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Abstract 

Land fragmentation generates a host of environmental impacts, including habitat degradation, biodiversity loss and a 
reduction in natural lands that filter nutrient and sediment run-off. The design of effective land use policies to reduce land 
fragmentation relies on an understanding of the economic decision-making of landowners, land developers and other 
actors and the factors that influence the spatial pattern of development. The authors investigate the effects of a market-
based versus a regulatory policy instrument on land fragmentation using data from a rapidly urbanizing area of the U.S. The 
paper first estimates a discrete-time duration model of residential subdivision development and then uses Monte Carlo simu-
lations that account for model uncertainty to generate spatially explicit predictions of land development outcomes under 
these two types of policies. The authors find that zoning regulations that constrain the supply of developable land generate 
much larger impacts on the predicted pattern of land fragmentation and that developers’ demand for land is extremely 
inelastic. The paper concludes that, because of this highly inelastic demand for land, a zoning policy that restricts the 
density of development is a more effective policy for reducing land fragmentation than are market-based incentives. Howev-
er, the results also imply that zoning controls that restrict the supply of developable land are likely to impose large welfare 
losses to developers. 
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Introduction  

Human uses of land produce large social benefits in 
the form of food, fiber, shelter and other essential 
goods and services, but also generate a range of envi-
ronmental impacts, including carbon emissions, soil 
and water degradation, alterations of habitat and hy-
drologic cycles and loss of biodiversity (Kalnay and 
Cai, 2003; Postel, Daily, and Ehrlich, 1996; Sala et 
al., 2000; Tilman, Fargione, and Wolff, 2001). The 
increasing rate of environmental impacts raises se-
rious concerns regarding the sustainability of current 
land use practices. Reducing environmental impacts 
to achieve more sustainable land use outcomes relies 
on policies that can effectively manage land use 
processes at local, regional and global scales. How-
ever, because land use decisions are most often made 
locally by individuals or small groups of people, de-
signing effective policies requires an understanding 
of the behavior of these local actors and the environ-
mental, social, economic and institutional factors that 
influence their decisions. 

Land change modeling is an important tool for ana-
lyzing the effects of policy on land use outcomes 
and for predicting the changes in land use patterns 
under baseline and alternative future scenarios 
(Turner, Lambin, and Reenberg, 2007). Generating 
landscape predictions relies on an understanding of 
human behavior to predict responses to policy 
changes and, in market-based economies, some 
representation of land markets to account for price 
effects. A range of models defined at varying spatial 
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scales and geographic extents exist in the literature. 
At the most aggregate scale, sector-based models 
represent global input and output markets that are 
distinguished by large homogeneous regions. At the 
most disaggregate scale, spatial models of individu-
al land use decisions are estimated using spatially 
contiguous microdata on land parcels with a geo-
graphic extent of a single county1. Spatially explicit 
models can account for a variety of local processes 
and their influence on land use outcomes, including 
land use externalities (Irwin and Bockstael, 2004, 
2002), zoning and infrastructure (Butsic, Lewis and 
Ludwig, 2011; McConnell, Walls and Kopits, 2006; 
Newburn and Berck, 2006), open-space conserva-
tion policies (Lewis, Provencher and Butsic, 2009; 
Towe, Nickerson and Bockstael, 2008) and regula-
tory costs (Wrenn, 2012). The estimated parameters 
from these spatially explicit models can then be 
used with GIS to simulate policy effects and gener-
ate spatial landscape predictions that quantify how a 
policy change is predicted to influence the spatial 
pattern of land use (Lewis, 2010; Carrion-Flores and 
Irwin, 2004). This approach has been used to predict 
baseline and alternative landscapes for a variety of 
policy scenarios, most notably the influence of vo-
luntary economic incentives for landowners on land 
conservation (Lewis et al., 2011; Lewis, Provencher, 
and Butsic, 2009; Nelson et al., 2008; Newburn and 
Berck, 2006). These and other studies evaluate in-

                                                      
1 More detailed reviews of sector-based models are available from Hertel, 
Rose, and Tol (2009). For more discussion of spatially disaggregate models 
see Brady and Irwin (2011); Irwin (2010) and the chapters by Irwin and 
Wrenn, Klaiber and Kuminoff, and Plantinga and Lewis in The Handbook of 
Land Economics (Duke and Wu, 2013). 
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dependently the effects and efficiency of various 
economic-based policies, e.g., in which landowners 
are compensated for conservation, or of quantity-
based instruments that constrain land use, e.g., zon-
ing, but do not compare the relative effectiveness of 
price-based versus quantity-based instruments. 
We investigate the predicted effects of a market-
based versus a regulatory policy instrument on land 
fragmentation by using spatial simulation methods 
and results from an econometric model of land de-
velopment estimated with data on residential land 
development in a rapidly urbanizing county in the 
Baltimore, Maryland region. We investigate these 
policy effects by first estimating a discrete-time 
duration model of a land developer’s decision to 
develop a land parcel as a residential subdivision. 
Subdivisions, in which a single land parcel is subdi-
vided into two or more lots that are typically then 
used for single-family homes, are the most common 
form of residential land development in the U.S. We 
use parcel-level data on residential subdivision de-
velopment over a 13-year time period from 1995 to 
2007 from a fast-growing area in the Baltimore, 
Maryland region, which is located in the eastern 
U.S. Our dataset includes information on the loca-
tion and price of land parcels and their physical 
characteristics. We also have information on spa-
tially heterogeneous zoning regulations which re-
strict development and constrain a parcel’s allowa-
ble density of development. The richness of the 
data enables us to identify the effect of expected 
land price and zoning on individual development 
decisions while controlling for other parcel-level 
variables, including soil type, slope and other va-
riables that influence costs of development as well 
as key economic variables, including price drift 
and volatility, local competition and the opportuni-
ty cost of development. The estimates from the 
land development model are then used to conduct a 
series of policy simulations in which the pattern of 
land development is predicted under two types of 
policies: a land development fee, which increases 
the developer’s cost, and a change in the allowable 
density of development, which alters the amount of 
development that is possible for any given parcel. 
The policy scenarios are designed with the goal of 
reducing the environmental impacts of land devel-
opment by reducing the amount of development in 
the more rural areas of our study region, which in 
turn reduces land fragmentation by preserving 
larger areas of undeveloped land uses. We evaluate 
the predicted policy impacts by comparing the 
number of subdivisions that are predicted to occur 
in the higher density, more developed areas (sub-
urban) versus more rural, less developed areas 
(exurban) of our study region. 

Results show that, as expected, land costs have a 
negative effect on the timing of development and 
therefore, reduce the likelihood of development. We 
find that the maximum allowable number of lots that 
can be developed on a parcel, as determined by zon-
ing regulations, has a positive effect on development 
timing and increases the likelihood of development. 
This effect is relatively constant across the different 
zoning classes, which range from the lowest allowa-
ble development density of one lot per 15 acres 
(agricultural zoning) to the highest allowable densi-
ty of four lots per acre (R)10 zoning). The policy 
simulations reveal a highly inelastic demand for 
land by developers. We find that a development fee 
imposed on exurban land parcels that is equivalent 
to 20% of the land price only reduces the predicted 
amount of development in the exurban zone by 2%, 
which corresponds to an input demand elasticity for 
land of 0.1%. On the other hand, a zoning policy 
that decreases the maximum allowable density to 
one house per 20 acres, a decrease of about 33% 
compared to current exurban zoning, is found to 
decrease the amount of exurban development by 
60%. We conclude that a zoning policy that restricts 
the density of development is a much more effective 
policy for reducing land fragmentation than is a 
price-based policy, but that this kind of quantity 
restriction also imposes potentially large welfare 
losses to developers. 

These results provide an initial evaluation for the land 
development case of the two most common policies 
considered in environmental economics: price-based 
policies, in which the net returns are altered by a tax 
or subsidy that seeks to internalize an externality, 
versus quantity-based policies that constrain the 
amount of an externality-producing good. While we 
do not provide a formal welfare analysis of these 
policies, we predict their likely impacts on the spatial 
pattern of land development, which is a necessary 
first step towards assessing their relative efficiency. 
By accounting for the parcel-level variables that in-
fluence a developer’s costs and returns from devel-
opment and assuming profit-maximizing behavior, 
we are able to predict how a change in policy changes 
the likelihood that a parcel is developed. We do so in 
a spatially explicit way by using spatial simulation 
methods to predict the likely pattern of land devel-
opment under the baseline and alternative policy 
scenario cases. Because environmental impacts are 
spatially heterogeneous, accounting for the change in 
the spatial pattern of land development is important 
for evaluating the welfare impacts of policies. 

The remainder of the paper is structured as follows. 
Section 1 presents our random effects logit specifi-
cation. Section 2 presents the data used in the model 



Environmental Economics, Volume 3, Issue 4, 2012 

 84

and the construction of our policy variables. Sec-
tion 3 presents the discussion of the results and the 
policy simulations, and the final section concludes. 

1. Model of residential subdivision development 

Residential land development is a three-stage 
process in our study region. In the first stage, de-
velopers submit preliminary subdivision plans; in 
the second stage, they gain conditional approval 
from the planning board; and in the last stage, they 
obtain final approval to begin the development 
process. While the process officially has three 
stages, the first stage consists of only a preliminary 
hearing with no official approval given for the 
development1. As a result, in this paper we model 
the decision-making process of the developer be-
ginning at the start of the second stage, where de-
velopers must commit funds and thus make predic-
tions about future uncertainties during the devel-
opment period. 

Beginning with the second-stage conditional ap-
proval decision, we cast the developer’s decision 
problem as one of choosing the optimal time, t*, to 
file her application for development in order to max-
imize profits on her parcel. This optimal stopping 
decision is represented by the following profit max-
imization problem: 

0

,ax

, , ,

m
t

it

t
r

it

r
it it

A x e d

R x t C x t e                               (1) 

where r is the discount rate, A is the discounted 
value of agriculture rents on the parcel, R is the 
present discounted revenue generated from con-
verting the parcel to a residential development and 
C is the present discounted cost of converting the 
parcel. Each of these inputs is impacted by numer-
ous factors ranging from parcel-level characteris-
tics such a slope, forest cover, zoning restrictions 
and the intertemporal price per acre of land to local 
and regional effects such as the distance to the city 
center or to primary roads. Conditional on these 
factors and their subsequent impact on the model 
inputs, developer chooses to convert her parcel 
when the developed value of the parcel in period t 
is greater than or equal to the value of development 
in time t + 1 plus the discounted one-period agri-
cultural returns on the parcel2. 

                                                      
1 During the first stage county planners determine if the landowner has 
permission to develop the parcel and whether it is located in a develop-
able area. It is during the second stage that the official development plan 
is submitted and developers face uncertainty in gaining final approval. 
2 This theoretical specification is taken from the optimal timing model 
in Capozza and Helsley (1989). 
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where it = (rR(•) – rC(•)– A(•)). Equation (2) is a 
per-period binary choice model that takes on a 
value of one at the optimal development time for 
each parcel and zero otherwise. The vector of co-
variates, xit, represent, once again, those factors 
most likely to impact the decision process, and  
represents the factors not observed by the re-
searcher that impact the decision to develop such 
as land ownership issues, entrepreneurial skill and 
past development experience. 

1.1. Empirical specification. To model the inter-
temporal development process, we follow Beck, 
Katz and Tucker (1998) and specify a binary time-
series-cross-section model for discrete time or 
grouped-duration (event history) data. Duration data 
accounts for the elapsed time until an “event” occurs 
or is no longer observed. Such a specification mod-
els the entire process for each observation and cap-
tures the cumulative impact of the process and the 
variables on the decision-making process of the 
individual. Thus, an observation is at risk until it 
fails or an event occurs, and the model captures the 
hazard rate or probability of failure in any particular 
time period. The innovation of the Beck, Katz and 
Tucker (1998) paper is that for discrete-time or 
grouped-duration data, a continuous-time duration 
model can be approximated by specifying the binary 
stopping choice in each discrete-time interval by as 
an unbalanced binary panel data model, where the 
baseline hazard function is modeled by specifying 
time dummies for each period that an observation 
survives or is undeveloped. The coefficient values 
on the different time dummies provide for an expli-
cit test of the temporal variation in the baseline ha-
zard. The model also allows for the easy inclusion of 
time-varying covariates, which is particulary impor-
tant in our case as a number of our variables such as 
the price per acre land, regulatory costs and local 
competition vary between parcels and over time. 

The most common parametric specification for du-
ration data is the continuous-time proportional ha-
zard model: 

0|  ,itx
ith t x h t e                                         (3) 

where the dependent variable is time, t, and xit are 
independent variables at continuously measured 
time steps that impact the speed with which a par-
ticular event occurs. The hazard rate in the model 
depends on both the independent variables and the 
length of time that the observation has been at risk, 
h0(t)3. Depending on the type of model estimated, 

                                                      
3 See Kalbfleisch and Prentice (1980) for a detailed survey of dura-
tion/survival data models and their empirical specifications. 
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the baseline hazard can take any number of different 
types of time dependence. Continuous-time duration 
models model the instantaneous probability of fail-
ure for each observation. In the case of grouped or 
discrete-time duration data, observations are only 
observed at discrete intervals. As a result, more than 
one event is observed in each period of time, and the 
model is simply the probability of a particular event 
occurring during a given time interval given that it 
has not occurred up to that point. 

By letting ity  be a latent indicator variable of an event 
occurring to observation i in period t, the discrete-time 
hazard is simply 1 | ,it itP y x  which can be mod-
eled using any binary panel data model. In this paper, 
however, we follow Beck, Katz and Tucker (1998) and 
model the intertemporal choice process for each parcel 
using a binary logit model1. Thus, the discrete-time 
duration model corresponding to equation (3) is given 
by the following probability model: 
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where xit represents the value of the explanatory 
variables in interval t, and pt – t0 is a dummy varia-
ble indicating the time period in which the observa-
tion is being observed. The maximum likelihood 
specification of this model is as follows: 
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where yit is the binary decision in period t by devel-
oper i, and the Pit is the inverse logit link. 

1.2. Unobserved heterogeneity. Despite the rich-
ness of our data and the covariates generated from 
it, there are still likely a significant number of unob-
servable factors that impact the decision to convert a 
parcel to a residential development. In the land use 
modeling context, these factors can be either parcel-
level factors such as unobserved soil quality, slope 
or aesthetics on the parcel or individual-level factors 
such as the entrepreneurial skill or the debt level of 
the developer or ownership disputes between family 
members that jointly own a parcel. As a result of 
these factors, it is necessary to extend our previous 
empirical specification to make it robust to these 
influential unobservables or “random effects” factors. 

In this paper, we incorporate unobserved hetero-
geneity by combining the discrete-time modeling 
approached described above with the “frailty” speci-

                                                      
1 The most efficient link function for the binary choice model is the double-
log logit model, but the authors show that for cases where the probabilities 
are small, the logit and the double-log models are virtually identical. Given 
that our data renders very small probabilities and the ease with which it can 
be interpreted, we choose to estimate a logit panel data model. 

fication for handling unobserved heterogeneity in 
continuous-time duration models described in 
Kalbfleisch and Prentice (1980). This combination 
produces the following “random effects” logit mod-
el for discrete-time duration data: 
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where the vi are a series of time-invariant random 
error terms distributed i.i.d. standard normal, N(0, 

2), which capture the parcel and individual-
specific unobservables. Combining the standard 
pooled logit model with the individual heterogenei-
ty terms produces the following variance compo-
nents model:  
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where vi is the same as before and it  are distributed 

logistically with mean zero and variance 
2

3
. Com-

bining the two variance components produces the 
correlation coefficient, : 
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which is a panel-level variance component that de-
scribes the portion of the total variance accounted 
for by time-invariant unobservables. The results for 
this and the other variables in the model are given in 
section 2. The entire model is estimated using Sta-
ta’s random effects logit model, and the simulations 
in the results section are carried out using the free 
statistical software package R. 

2. Description of data and covariates 

2.1. Study region. Our study region is Carroll 
County, Maryland, an exurban county within the 
Baltimore metropolitan region that witnessed rapid 
population growth from the 1960’s onward2. In re-
sponse to burgeoning growth pressures, the county 
passed its first comprehensive zoning plan in 1963, 
which restricted development density to one house 
per acre in all areas of the county without public 
sewer facilities. Increased growth in the 1970’s led 
to the passage of a second comprehensive plan in 
1978, which included a massive down zoning of 
70% of the land in the county to low-density agri-
cultural zoning. This zoning class has a stated densi-
ty of one house per 20 acres, but its actual effective 
density is closer to one house per 15 acres due to 
some leeway that was built into the law. Specifical-
ly, each parcel located in an agriculture zoning area 
and having at least six acres of land is allowed to 
create two buildable lots; each additional lot re-

                                                      
2 A map of the county and our study region is shown in Appendix. 
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quires an addition 20 acres. Apart from several 
small adjustments made in 1989, these same restric-
tions have been in place in the county since 19781.  

The 1963 comprehensive plan also provided the first 
formal procedure for the creation of large major and 
small minor residential subdivisions that is still in 
place today. Large subdivisions consist of any devel-
opment with four or more buildable lots at the time of 
development and require the installation of streets, 
storm water management facilities and other infra-
structure. Small developments are two or three lots 
and are not subject to any infrastructure requirements. 
In addition, while approval of large subdivisions 
requires a formal public hearing, small subdivisions 
can simply be approved by the chairmen of the plan-
ning board without a formal hearing. According to 
county planning officials, in most cases small devel-
opments can gain approval in less than two or three 
months; large developments, however, require an 
open public hearing as well as the approval of nu-
merous county agencies, which can significantly 
increase the time until approval. While the combina-
tion of the exurban zoning policy and the creation of 
the formal subdivision policy was intended to control 
exurban and rural development and reduce the frag-
mentation the rural landscape, we find that over 60% 
of all subdivisions created from 1995 through 2007 
were platted in exurban areas and of these, 82% were 
small minor developments (Wrenn, 2012). 

2.2. Data construction and description. We con-
structed several micro panel datasets of residential 
subdivision at the parcel level to estimate the econo-
metric model2. First, we constructed a panel of histor-
ical residential subdivision development, which we 
assembled by combining a current GIS parcel boun-
dary file with the tax assessor’s database and histori-
cal records of subdivision plats from the Maryland 
Archives. By matching the individual parcels in the 
parcel boundary shapefile with the plat maps, we 
determined all of the parcels in each development, 
assigned each development a unique ID number and 
a date when the subdivision first gained approval. 
Second, we constructed data on the historical evolu-
tion of land preservation and protected open space in 
the county. In 1980 Carroll County began its own 
purchase of development rights (PDR) program in an 
effort to protect farmland. Using state and county 
funding sources, the county has preserved over 

                                                      
1 Given the amount of land in the county that falls within the agriculture 
zoning class and the drastic difference in density between this class and the 
other four zoning classes in the county, the estimation and analysis in the 
remainder of this paper will differentiate between these two areas by classi-
fying all agricultural areas as low-density exurban development areas and the 
other four classes as higher-density suburban development areas. 
2 A full description of the data construction process for this paper is de-
scribed in (Wrenn, 2012) and is reproduced in the Appendix. 

54,000 acres of land in four different programs since 
1980. We created the data for the history of these 
programs by matching data received from the county 
officials with the parcel boundary file using names 
and tax ID numbers. Finally, we reconstructed the 
history of the subdivision approval process for each 
of the subdivisions in our dataset by collecting the 
official minutes from the planning commission’s 
monthly meetings. Using these data, we matched 
subdivision names with the information from the 
commission’s database to provide dates for the 
stages of the development process for each of the 
developments. 

The final dataset consists of all undeveloped parcels 
that, as of 1995, were eligible to be subdivided into at 
least two buildable lots according to the zoning regu-
lations for the parcel. We use all parcels located in 
one of five zoning classes in the county: agriculture, 
conservation, and residential (specifically, R40, R20, 
or R10). This yields a total of 3,844 parcels of which 
a total 397 (or a little over 10% of the parcels in the 
county) gained final approval between 1995 and 
2007. Another 343 were preserved during this period. 
We consider these parcels as undeveloped until the 
quarter they are preserved at which time they drop 
out of dataset. We assume that once a parcel reaches 
its full development potential it leaves our dataset. 
Thus, some parcels that are in the dataset at the be-
ginning are not there in the final periods. 

2.3. Covariates used in the empirical model. Table 1 
defines all of the variables used in the estimation of 
our econometric land use model and gives their sum-
mary statistics. The first set of variables control for the 
location of the parcel and its accessibility relative to 
Baltimore city. DisttoBalt is the travel time, in mi-
nutes, from the edge of each parcel to the city limits of 
Baltimore city. This variable accounts for the broad 
impact of distance versus the city center on the likelih-
ood of development. If the predictions of the urban 
monocentric model hold, then we would expect this 
variable to have a negative sign. The second accessi-
bility variable, DisttoPrimeroads, is the distance, in 
meters, from the edge of each parcel to the closest 
primary or limited-access highway. This variable ac-
counts for more localized accessibility effects, and it 
may be negative or positive depending on the tradeoffs 
between the benefits of accessibility and negative im-
pacts of congestion and noise. 

The second set of variables account for the impact of 
development costs on the timing decision. Most ma-
cro-level structural models have accounted for variable 
costs using a metro-level real building or development 
cost index. This, however, is not possible in our con-
text as we are estimating the model in a single metro 
region. Moreover, because of the richness of our data-
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set, we are able to capture a much more spatially ex-
plicit measure of local parcel costs and proxy for the 
most important factors that would impact this index in 
our region1. These costs are similar to building mate-
rials in the case of building construction. As with capi-
tal inputs to building construction, the market for labor 
and capital inputs for land excavation and conversion 
is competitive and the costs associated with develop-
ment on any parcel, while they vary spatially, should 
be directly proportional to the characteristics of the 
parcel and not be uncertain from the point of view of 
the developer. The soils variables (Soil1 and Soil2) are 
the percentage of each type of soil on the parcel with 
Soil1 being the best soil. Their are three main types of 
soils, so both of these are relative to the excluded cate-
gory or worst type, Soil3. SteepSlp is the percentage of 
the parcel that is over 15% slope and FrstPrcnt in the 
percentage of the parcel covered in forest. We expect 
better soils to speed up development and Slope and 
Forest to reduce it if they raise costs. The final varia-
ble, FloodPlne, is an indicator variable for whether a 
parcel is located in a 100-year flood plane2. All of 
these variables are constant across time. 

The third set of variables captures the potential impacts 
of land use regulations on the development timing 
decision. The first variable, ZonedLots, accounts for 
the zoned maximum allowable density of development 
on each parcel. It is constructed by combining the 
acreage and zoning on each parcel to produce the max-
imum number of buildable lots for each parcel. Given 
that more buildable lots equal more revenue from the 
sale of the lots, we expect that this variable will have a 
positive impact on development. We use this variable 
in the policy simulations described in section 3.1 to 
simulate a policy change in the allowable density of 
development. The next four variables are indicators 
controlling for different types of zoning on the parcel. 
Carroll County has five major zoning classes in the 
county suitable for residential subdivision develop-
ment. The first and the lowest density is the agricultur-
al zoning region, which was described above. This is 
the excluded category in our land use model. The other 
four, CnsvZone, R40Zone, R20Zone and R10Zone, are 
higher density and designated as one house per three 
acres, one house per acre, two house per acre and four 
houses per acre, respectively. We include these va-
riables to test whether different types of zoning have 
any additional effect on development outcomes 
beyond the difference in allowable density that is cap-
tured by the ZonedLots variable. The next variable, 
EaseElig, is time-varying indicator variable for wheth-

                                                      
1 This method of accounting for variable costs is similar to other land use 
models (Towe, Nickerson, and Bockstael, 2008; Newburn and Berck, 
2006; Irwin and Bockstael, 2002). 
2 Given that some parcel straddle the flood zones, we give each parcel a 
value of one if the total area of the parcel within the flood zone is over 50%. 

er a parcel is eligible for enrollment in a land preserva-
tion program in each time period. To be eligible for 
preservation, a parcel must be greater than 50 acres 
and have more than 50% of type 1 and 2 soils com-
bined or be between 25 and 50 acres and border a pre-
viously preserved parcel. Thus, easement eligibly is 
based off of the size of the parcel, the percentage of 
certain soil types and the proximity of the parcel to 
other parcels that have preserved in the past. Because 
of this final clause, some parcels that are not eligible in 
one period may become eligible in latter periods as 
larger parcels around them preserve. Given the possi-
bility of an alternative use (i.e., land preservation) that 
competes with the option to develop the parcel, we 
expect that this variable will have a negative influence 
on the likelihood of development. The last variable 
common Approval common captures the so-called 
implicit costs that arise from regulatory uncertainty 
which, in this case, are due to the uncertain amount of 
time that a developer must wait for approval of the 
subdivision plan by the local planning agency. As 
Wrenn (2012) shows, these implicit costs have a sig-
nificant effect on development outcomes by reducing 
the likelihood and intensity of development and alter-
ing the spatial pattern. We follow Wrenn (2012) in the 
construction of this variable by using data on the 
length of time that it took each subdivision that we 
observe in our data to be approved. We use these data 
to model developer expectations over their own ap-
proval time by estimating a duration model for each 
year of our data, in which approval timing is modeled 
as a function of parcel characteristics using the obser-
vations on all previous development up until that year. 
We then use the parameter estimates to create an ex-
pected approval time for each undeveloped parcel that 
is eligible for development in each period3. 

The last section accounts for land market variables that 
are hypothesized to influence the development timing 
decision. The variable, Compete, is a proxy for the 
stock of existing developed lots in a local area around 
each parcel. We do not explicitly account for popula-
tion growth in this model but, given the richness of the 
our subdivision and approval data, we can determine, 
in each time period, the number of buildable lots that 
have been approved based off of the dates from the 
plat maps. So, for each parcel in our data set, we calcu-
late the number of approved buildable lots in a 10% 
region around each parcel in the previous two years. 
This variable proxies for both local competition and 
the local stock or existing supply of buildable lots for 
each parcel, in each time period. The last variable, 
PricePerAcre, is the predicted land price per acre in 
each period. We use this variable in the policy simula-

                                                      
3 For more details on the construction of this variable and for a full exami-
nation of how this type of uncertain regulatory cost influences develop-
ment outcomes in this study region, see Wrenn (2012). 
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tions to capture the effect of a development fee that 
increases the costs of land development. The construc-
tion of this variable is described in the next section. 

2.4. Proxy for land prices. The price of developa-
ble land is difficult to estimate due to data con-
straints. Ideally, the price of developable land would 
come from the repeated sale of undeveloped land 
parcels in a market between developers and lan-
downers. However, our actual sample of raw land 
parcel transactions is quite small, even over a long 
 

period of time, making it difficult to use these transac-
tions in any sort of predictive manner in an econome-
tric analysis. So, in order to produce our estimate of 
the price per acre of developable land in each time 
period and on each parcel in our dataset, we use histor-
ical data on house prices and property characteristics 
collected from the state tax assessor’s office to control 
for the added-value characteristics of the house and 
parcel and use the remaining coefficients for location 
and size to predict a yearly price per acre for each 
parcel in our dataset. 

Table 1. Covariates used in land use model 
Variables Description Mean Std. dev. Min. Max.

Accessibility
DisttoBalt Travel time (min.) 41.02 8.05 23.18 65.51
DisttoPrimeroads Dist. (meters) 1180.22 1130.36 5.25 9980.27
Development costs 
Soil1 Type 1 soils (%) 40.04 43.21 0.00 100.00
Soil2 Type 2 soils (%) 52.67 43.19 0.00 100.00
SteepSlp Greater than 15% 17.27 29.21 0.00 100.00
FrstPrcnt Forest cover (%) 33.50 32.21 0.00 100.00
FloodPlne In a flood zone 0.25 0.43 0.00 1.00
Land use regulation 
ZonedLots Zoned density 32.63 41.02 0 653
CnsvZone Conservation zoning 0.18 0.38 0 1
R40Zone R40 zoning 0.09 0.28 0 1
R20Zone R20 zoning 0.08 0.27 0 1
R10Zone R10 zoning 0.14 0.35 0 1
EaseElig Easement eligibility 0.24 0.42 0.00 1.00
Approval Subdivision approval time 10.64 5.15 1.98 95.39
Land market 
Compete Local competition 13.95 21.19 1.00 135.00
PricePerAcre Price per acre 1874.69 3130.04 28.82 37127.33

 

To create the data used in our house-price estima-
tions, we matched housing transactions from the 
Maryland Property View (MDPV) Dataset from 
1993 through the last quarter of 2007 with several 
other datasets containing the characteristics of the 
structure and the parcel. We kept only observations 
with price values within three standard deviations 
of the mean. We also threw out any houses with a 
square footage under 800 or over 10000 to remove 
outliers. The final dataset contained 34,311 arms-
length transactions for the period 1993 through 
2007. The descriptive statistics for the covariates 
used in each of the price index models are shown 
in Table 2. 

To generate the coefficients necessary for our land-
price predictions, we estimate the following hedonic 
model: 

log ,i j z q i iP X                   (9) 

where j is an indicator for the census tract in which 
the transaction occurred, z is an indicator for the zon-

ing classification of the house and q is an indicator 
for the quarter of the transaction. This model is run 
for each of the 13 time periods of our model using 
the house-price transactions from the previous two 
years to estimate each model. For example, in 
1995, we use the sales data from 1993 and 1994. 
The main reason we only use the two previous 
years is because we only have transactions data 
from 1993 onward and, as a result, we only have 
two years of data before the starting period of our 
model. However, given the linear nature of our 
price model and the large sample that is created 
using just two years of data, this technique is unlike-
ly to cause any issues1. 

                                                      
1 We experimented with using three time periods for the hedonic esti-
mation and running the main model from 1996-2007, but the results 
were the same. Thus, in order to increase efficiency in our main 
model, which is nonlinear, over the added the efficiency in the linear 
hedonic model, we chose to use two years of price data for the hedon-
ic models and estimate the main model from 1995 forward. 
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Table 2. Summary statistics: hedonic price models 
Variables Mean Std. dev. Min. Max.

Log real price (2000 dollars) 12.20 0.43 10.94 13.82
Travel time to Baltimore City (Kilometers) 36.81 6.73 22.72 64.49
Distance to primary road (Meter) 812.80 776.07 3.45 5000.00
Area 3.65 2.30 0.00 9.99
Square footage 1799.21 736.66 800.00 9600.00
Age of structure 18.67 24.77 1.00 150.00
New structure 0.22 0.41 0.00 1.00
Structure quality 3.54 0.76 1.00 8.00
Garage 0.61 0.0 0.00 1.00
Air conditioning 0.84 0.37 0.00 1.00
Brick 0.01 0.09 0.00 1.00
Number of full bathrooms 1.86 0.68 1.00 6.00
Townhouse 0.15 0.35 0.00 1.00
Inside of minor subdivision 0.02 0.15 0.00 1.00
Inside of major subdivision 0.79 0.41 0.00 1.00
Quarter 2 0.29 0.45 0.00 1.00
Quarter 3 0.26 0.44 0.00 1.00
Quarter 4 0.24 0.43 0.00 1.00
Conversation zoning 0.10 0.30 0.00 1.00
R40 zoning 0.11 0.32 0.00 1.00
R20 zoning 0.24 0.43 0.00 1.00
R10 zoning 0.38 0.50 0.00 1.00

Notes: N = 34,311. Each model has a full set of census tract indicators. All continuous variables are estimated in logarithmic form. 
 

To produce our land-price predictions, we extract the 
coefficients for distance to Baltimore, distance to a 
primary road, the acreage of the housing lot, the indi-
cators for zoning and the indicators for the census 
tract of the house from each of the 13 hedonic mod-
els. Then, using these coefficient values and the same 
variables for the developable parcels from our main 
model, we create a predicted land price for each par-
cel in our dataset for each of our 13 time periods. 
Finally, we divide this value by the total acreage on 
the parcel to generate a predicted price per acre for 
raw, developable land. By being able to control for 
all of the added value characteristics of the house and 
parcel, we are then able to use the remaining coeffi-
cients to produce a location and time value for the 
raw land on each parcel based on of its zoning, cen-
sus-tract, size and relative-location characteristics. 

One potential concern about our proposed method is 
whether the predictions it produces for land prices 
adhere to expectations in terms of value. Given the 
volume of data produced during this process, it is 
not possible present the results from each model in 
this paper. So, in order to give an indication that our 
predictions fit expectations, we present the means 
and standard deviations from each parcel divided 
out by zoning classes and years (Tables 3 and 4). 
Both of these tables show the efficacy of our predic-
tion method. For zoning, we observe that as the den-
sity on the parcel increase, so does the price per acre, 
what we will expect if density translates into more 

buildable lots and potential revenue. Next, we see 
that the prices per acre follow the expected temporal 
trend as well. They were higher in 1995 than in 2000, 
when the US was in a recession, and then they recov-
ered and grew during the housing boom in 2007. 
Both of these results provide evidence that our pre-
dictions for land prices are consistent with expecta-
tions and provide an efficient measure for use in our 
development timing model. 

Table 3. Price per acre by zoning class 
Zoning Mean Std. dev.

Agriculture zoning 501.43 480.00
Conversation zoning 660.62 454.43
R40 zoning 1635.60 1311.24
R20 zoning 3448.00 2519.64
R10 zoning 6832.83 4311.24

Note: Prices are in 2000 dollars. 

Table 4. Price per acre by year 
Year Mean Std. dev.
1995 1664.30 2653.14
2000 1563.64 2442.80
2007 3685.50 5468.91

Note: Prices are in 2000 dollars. 

3. Results and discussion 

The estimation results of the random effects logit 
model of land development are displayed in Table 4. 
We find that distance to Baltimore, the closest large 
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urban center, has a negative and significant effect on 
the rate or likelihood of development. This is con-
sistent with our expectations based on the urban 
economic model that predicts declining competition 
and returns for land development as transportation 
costs to the city increase. On the other hand, we find 
that distance to a major highway or road is positive, 
suggesting that there are negative externalities asso-
ciated with being located near a major road that 
outweigh the benefits of greater accessibility. We 
find that the development cost variables all have the 
expected signs although some are not significant. 
Better soils increase the likelihood of development 
while steeper slopes and a greater proportion of 
forested area decrease development due to the high-
er costs of grading and preparing the land. Being 
located in a 100-year flood plane zone also decreas-
es the likelihood of development. 

We find some interesting results with respect to the 
impact of land use regulations on the timing of de-
velopment. First, we find that the effect of the zon-
ing density constraint, ZonedLots, is positive and 
significant, indicating that an increase in the allowa-
ble number of lots on a parcel increases its likelih-
ood of development. In comparing development 
outcomes across the different zoning classes, neither 
of the more restrictive zoning types, CnsvZone and 
R40Zone, are found to have a significantly different 
effect from the omitted class, which is the most 
restrictive zoning. On the other hand, the two high-
er-density zoning classes, R20 and R10, are found to 
have a negative and significant effect on develop-
ment timing. This results indicate the presence of 
other factors associated with developing parcels that 
are located in these zoned areas, which are the sub-
urban areas of our study region, that slow develop-
ment outcomes. This could be due to, for example, 
congestion effects or other negative externalities 
associated with new development in these areas. 
The option of land preservation, represented by the 
indicator variable EaseElig, is negative but not sig-
nificant. The negative sign conforms with our ex-
pectations that having an additional land use alterna-
tive competes with the alternative to develop the 
parcel and therefore decreases the likelihood of de-
veloping these parcels (Towe, Nickerson and Bock-
stael, 2008). Finally, we find that an increase in 
approval time decreases the likelihood of develop-
ment. This too is consistent with our expectations 
that an increase in approval time, which increases 
regulatory uncertainty and costs for the developer, 
will dampen the rate of development. This is also 
consistent with the findings of Wrenn (2012). 

Finally, the two land market variables are also consis-
tent with our expectations. Greater competition from a 

larger local stock of existing residential land decreases 
the likelihood that a parcel is developed (Compete). 
Likewise, higher land prices that increase the cost of 
land as an input into residential development are found 
to reduce the likelihood of development. Both results 
are consistent with basic economic theory and support 
our assumption of the profit-maximizing behavior of 
land developers. 

While these estimated coefficients provide an indica-
tion of whether land use regulations and economic 
variables that are specific to individual land parcel 
will increase or decrease the likelihood of a parcel’s 
development, they do not provide a full evaluation 
of the potential impacts of a land use regulation or 
economic policy on land development. Doing so re-
quires a means of predicting the impact of a policy 
change on the changes in the quantity and pattern of 
development. We use spatial simulation methods to 
do so. The next section describes our method and 
reports the results of these policy simulations. 

3.1. Policy simulations. We use the estimation results 
and a series of Monte Carlo simulations to analyze 
various policy scenarios in which we alter either the 
price per acre of land or the zoning density on parcels 
located in exurban and/or suburban areas and compare 
the effectiveness of each policy change in controlling 
leapfrog development patterns. Both of these policy 
levers – a change in the zoning density on a particular 
parcel or a development fee or tax on certain parcels – 
are policy tools that are available to regulators and that 
have been used in the past to control development 
(Brueckner, 2009). We investigate the potential impli-
cations of each of these policies by comparing pre-
dicted development outcomes under a baseline scena-
rio, which is produced by running our simulations on 
the original data, versus a series of alternative policy 
scenarios in which we alter zoning density or price of a 
developable parcel1. 

To examine the efficiency of our model in matching 
in-sample development outcomes, we apply a similar 
simulation technique to Lewis, Provencher and Butsic 
(2009) and Wrenn (2012). We begin with the entire 
sample of developable parcels at the beginning of our 
study period. Then, we use the estimated parameters 
and the covariance matrix from our random effects 
logit model and a set random draws from a standard 
normal distribution to produce a random draw from 
our estimated parameter distribution in a method simi-
lar to Krinnsky and Robb (1986). Each simulated pa-
rameter is a combination of the original parameter, a 
Cholesky decomposition of the covariance matrix and 

                                                      
1 Throughout this section, we take parcel to mean the original raw land 
parcel and lots to mean the number of buildable, subdivided lots created 
after development occurs. 
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a standard normal draw, Theta hat =  + Cdr, where  
is the entire parameter vector from our model, C is 
the Cholesky decomposition of the variance-
covariance matrix and dr is a random draw from a 
standard normal distribution. 

Table 4. Random effects logit model 
 

Timing decision
Coeff. Std. err.

Accessibility
DisttoBalt -0.033" 0.014
DisttoPrimeroads 0.171" 0.043
Development costs 
Soil1 0.006 0.004
Soil2 0.004 0.004
SteepSlp -0.001 0.002
FrstPrcnt -0.011" 0.003
FloodPlne -0.266* 0.161
Land use regulation 
ZonedLots 0.007" 0.003
CnsvZone -0.074 0.229
R40Zone -0.166 0.269
R20Zone -0.762* 0.393
R10Zone -0.665* 0.398
EaseElig -0.242 0.151
Approval -0.094** 0.031
Land market 
Compete -0.005* 0.003
PricePerAcre -0.083* 0.050
Constant -3.002** 0.731
Log likelihood -2173.501 
a 1.248** 0.551
p 0.321** 0.046

Note: *p < 0.10, **p < 0.05. The standard errors for the panel 
data values were produced using the Delta method. A full set 
of time fixed effects was included in the model. The PricePe-
rAcre and Surprimerd coefficients are multiplied by 1000. 

For each random draw of the parameters, the pre-
dicted probability of development is calculated for 
each parcel in the first period using the coefficients 
from our logit model. Then, a random uniform 
draw, U ~ [0,1], equal to the number of parcels in 
the dataset in the first period is taken. The random 
development probabilities on each parcel are com-
pared to the random uniform draws and those par-
cels whose predicted probabilities are greater than 
or equal to this draw considered as developed. Once 
a parcel develops it is removed from the dataset and 
the process is repeated for each of our 13 time pe-
riods with the updated dataset used in each subse-
quent period. The time fixed effects from discrete-
time duration the model account for changes in un-
observed macro-level changes and the estimate of 
the panel-level random effect accounts for time-
invariant individual heterogeneity. This simulation 
process is repeated 200 times for each exercise, and 
the predicted number of subdivision developments 

created both in total and divided out between exur-
ban and suburban areas are averaged across all the 
simulations to produce our simulation results. 

Using this method to simulate the policy impacts, 
we compare several different policy scenarios with 
a baseline scenario of no policy change. The hypo-
thetical policy scenarios are designed with the goal 
of reducing the environmental impacts of land de-
velopment by reducing the amount of land frag-
mentation in the more rural areas of our study re-
gion. We therefore choose policy scenarios that 
promote new development in higher-density subur-
ban areas and discourage the amount of new devel-
opment in lesser-developed exurban areas. First, 
we examine the predicted development outcomes 
for several different zoning changes that alter the 
allowable density of development. The first two 
policy alternatives correspond to a reduction in the 
allowable number of lots that can be developed in 
the exurban zone. To implement these scenarios, 
we reduce the value of ZonedLots for all parcels 
located in the exurban areas from the equivalent of 
one house per 15 acres to one house per 20 acres 
(scenario 1) and one house per 40 acres (scenario 2). 
We also consider a policy scenario in which the 
maximum allowable density in the exurban zone is 
reduced to one house per 20 acres and increased to 
one house per acre in the conservation zones and 
two houses per acre in the R40 zones (scenario 3). 
Next we consider several different fee-based poli-
cies. Scenarios 4 and 5 consider the implementa-
tion of a development fee in the exurban zones that 
raises the costs of development by 20% and 50% 
of the land price, respectively. Finally, we consider 
the combination of a fee and subsidy that imposes 
a development fee on all exurban parcels that in-
creases their costs by 20% of their land price and a 
subsidy to all suburban parcels that decreases their 
costs by 20% of their land price. 

The results from our series of simulation exercises 
are shown in Table 6. First, by comparing the base-
line scenario to the actual outcome from the data, 
we can assess the validity of our model and ap-
proach. We note that the baseline comes very close 
to an exact prediction of the outcomes. It slightly 
overpredicts exurban development (by 2%) and 
underpredicts suburban development (by 5%), but 
overall provides a very good predictive fit to the 
data. Turning to the results of the policy scenarios, 
we find that the hypothetical zoning policy changes 
are predicted to generate substantial impacts on 
land development. Scenarios 1 and 2 impose a re-
duction in the current allowable density of devel-
opment in exurban areas by 33% and 167%, respec-
tively. These increased zoning constraints are pre-
dicted to decrease the amount of exurban develop-
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ment by 60% and 82%, respectively. Scenario 3 
combines the first scenario, a reduction in the 
maximum allowable density in exurban areas to 

one house per 20 acres, with an increase in the 
allowable density of development in conservation 
and R40 zones. 

Table 6. Policy simulation results 
  Predicted subdivs Exurban subdivs Suburban subdivs
 True outcomes from the data 397 247 150

Baseline scenario 395 253 142
Density scenarios 

1 1 house per 20 acres exurban 246 102 144
2 1 house per 40 acres exurban 191 46 145

3
1 house per 20 acres exurban; 1 
house per acre conservation; 2 
houses per acre R40 

266 105 161 

Price-change scenarios 

4 20% increase in price per acre 
exurban 391 248 143 

5 50% increase in price per acre 
exurban 389 245 144 

6
20% increase in price per acre 
exurban; 20% decrease in price 
per acre suburban 

391 248 143 

Note: The true values are the actual results from the original data. 

These increases represent a 67% and 50% increase 
in allowable density in these two zones, respective-
ly. The results show that this combination of poli-
cies generates a reduction in exurban development 
by 57%, which is about the same reduction as is 
achieved in scenario 1, and a 13% increase in the 
amount of new development in suburban areas. In 
contrast to the predicted impacts of these hypotheti-
cal zoning changes, development outcomes are very 
insensitive to price-based policies. Scenarios 4 and 5 
posit an additional fee for development in exurban 
zones that is equivalent to 20% and 40% of the par-
cel’s expected land price, respectively. In both cas-
es, the development outcomes are changed only 
slightly: a development fee of 20% of the land price 
is predicted to reduce development in the exurban 
areas by only 2% and a fee of 40% of the land price 
is predicted to reduce development by only 3%. 
Scenario 6, which considers the combination of a 
20% development fee in the exurban areas and a 
20% subsidy in the suburban areas reduces exurban 
development by just 2% and increases suburban 
development by only 0.7%. 

Our model is a partial equilibrium model and there-
fore we do not capture the price feedbacks or devel-
opment spillovers to other locations that would like-
ly occur if these policies were to actually be imple-
mented. For example, a non-marginal reduction in 
the amount of developable land will bid up land 
prices that, in a competitive market and in the ab-
sence of zoning controls, would increase the density 
of land development. However, because the density 
controls imposed by the zoning constraint are bind-
ing, the higher land price will raise housing costs 

without increasing the supply of housing. To the 
extent that neighboring locations are substitutable, 
housing demand will spillover to neighboring juris-
dictions. Since we only consider one jurisdiction in 
a partial equilibrium framework, our predicted de-
velopment outcomes ignore such market feedbacks 
and, therefore, miss a potentially important source 
of additional land use fragmentation caused by poli-
cy spillovers. Nonetheless, our results are useful in 
terms of showing the relative responsiveness of 
development to these two different policies. The 
hypothetical changes in zoning in the exurban areas 
decreases the amount of new development simply 
because this policy imposes a strict reduction on the 
supply of developable parcels. Exurban parcels that 
are developable under the current zoning policy are 
no longer developable under the alternative policy 
scenarios that further constrict the allowable densi-
ty. Given this, it is not surprising that the hypotheti-
cal zoning policy changes generate such a substan-
tial change in development outcomes in these areas. 
More interesting are the results of the hypothetical 
economic-based incentives in which an additional 
fee is exacted for exurban development. Here we 
find very little responsiveness to cost increases im-
posed by the development fee. Interpreting the re-
sults of the policy simulation in terms of a land de-
mand elasticity, we find that the predictions of sce-
nario 4 and 5 correspond to demand elasticities of 
0.1 and 0.06 respectively. The implication is that 
developers’ demand for land as an input into hous-
ing production is extremely inelastic and that mar-
ket-based incentives, such as a development fee or 
subsidy, are unlikely to generate sufficient changes 
in the amount of pattern of new land development 



Environmental Economics, Volume 3, Issue 4, 2012 

 93

that are needed to reduce land fragmentation. On 
the other hand, the highly inelastic demand for land 
by developers implies that any regulation that re-
strict the supply of developable land, such as the 
zoning controls considered here, imposes potential-
ly large welfare losses. If the zoning constraint 
binds supply to a level below the competitive out-
come, developers will be willing to pay more for 
an additional acre of developable land than the 
marginal costs of landowners to supply it. Given 
developers’ highly inelastic demand for land, the 
forgone market benefits that are imposed by such a 
supply restriction are likely to be substantial. A full 
welfare analysis would consider the magnitude of 
these costs relative to the benefits from the reduc-
tion in land fragmentation that we show would also 
result from a reduction in the supply of developa-
ble parcels in the exurban areas. 

Conclusion 

Land fragmentation generates a host of environmen-
tal impacts, including habitat and biodiversity loss 
and a reduction in natural lands that control nutrient 
run-off and sedimentation that degrade water quali-
ty. The design of effective land use policies to con-
trol fragmentation relies on an understanding of how 
landowners, land developers and other actors in land 
and housing markets respond to market-based poli-
cies and land use regulations. Because land frag-
mentation is inherently a spatial phenomenon, effec-
tive policy design also relies on an understanding of 
how policy changes are likely to alter the spatial 
pattern of land use and the extent to which these 
changes can reduce land fragmentation by preserv-
ing larger areas of undeveloped land. 

We investigate the predicted effects of a market-
based versus regulatory policy instrument on land 
fragmentation by using spatial simulation methods 
and results from an econometric model of land de-
velopment estimated with data on residential land 
development in a rapidly urbanizing county in Bal-
timore, Maryland region. Using a logit specification 
of a discrete-time duration model with random ef-
fects, we estimate the parameters of the developer’s 
land development decision. Our dataset includes 
information on the location and price of land parcels 
and their physical characteristics as well as informa-
tion on spatially heterogeneous zoning regulations 
 

that constrain a parcel’s allowable density of de-
velopment. The estimates from the land develop-
ment model are then used to conduct a series of 
policy simulations in which we compare the devel-
opment outcomes under a market-based policy that 
alters the relative economic incentives to develop 
land and with a land use zoning regulation that 
reduces the supply of developable land parcels. We 
find that the zoning policy changes are much more 
effective than the economic incentive policies in 
altering the predicted pattern of land fragmentation 
relative to the baseline case of no policy change. 
For example, a change in the allowable density of 
development from one house per 15 acres to one 
house per 20 acres is found to reduce development 
in the lesser-developed exurban areas of the county 
by 60%. On the other hand, a 50% increase in ex-
urban development costs imposed by a hypotheti-
cal development fee is found to only decrease the 
amount of new exurban development by 3%. Thus 
we find that developers’ demand for land is ex-
tremely inelastic and that market-based incentives, 
such as a development fee or subsidy, are unlikely 
to generate sufficient changes in the amount of 
pattern of new land development that are needed to 
reduce land fragmentation. 

These results provide an initial evaluation for the 
land development case of the two most common 
policies considered in environmental economics: 
market-based policies, in which the net returns are 
altered by a tax or subsidy that seeks to internalize 
an externality, versus quantity-based policies that 
constrain the amount of an externality-producing 
good. We do not recover the underlying land 
supply function nor do we attempt to estimate the 
externality costs associated with land fragmenta-
tion and, therefore, we do not provide a formal 
welfare analysis of these policies. Instead, by ac-
counting for the parcel-level variables that influ-
ence a developer’s costs and returns from devel-
opment and assuming profit-maximizing behavior, 
we are able to predict how a change in policy 
changes the likelihood that a parcel is developed. 
Thus, our results allow us to evaluate the relative 
effectiveness of these policies in altering develop-
ment outcomes, which is a necessary first step to-
wards assessing their relative efficiency. 
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Appendix. Study region 

 

Fig. 1. Baltimore/Washington, D.C. metro area 
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1. Data construction. To estimate our panel data econometric model, we constructed several micro panel datasets. The 
first dataset we constructed was a panel of the historical subdivision development for the county. To construct these 
data, we joined the parcel boundary GIS shapefile of the county with the tax assessor’s database using a tax assessment 
ID number. In addition to information on the attributes of the parcel, structure, purchase date and price, and informa-
tion about the owner, the assessor’s database contained information on the plat book and page number for the subdivi-
sion in which the parcel was located1. Using these numbers, we were able to locate the original plats at the Maryland 
historical archives. By matching the individual parcels in the parcel boundary shapefile with the plat maps, we could 
determine all of the parcels in each development, assign each development a unique ID number and provide a date 
when the subdivision first gained approval2. There were 1,910 subdivisions developed from 1924-2007. Of these, 1,098 
were major developments and 812 were minor developments3.  

The second dataset we created was for the historical evolution of land preservation and protected open space in the coun-
ty. Over the past several decades many state and local governments throughout the U.S. have developed and used volunta-
ry incentive-based programs as a mechanism to prevent sprawl, limit growth and protect agriculture land. Within these 
programs landowners receive actual payment or equivalent tax deductions in exchange for voluntarily foregoing devel-
opment on their property in perpetuity. In addition to the down zoning that took place in 1978, in 1980 Carroll began its 
own purchase of development rights (PDR) program as an additional measure to protect farmland. Using state and county 
funding sources, the county has preserved over 54,000 acres of land in four different programs since 1980. We created the 
data for the history of these programs by matching data received from the county officials with the parcel boundary file 
using names and tax ID numbers. While we do explicitly model this decision, these data give us the ability to control 
for this decision in our analysis by removing preserved parcels from the dataset in each time period that they are pre-
served as opposed to removing all of these parcels at the beginning of the study period. In theory, we could model this 
process simultaneously with the development decision, but that is outside of the scope of this paper. 

The final dataset we created was a dataset of the historical subdivision approval process for county. As was noted in 
the paper, when landowners wish to subdivide a parcel they must follow the rules in the county subdivision develop-
ment guide. One of the most uncertain aspects of the development process is the necessary time to gain final approval 
and the regulatory hurdles that delay the process. To reconstruct the history of this process for each of our subdivisions, we 
collected the official minutes from the planning commission’s monthly meetings. Using these data and pattern matching 
algorithm written in Python, we matched subdivision names with the information from the commission’s database to 
provide dates for the stages of the development process for each of the developments. Given that the county only had 
electronic data starting in 1989, we only have data on the process from 1989 through 2010. 

Figure 2 shows an example plat map and Figure 3 shows the land-use pattern for the county at the end of 2007. 

 
Fig. 2. Plat map example 

                                                      
1 After a subdivision gains final approval from the county zoning commission, the plat of that development becomes public record, and is recorded 
and stored at the Maryland historical archives. These plats and the information contained on them are available to the public online at the follow-
ing address: www.plats.net. 
2 In 12% of the cases the subdivision was completed in more than one phase. In the case of these multi-phase developments, we dated and assigned 
unique ID numbers to each section. We also gathered information about open space requirements, sewer, zoning, developer information and 
whether the development was a major or minor subdivision. 
3 In many ways the minor subdivision policy was internalizing a process that was already underway. Many small developments and single family homes 
were being built in the period preceding 1963. Part of the impetus for the plan was to help document and control the amount this type of develop-
ment and protect vital farm land from develop-lead fragmentation. Thus, as is the case with many land-use policies, the subdivision policy for 
Carroll formalized an existing trend. 
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Fig. 3. Carroll county land use 2007 


