 100 million gallons 
specified by EISA to 5 million gallons. To compensate 
for low cellulosic volume, the EPA made cellulosic 
biofuel waiver credits available to obligated parties for 
end-of-year compliance at a price of $1.56 per gallon-
RIN5. For the 2011 compliance period, the EPA re-
duced the required volume of cellulosic biofuels from 
250 million gallons specified by EISA to 6.6 million 
gallons. The EPA also made cellulosic biofuel waiver 

                                                      
3 Page 14733 of Federal Register, Vol. 75, No. 58, Friday, March 26, 
2010 / Rules and Regulations. 
4 http://www.epa.gov/otaq/fuels/renewablefuels/compliancehelp/rfsdata.htm. 
5 “Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel 
Standard Program; Final Rule”, Federal Register, Vol. 75, No. 58, 
Friday, March 26, 2010 / Rules and Regulations. 
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credits available to obligated parties for end-of-year 
compliance at a price of $1.13 per credit1. These waiv-
er credits are not allowed to be traded or banked for 
future use, and are only allowed to be used to meet 
cellulosic biofuel standard for the year that they are 
offered. Moreover, unlike cellulosic biofuel RINs, 
waiver credits may not be used to meet either the ad-
vanced biofuel standard or the total renewable fuel 
standard. For more details on the RINs, please refer to 
McPhail et al. (2012). 

2. The conceptual framework 

Theoretically, if we assume away rolling over or 
carrying a deficit, the core value of RIN is the gap 
between the supply price (Ps) and the demand price 
(Pd) for biofuel at mandated level of RFS (Figure 
3). The supply price is the price needed to allow 
biofuel producers to cover the cost of producing the 
mandated quantity indicated by RFS in Figure 3, and 
the demand price is the price fuel consumers are will-
ing to pay for fuel substitutes. The core value is posi-
tive when the mandate is binding (when the RFS 
mandated level is higher than the quantity Q* the 
market would produce and demand), indicated by 
Figure 3, and zero under non-binding mandate (when 
the mandated level is lower than or equal to the quan-
tity Q* market will produce and demand). It is impor-
tant to note that the supply price (the price producers 
receive) is equal to the demand price (the price con-
sumers willing to pay) plus the core value of the RIN. 

 
Fig. 3. Biofuels market with a binding mandate 

One of the key factors affecting the price of RINs is 
the price of feedstocks. The price of a feedstock ac-
counts for a large percentage of the biofuel production 
cost. A surge in feedstock prices will increase the pro-
duction cost of biofuels and decrease the supply of 
biofuels. Thus the supply for RINs decreases, and the 
prices for RINs increase. This case is indicated by 
upward shift of the supply curve in Figure 4. The op-
posite is true when feedstock prices decrease. The 
yield of a feedstock is one of the primary factors af-
fecting the price of the feedstock in the short run. For 
example, when corn yield is higher than expected, 

                                                      
1 “Regulation of Fuels and Fuel Additives: 2011 Renewable Fuel Stan-
dards; Final Rule”, Federal Register, Vol. 75, No. 236, Thursday, Decem-
ber 9, 2010 / Rules and Regulations. 

prices of corn and production cost of conventional 
ethanol decrease. Thus the supply of both conventional 
ethanol and associated RINs increases and the prices 
of conventional ethanol RINs decrease. The opposite 
is true when corn yields are lower than expected. 

The price of gasoline will certainly play a significant 
role in shaping RIN prices, except in the case that a 
mandate is completely not binding, the changing gaso-
line price will not change the prices of associated RINs 
and the RIN prices will stay near the transaction costs. 
In most cases, higher gasoline prices lead to a higher 
willingness to pay for the substitute ethanol (a higher 
demand price), thus lowering the price for RINs, that 
is, the gap between the supply price and the demand 
price. This case is indicated by upward shift of the 
demand curve in Figure 4. Lower gasoline prices lead 
to lower willingness to pay for the substitute ethanol, 
thus increasing the prices for RINs. 

Government policies supporting consumption of 
ethanol also affect RIN prices. The current Volume-
tric Ethanol Excise Tax Credit (VEETC), 45 cents 
per gallon tax credits to ethanol blenders, increases 
blenders’ willingness to pay for ethanol, thus lowers 
the price for RINs. This case is also indicated by 
upward shift of the demand curve in Figure 4. The 
VEETC is set to expire on December 31, 2011. Con-
ventional ethanol RIN prices are expected to rise if 
this tax credit is not renewed.  

 
Fig. 4. RIN price change under a binding mandate 

It is possible that intermediaries buy biofuels along 
with RINs from producers and sell RINs to obligated 
parties. The RIN prices obligated parties pay might be 
different from the prices producers receive. The differ-
ence can be contributed to transaction cost and/or spe-
culative component. Speculators who register with the 
EPA are allowed to buy and sell RINs. If they antic-
ipate a shortage of RINs next year, they can buy RINs 
this year and hold and sell them next year. This will 
potentially reduce the number of RINs available for 
this year’s compliance and increase RIN prices. 
3. Empirical strategy 

Recent literature suggests that large scale ethanol pro-
duction has lead to greater integration between corn 
and gasoline markets (Du and McPhail, 2012). There-
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fore, we use a simultaneous-equation system to ex-
amine the dynamics of gasoline, corn, and convention-
al ethanol RIN prices. Based on the conceptual frame-
work discussed above, we develop a three-variable 
structural VAR of these three markets1. The three daily 
variables are defined as a vector xt = pgt, pct, print, 
where pgt is the price of gasoline, pct is the price of 
corn, print is the price of conventional ethanol RIN2. 
Our SVAR model provides estimates of the impacts 
that corn and gasoline market shocks have on the 
markets of conventional ethanol RINs.  

The structural VAR representation is: 

0
1

,
p

t i t i t
i

A x A xα ε−
=

= + +∑      (1) 

where p is the lag order, and tε  denotes the vector 
of serially and mutually uncorrelated structural in-
novations. The reduced-form VAR representation is: 

1 1
0 0

1

.
p

t i t i t
i

x A A A x eα− −
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=

= + +∑      (2) 

If 1
0A−  is known, the dynamic structure represented 

by structural VAR could be calculated from the re-
duced-form VAR coefficients, and the structural 
shocks tε  can be derived from estimated residuals 

0 .t tA eε =  Coefficients in 1
0A−  are unknown, so 

identification of structural parameters is achieved by 
imposing theoretical restrictions to reduce the number 
of unknown structural parameters to be less than or 
equal to the number of estimated parameters in the 
VAR residual variance-covariance matrix. Specifical-
ly, the covariance matrix for the residuals, eΣ , is: 

1 1 1 1
0 0 0 0( ) ( ) ,e t t t tE e e A E A A Aεε ε

′ ′ ′ ′− − − −Σ = = = Σ     (3) 

where E is the unconditional expectation operator, and 
εΣ  is the covariance matrix for the shocks. As there 

are 6 unique elements in ,eΣ  we impose the following 
recursive structure on 1

0A−  such that the reduced-form  
 

errors te  can be decomposed according to 1
0t te A ε−= : 
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       (4) 

The recursive structure of the structural VAR model is 
achieved by assuming that not all variables of interest 
will respond to shocks contemporaneously. All of 
these assumptions can be read from the previous equa-
tion 1

0t te A ε−= . For example, we assume that it takes, 
at least, one day for gasoline prices to respond shocks 
in corn and conventional ethanol RIN markets. Simi-
larly, we assume that it takes at least one day for corn 
prices to respond shocks in conventional ethanol RIN 
market. Beyond these restrictions on the contempora-
neous feedback at daily frequency, the model allows 
all feedback among all variables. 

4. Data 

Figure 5 shows the daily prices of current year con-
ventional ethanol RINs, corn, and gasoline. The sam-
ple period is from 2009:01 to 2011:03. Corn prices 
are the daily settlement prices of the nearest to matur-
ity contracts traded in the Chicago Mercantile Ex-
change (CME), and gasoline prices are the daily set-
tlement prices of the nearest to maturity contracts 
traded in the New York Mercantile Exchange (NY-
MEX) for RBOB gasoline. Daily current year con-
ventional ethanol RIN prices are collected from Hart 
Energy Ethanol and Biofuels News based on national 
survey of blenders and brokers. The advantage of 
using level is that the estimates remain consistent 
whether the prices are integrated or not. Furthermore, 
standard inference on impulse responses, in levels, 
will remain asymptotically valid. Inference also is 
asymptotically valid to the possible presence of coin-
tegration among these prices (see, e.g., Sims, Stock 
and Watson, 1990; Lütkepohl and Reimers, 1992). 
However, estimates would be inconsistent if cointe-
gration and/or unit root are falsely imposed.  

 
Fig. 5. Daily gasoline, corn, and current year ethanol RIN prices 1 2 

                                                      
1 Because VEETC was in place throughout the sample period, we do not include it in our model. 
2 EPA permits previous RINs to be rolled over for next year’s compliance, so extra RINs from last year could be counted toward meeting current year 
RFS subject to a 20% cap on the amount of an obligated party’s current year RVO that could be met using previous RINs. RIN prices for previous year 
and current year are available during current year. 
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Block Exogeneity Wald test, a multivariate gene-
ralization of the Granger causality test, was per-
formed to detect whether to incorporate an addi-
tional variable into a VAR. In our case, the test is 
whether lags of one price Granger cause any other 

price in the system. Our results reported in Table 
1 show that lags of every price Granger cause the 
other price in the system, except that lags of con-
ventional ethanol price do not Granger cause the 
gasoline price.  

Table 1. Block Exogeneity Wald test results 
Dependent variable: Gasoline prices 
Excluded Chi-sq Prob. 
Corn prices 8.417 0.004 
Ethanol RIN prices 0.000 0.985 
All 8.478 0.014 
Dependent variable: Corn prices 
Excluded Chi-sq Prob. 
Gasoline prices 3.190 0.074 
Ethanol RIN prices 6.401 0.011 
All 6.444 0.040 
Dependent variable: Ethanol RIN prices 
Excluded Chi-sq Prob. 
Gasoline prices 13.785 0.000 
Corn prices 6.156 0.013 
All 14.204 0.001 

 

We utilized sequential modified Log Likelihood Ratio 
test (LR), Akaike Information Criterion (AIC), and 
Schwartz Information Criterion (SIC) to choose num-
ber of lags to include in a SVAR model. Estimation of 
the model with alternative lags yielded robust and 
qualitatively similar results. For reporting the results, a 
1 day lag specification is selected. The model is esti-
mated by the method of least squares, because all the 
regression equations have the same right-hand-side 
variables, thus negating the need for a Seemingly Un-
related Regression (SUR) approach. 

5. Impulse response analysis 

To examine distinct dynamic responses of convention-
al ethanol RIN prices to corn and gasoline price 
shocks, we use impulse response analysis. Figure 6 
 

presents the responses of conventional ethanol RIN 
prices to corn and gasoline price shocks from impact 
to day 30. As expected, a positive gasoline price shock 
causes conventional ethanol RIN price to decrease, and 
the negative responses are statistically significant from 
day 3 to 30. When gasoline price increases, the wil-
lingness to pay for ethanol as a gasoline substitute 
increases. As we discussed before, the price of conven-
tional ethanol RIN is the gap between the supply price 
and the demand price, the conventional RIN price 
drops when the demand price for ethanol increases. A 
positive corn price shock causes conventional ethanol 
RIN price to increase, and these positive responses are 
statistically significant from day 5 to 20. Increased 
corn price led to higher production cost of ethanol, 
thus increasing conventional ethanol RIN prices. 

 
Notes: Solid line represents the mean impact. Dotted lines represent two standard deviation impacts from the mean. Standard errors 
for the impulse responses are calculated using the Monte Carlo approach of Runkle (1987). 

Fig. 6. Conventional ethanol RIN price responses to positive gasoline and corn price shocks 
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Figure 7 presents the responses of gasoline and corn 
prices to a positive conventional ethanol RIN price 
shock from impact to day 30. The response of gasoline 
prices to a positive RIN price shock is not statistically 
significant over the horizon. However, a positive con-
ventional ethanol RIN price shock causes corn price to 

drop. Our conceptual framework suggests that the 
ethanol price (the supply price) is equal to the demand 
price plus the RIN value. Thus high RIN price leads to 
high ethanol price, which leads to lower demand for 
ethanol, which leads to lower demand for corn from 
ethanol, which leads to lower corn price. 

 
Notes: Solid line represents the mean impact. Dotted lines represent two standard deviation impacts from the mean. Standard errors 
for the impulse responses are calculated using the Monte Carlo approach of Runkle (1987). 

Fig. 7. Gasoline and corn price responses to a positive conventional ethanol RIN price shock 

6. Variance decomposition analysis 
We are interested in how important is each shock in 
explaining the fluctuation of these prices. These ques-
tions can be addressed by computing forecast error 
variance decomposition based on the estimated struc-
tural VAR model. Variance decomposition analysis 
allocates each variable’s forecast error variance to the 
individual shocks. These statistics measure the quan-
titative effect that each shock has on the variables. 
Table 2 reports the percentage of the variance of the 
error made in forecasting conventional ethanol RIN 
prices due to a specific shock at a specific time hori-
zon. These estimates show the relative importance of 
each shock in explaining the fluctuation of conven- 
 

tional ethanol RIN prices. It is shown that in 30 days 
gasoline price shocks account for 17.68% of conven-
tional ethanol RIN price variation while corn price 
shocks account for less than 3%. In 60 days the impor-
tance of gasoline price shocks in explaining conven-
tional ethanol RIN price variation increases to about 
42% while the importance of corn price shocks stays 
the same. In 90 days more than 54% of conventional 
ethanol RIN price variation can be attributed to gaso-
line price shocks. These results show that during the 
sample period conventional ethanol RIN price varia-
tion is mainly driven by gasoline price shocks, while 
the corn price shocks account for very little of RIN 
price variation. 

Table 2. Percent contribution of each shock to the variability of conventional ethanol RIN price 
Days Gasoline price shock Corn price shock Ethanol RIN price shock 

1 0.04 0.15*** 99.81*** 
30 17.68** 2.47 79.85*** 
60 41.67*** 2.27 56.06*** 
90 54.73*** 2.11 43.16*** 

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels. Standard errors for the variance decompositions are 
calculated using the Monte Carlo approach of Runkle (1987). 

Table 3 shows the percentage of the variance of the 
error made in forecasting gasoline prices due to a spe-
cific shock at a specific time horizon. It is shown that 
conventional ethanol RIN price shocks’ importance in 
explaining gasoline price variation is not statistically 
significant. However, in 90 days, corn price shocks 
explain about more than 28% of gasoline price varia- 
 

tion. This result is consistent with the recent literature 
on the strengthening relationship between corn and 
gasoline markets due to large scale biofuel production 
(Du and McPhail, 2011). The increased use of corn as 
an ethanol feedstock has exposed corn market to gaso-
line price shocks based on ethanol’ role as a gasoline 
substitute.  
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Table 3. Percent contribution of each shock to the variability of gasoline price 
Days Gasoline price shock Corn price shock Ethanol RIN price shock 

1 100*** 0 0 
30 94.47** 5.41* 0.12 
60 80.64*** 17.86** 1.5 
90 66.3*** 28.86** 4.84 

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels. Standard errors for the variance decompositions are 
calculated using the Monte Carlo approach of Runkle (1987). 

Table 4 shows the percentage of the variance of the 
error made in forecasting corn prices due to a spe-
cific shock at a specific time horizon. It is shown 
that in 90 days, conventional ethanol RIN price 
shocks explain about 20% of corn price variation. 

This suggests that the evolution of corn prices now 
also depends on conventional ethanol RIN market. 
This provides empirical evidence that biofuel man-
dates contribute to agricultural commodity market 
volatility.  

Table 4. Percent contribution of each shock to the variability of corn price 
Days Gasoline price shock Corn price shock Ethanol RIN price shock 

1 7.78*** 92.22*** 0 
30 2.53 92.99*** 4.48 
60 1.63 85.68*** 12.69 
90 2.49 77.66 19.85* 

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels. Standard errors for the variance decompositions are 
calculated using the Monte Carlo approach of Runkle (1987). 

Conclusions 

We apply a structural VAR model to examine the 
impact of gasoline and corn price shocks on conven-
tional ethanol RIN market, as well as the responses of 
gasoline and corn prices to a positive conventional 
ethanol RIN price shock. One key finding is that a 
positive gasoline price shock leads to a statistically 
significant decline in conventional ethanol RIN price, 
while a positive corn price shock leads to a statistically 
significant increase in conventional ethanol RIN price. 
We also find that a positive conventional ethanol RIN 
price shock leads to a statistically significant decline in 
corn price while its impact on gasoline price is not 
statistically significant.  
Understanding RIN prices is critical to understand-
ing the impact of RFS on commodity markets. De-
bate on whether biofuel policies contribute to rising  
 

commodity prices might be better informed by a 
good understanding of how RFS works through RIN 
system. Our finding that conventional ethanol RIN 
price shocks play an important role in explaining 
corn price variation provides empirical evidence that 
biofuel mandates contribute to agricultural com-
modity market volatility.  

Understanding RIN prices is also critical to under-
standing the welfare impact of biofuel policy. The 
total core cost of meeting the RFS is equal to the 
mandated quantity times the per-unit cost of meet-
ing the RFS. The price of RIN best measures the 
per-unit cost of meeting the RFS. Therefore a high 
RIN price indicates high cost of meeting the RFS. 
Our results also provide empirical evidence that the 
cost of meeting the RFS increases when corn prices 
increase or gasoline prices decrease. 
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