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Two sources of bias arise in conventional loss predictions in the wake of natural disasters. One source of bias stems 
from neglect of accounting for animal genetic resource loss. A second source of bias stems from failure to identify, in 
addition to the direct effects of such loss, the indirect effects arising from implications impacting animal-human inte-
ractions. The author argues that, in some contexts, the magnitude of bias imputed by neglecting animal genetic re-
source stocks is substantial. The author shows, in addition, and contrary to popular belief, that the biases attributable to 
losses in distinct genetic resource stocks are very likely to be the same. The paper derives the formal equivalence 
across the distinct resource stocks by deriving an envelope result in a model that forms the mainstay of enquiry in sub-
sistence farming and we validate the theory, empirically, in a World-Society-for-the-Protection-of-Animals application. 
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Introduction © 

Subsistence farming systems comprise a vast swath 
of humanity (Singh, Squire and Strauss, 1986). One 
of the most important features of subsistence sys-
tems is their dependence on animal genetic resource 
stocks for their welfare (Campbell and Knowles, 
2011). Because animal genetic resource stocks are 
welfare-enhancing, their existence bestows value 
within the households that employ them. And be-
cause they receive value, households are willing to 
relinquish units of other productive resources in 
order to mitigate loss in the welfare-enhancing ani-
mal resource stocks. These simple observations can 
be employed in order to develop robust methodolo-
gy for valuing livestock loss within livestock de-
pendent households. It is conjectured that such loss 
may be substantial; may bias relief-effort targets 
during post-disaster management; and, hitherto neg-
lected in post-disaster social accounting exercises, 
need to be computed (Livestock Emergency Guide-
lines and Standards, 2009). These facts motivate a 
search for the values that subsistence households 
place on animal inputs. This search is especially 
important when it is realized that animal inputs 
promote productivity, enhance the surplus-
generating potential of the household and can, as a 
consequence, promote immersion into markets that 
are contemporaneously constrained by thinness and 
instability. We consider the problem of placing for-
mal economic valuations on livestock inputs in the 
context of a rich data set on milk-market participa-
tion by small-holder dairy producers in the Ethio-
pian highlands (Nicholson, 1997). We take up this 
search in the context of a familiar framework for 
household decision-making (Singh, Squire and 
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Strauss, 1986); formal development of a compre-
hensive, multi-dimensional hierarchical model 
(Good, 1980); and algorithmic developments that 
exploit fully the existence of known full conditional 
distributions for all of the relevant unknown quanti-
ties (Gelfand and Smith, 1990). Hence, the model 
and its fundamentals have roots set firmly in the 
computational advances that have been with us 
since the early 1990’s (Gelfand, 2000). However, 
these advances have yet to be exploited to their full 
potential for the purpose of valuing animal genetic 
resource stock losses. 

1. Crossbreeding programmes in the Ethiopian 
highlands and background to the study sites 

Crossbreeding of imported animals with indigenous 
stock began in Ethiopia in 1968 (Kiwuwa, Trail, 
Kurtu, Worku, Anderson and Durkin, 1983). Since 
their introduction, performance has been closely 
monitored at a number of institutions. An extensive 
set of records on the performance of various crosses 
has been compiled. Crossbreed animals’ enormous 
potential for increasing per-capita milk production is 
well-documented. For example, between 1968 and 
1977 crosses between the local Arsi and Zebu ani-
mals with introduced stock produced significant 
increases in output, measured in terms of annual, 
fat-corrected milk yield (kg) per-unit metabolic 
weight of milking cows (kg). The main findings 
include sizable enhancement of yields over extant 
indigenous stock to the order of 75% in some in-
stances. Thus, hybrid-vigor has been important in 
the Ethiopian highlands since the late 1960’s. How-
ever, the advantages of increased yields has brought 
with it some intense demands on management; cros-
sbreed animals are susceptible to local diseases such 
as anthrax, rinderpest, and blackleg; and adopters 
have often been required to change management 
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practices. Consequently, adoption rates have been 
lowered from what might have been expected given 
the initial, sizable increases in production yields 
(Brokken and Seyoum, 1990).  

The ‘laboratory’ for investigation is a panel of ob-
servations on N = 68 sample units (households) at 
two respective sites (being N1 = 35 at the Ilu Kura 
peasant association and N2 = 33 at the Mirti peasant 
association), each, approximately one hundred 
miles, in opposite directions, from the capital, Addis 
Ababa. The panel periodicity is approximately four 
months, representing three visits in the same pro-
duction year. At each visit, production output on the 
day in question is measured, along with a record of 
the amount of milk sold, the number of local-breed 
and crossbreed cows milked, and other relevant 
socio-demographic characteristics of the house-
holds. Thus the available data consist of the panel 
records across the households on selected covariates 
and on the two response variables ‘output’ and 
‘sales.’ The selected covariates include the key li-
vestock variables ‘Crossbreed’ and ‘Local-breed’ 
cows; two site-specific dummy variables, ‘Ilu-Kura’ 
and ‘Mirti;’ three intellectual-capital accumulators, 
‘Experience,’ ‘Education’ and ‘Extension;’ and one 
sales-related covariate that we deem a priori signifi-
cant in the decision to immerse in the market, name-
ly ‘Distance.’ Respectively, Output and Sales refer 
to the amounts of fluid milk (in liters) that the 
household produced, respectively, sold, on the day 
that the interview was enacted; Ilu-Kura, respec-
tively, Mirti are binary covariates assuming the 
value one if the household in question resided 
within the peasant association, and assuming the 
value zero, otherwise; Experience denotes the 
number of years of farming experience accumu-
lated by the household head; Education refers to 
the total number of years of formal education ac-
cumulated by the household head; Extension refers 
to the number of times in the twelve months prior 
to the interview that the household was visited by 
an extension agent discussing either production or 
marketing activities; and Distance represents the 
amount of time (in minutes) that it takes the house-
hold to transport bucketed fluid milk to the milk-
cooperative. Additional institutional and geograph-
ical background relevant to our investigation is 
available elsewhere (Staal, Delgado and Nicholson, 
1997; Holloway, Barrett and Ehui, 2000; Hollo-
way, Nicholson, Delgado, Ehui and Staal, 2000; 
Holloway and Ehui, 2001; Holloway, Barrett and 
Ehui, 2001; Holloway, Dorfman and Ehui, 2001; 
Holloway, Nicholson, Delgado, Ehui and Staal, 
2004; Holloway, Barrett and Ehui, 2005; and Hol-
loway, Teklu and Ehui, 2008). 

2. Canonical implementations 

Relegating detail to the Appendix, we enact loss 
predictions across the two genetic resource stocks in 
five steps. The first step derives the formal house-
hold production framework upon which the produc-
tivity estimates are grounded (Singh, Squire and 
Strauss, 1986); the second step derives the precise 
metrics upon which the loss estimates depend 
through the application of the standard calculus 
(Chiang and Wainwright, 2005) and the envelope 
theorem, exploiting Roy’s identity (Roy, 1947); the 
third step selects covariates for the empirical im-
plementation following extensive models compari-
sons Chib, 1995); the fourth step generates empiri-
cal estimates of the respective genetic-resource 
stocks using matrix extensions (Bauwens, 1984; 
Drèze and Richard, 1983) of well-known adapta-
tions of the normal-linear model (Lindley and 
Smith, 1972); and the fifth and final step generates 
the loss estimates by exploiting standard results for 
the normal-linear model and the resulting posterior 
predictive distributions (Zellner, 1971; Koop, 2003; 
Koop, Poirier and Tobias, 2008). The covariate spe-
cifications that we consider are four, which we refer 
to as ‘models’ wherein, we define Model One, as the 
model consisting of just the livestock inputs, Cross- 
breed and Local-breed; Model Two, consisting of 
the livestock inputs and the two site specific dummy 
variables, Ilu-Kura and Mirti; Model Three, consist-
ing of the latter specification plus the additional 
covariates Experience, Education, Extension and 
Distance; and, finally, Model Four, consisting of 
just the livestock covariates, Crossbreed and Local-
breed, and the single, site-specific dummy variable, 
Mirti. Across these ‘models’ we implement, in turn, 
three respective specifications. Specification One 
consists of the normal linear model (Zellner, 1971; 
Koop, 2003; Koop, Poirier and Tobias, 2008); Spe-
cification Two permits the constant terms in the 
linear model to vary in the usual, hierarchical man-
ner (Koop, 2003; Koop, Poirier and Tobias, 2008; 
Good, 1980); and Specification Three permits all of 
the covariate coefficients to relate hierarchically 
(Lindley and Smith, 1972; Koop, 2003; Koop, 
Poirier and Tobias, 2008). With these three specifi-
cations and these four models at hand, the Cartesian 
product Models × Specifications leads to a total of 
twelve credible alternatives with which to assess the 
losses at interest. The results of the twelve experi-
ments are reported, graphically, in Figure 1 (see 
Appendix B). The diagonal entries in the figure 
shaded in red represent the line of best fit among the 
data; the twelve alternative specifications represent 
reasonable scatter along the best-fit line and suggest, 
without discriminating further, that any single repre-
sentation seems satisfactory as a form of explana-
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tion across the observed responses. Some signs of 
possible bias are evident at larger outlier quantities, 
but, for the most part, the correlations between the 
scatter and the line of best fit seem satisfactory. Con-
sequently, we turn to the problem of selecting a ‘best’ 
formulation with which to predict loss (Chib, 1995). 
An extensive model selection exercise suggests that 
the a posteriori preferred explanation for the re-
sponse data resides in the second specification and in 
the model with the parsimonious covariate descrip-
tion consisting of the Local-Breed, Crossbreed and 
Mirti covariates. Indeed, a wide variety of alternative 
specifications enacted suggests that only these three 
covariates are consistently significant in explaining 
milk-output production within the Ethiopian-
highlands households. Turning to the important mat-
ter of posterior prediction and assessing the actual 
magnitude of marginal productivities across the two 
distinct resource stocks, we summarize our essential 
findings in the contour plots in Figure 2. The cross-
breed input leads to marginal productivities about 
twice the scale of those for the indigenous breed ani-
mals; produces estimates that are considerably more 
precise; but are, nonetheless, significantly correlated 
across the two, alternative, genetic resource stocks. In 
the absence of further adaptation, given the marginal-
productivity estimates, we are able to construct loss 
estimates based purely on these inferences about 
animal productivity. However, additional, relevant 
sample information is hitherto ignored.  

3. Extended implementations 

One extensively documented aspect of the institu-
tional setting (Singh, Squire and Strauss, 1986; 
Staal, Delgado and Nicholson, 1997; de Janvry, 
Fafchamps and Sadoulet, 1991; Sadoulet and de 
Janvry, 1995) is the inter-linkage between produc-
tion and sales decisions. The notion that many 
households encounter barriers to entry, both pecu-
niary and non-pecuniary and, therefore, generate 
observations on milk-market participation in the 
sales dimension that are censored (Tobin, 1958) at 
some unobserved threshold motivates additional 
statistical scrutiny. A set of alternative censored 
regressions is developed and, relegating all of the 
essential mathematical details to the supplementary 
materials section we take up the search for an ap-
propriate form in much the same way as we pursued 
across the single-equation, canonical forms, above. 
Thus, in like fashion, results for the matrix-Normal 
extension of the single-equation models evolve and 
produce the estimates of fit presented in Figure 3. 
Some minor improvements are apparent from com-
parison of Figures 1 and 3. The preferred model 
specification within the matrix system is found to be 
a standard censored-regression model (Tobin, 1958) 

employing standard Bayesian procedures (Chib, 
1992) in which the two equations, one pertaining to 
sales and the other to output, have hierarchical, 
household-specific constants that are correlated. 
This formulation produces the marginal productivity 
distributions reported in Figure 4 and which we use 
to translate into meaningful aggregates of loss com-
puted on the ‘national-annual scale.’ Using this cal-
culation, and, recalling that, by virtue of the facts 
that the marginal products which 1̂θ  and Ĉθ  depict 
are random variables and, thus, have distributions 
(recall Figures 2 and 4), so too will the quantity θ̂
which we derive as our estimate of the annual aver-
age cost of loss of livestock in US dollars. The joint 
distribution of the respective genetic stock loss es-
timates is depicted in Figure 5. Specifically, we 
determine that catastrophic loss of the order of one-
hundred percent in grade indigenous stock and in 
cross-breed animals result in losses, of approximate-
ly $US 3.84 × 1010 and $US 3.37 × 1010, respective-
ly. That these measures represent significant quanti-
ties which, if neglected, could seriously bias social 
accounting exercises is apparent; and that the mar-
ginal distributions corresponding to the two dimen-
sions of Figure 5 are quite comparable is also appar-
ent. Thus, when nature occasionally gives cause to 
summon the social accountant two sources of bias 
arise in conventional loss predictions in the wake of 
natural disasters. We have shown these biases to be 
substantial and we have shown also that there is 
good reason to believe that the losses computed 
across distinct genetic resource stocks are approx-
imately the same. 

Conclusion 

Two sources of bias arise in conventional loss pre-
dictions in the wake of natural disasters. One source 
of bias stems from neglect of accounting for animal 
genetic resource loss. A second source of bias stems 
from failure to identify, in addition to the direct 
effects of such loss, the indirect effects arising from 
implications impacting animal-human interactions. 
We have argued that, in some contexts, the magni-
tude of bias imputed by neglecting animal genetic 
resource stocks is substantial. We have shown, in 
addition, and contrary to popular belief, that the 
biases attributable to losses in distinct genetic re-
source stocks are very likely to be the same. We 
have derived the formal equivalence across the dis-
tinct resource stocks by deriving an envelope result 
in a model that forms the mainstay of enquiry in 
subsistence farming and we have validated the 
theory, empirically, in a World-Society-for-the-
Protection-of-Animals application in the Ethiopian 
Highlands. Further work should investigate the results 
derived herein to a wide and broader set of contexts. 
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Appendix A 

The motivating framework underlying conceptual developments is the household production model (Singh, Squire and 
Strauss, 1986) which is the sine qua non of modern development economic investigations and forms a mainstay of 
models within which costs of time predominate (Becker, 1965; Fair, 1978; Deaton and Muellbauer, 1980). Consisting 
of a maximand defined over utilities derived from consuming a home-produced good, a market-produced good, and 
leisure; optimization occurs with choices made subject to the restrictions that expenditure cannot exceed disposable 
income, that leisure and work combined cannot exceed the total stock of time available to the household, and that phys-
ical output cannot exceed its technological possibilities. With the primal model (Chiang and Wainwright, 2005) at 
hand, we enact the Lagrangean method (Chiang and Wainwright, 2005) and consider changes in endowments and their 
impact on indirect utility and, consequently, welfare. By considering one of these endowments to be livestock, the 
Envelope Theorem (Chiang and Wainwriight, 2005), Roy’s Identity (Roy, 1947), and some further standard calculus 
(Chiang and Wainwright, 2005) yield the indirect values sought, namely Δω = pa ƒl(⋅,l) Δl. Here, Δω denotes the 
‘change in income’ consequent upon a ‘change in the animal genetic resource stock’ or ‘Δl;’ ‘pa’ denotes ‘the per-unit 
price of milk output;’ ‘ƒl(⋅,l)’ denotes the ‘marginal productivity of livestock, ‘l’, in the production enterprise ‘ƒ(l);’ 
and ‘Δl’ denotes the total change in the livestock resource that is created by the investigator in order to simulate ‘catas-
trophe.’ Given each of the elements on the right hand side of the equality ‘Δω = pa ƒl(⋅,l) Δl,’ the left-hand side is 
available immediately. The term ‘pa’ is publicly available at each of the two study sites; the term ‘Δl’ is selected and 
within the control of the investigator; but the term ‘ƒl(⋅,l)’ must be estimated. Considerable econometric efforts are 
devoted to the latter objective in the knowledge that these parametric reports may be very sensitive to alternative model 
specifications. The extensive model-selection search yields a preferred specification which, in turn, yields precise esti-
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mates of the respective marginal productivities of cross-breed and grade, indigenous stocks. The matrix system produc-
ing the estimates in Figure 3 is based on modifications to the normal linear model (Zellner, 1971; Koop, 2003; Koop, 
Poirier and Tobias, 2008), including extensions to consider multiple decision-making (Drèze and Richard, 1983; Bau-
wens, 1984), extensions to consider both standard and non-standard censoring mechanisms (Nelson, 1977; Chib, 
1992), and extensions of the basic Gibbs-sampling algorithm using the powerful marginal-likelihood-from-the-Gibbs-
sampling methodology (Chib, 1995). Finally, in order to translate the household-specific, marginal-product estimates, 
derived from the econometric estimates at the two sample sites, into a more meaningful aggregate per-annum metric, 
we compute θ̂  ≡ {p1 × (N1/N) + p2 × (N2/N)} × {( 1̂θ  × (Nl/Nl)) + ( 2̂θ  × (Nc/Nl))} × σs:pa × σpa:w × σw:e × σeb:us × σd:y, 

where θ̂  is the loss estimate; p1 denotes the Ethiopian birr price in the Ilu Kura peasant association; N1 denotes the 
sample size in the Ilu Kura peasant association; p2 denotes the Ethiopian birr price in the Mirti peasant association; N2 
denotes the sample size in the Mirti peasant association; N denotes the total sample size; 1̂θ  denotes the marginal prod-

uctivity of local-breed cows; Nl denotes the total number of local-breed cows employed; ĉθ  denotes the marginal prod-
uctivity of cross-breed cows; Nc denotes the number of cross-breed animals employed; Nl denotes the total number of 
livestock employed; σa:pa denotes the scale factor transforming the sample to the peasant association; σpa:w denotes the 
scale factor transforming the peasant association to the wereda; σw:e denotes the scale factor transforming the wereda to 
the Ethiopian geographic aggregate; σeb:us denotes the scale factor transforming Ethiopian birr into US dollars; and, 
finally, σd:y, the ‘temporal aggregate’ denotes the transformation from days into years. Applying these aggregations we 
arrive at the final economic loss estimates depicted in Figure 5.  

Details of the explicit procedures evolve from the following section summary, which subdivides into the respective 
subsections entitled ‘background,’ ‘notation,’ ‘density development,’ ‘observational equations,’ ‘specifications,’ ‘mod-
els,’ ‘priors,’ ‘parameter estimation,’ ‘models comparisons,’ and ‘marginal likelihood computation.’  

1. Background 

Implementation is facilitated by amending well-known results in three, small, but important, ways. First, we extend to 
the matrix-Normal framework hierarchical developments (Drèze and Richard, 1983) defined, specifically, for the vec-
tor-Normal-linear model. Second, we modularize the process known as completing-the-square, extending the vector-
valued Normal form, as it appears, for example, in (Zellner, 1971), to an automated, matrix-Normal presentation. 
Third, we modify, slightly, the basic marginal-likelihood identity as outlined in (Chib, 1995) which forms the mainstay 
of models comparisons. The first modification facilitates hierarchical developments in the multiple-equation setting; 
the second modification is convenient for encoding the Gibbs-sampling algorithms, in debugging computing routines 
and in automating their descriptions; the third modification circumvents problematic integrations defined over latent 
data during marginal likelihood evaluation. In these contexts, in addition to (Zellner, 1971; Drèze and Richard, 1983; 
and Chib, 1995), some familiarity with conjugate developments in reduced-form multiple-equations Normal-data sys-
tems, as appears, for example, in Bauwens (1984) and in Drèze and Richard (1984) is desirable. Primers for the scalar-
Normal and vector-Normal derivations presented within this Appendix are Zellner (1971, Koop (2003), and Koop, 
Poirier and Tobias (2008).  

2. Notation 

By way of notation we use lower-case Greek and Roman numerals to reference scalar quantities, use emboldened low-
er-case symbols to reference vectors and use emboldened upper-case symbols to reference matrix quantities. Thus, let θ 
≡ (θ1, θ2, .., θN)′ denote a vector of parameters of interest, where ‘′’ denotes the ‘transpose’ of the column vector θ; π(θ) 
denotes the prior probability density function (pdf) for θ; and π(θ|y) the posterior pdf for θ; where y ≡ (y1, y2, .., yN)′ 
denotes data. Frequently, we reference the data generating model ƒ(y|θ), which is the likelihood function when viewed 
as a function of θ and, sometimes, make use of variants of the ƒ(⋅|⋅) notation in order to reference particular probability 
density functions. Occasionally we find it useful to reference just the variable part of the density (integrating constant 
excluded) in which case we use the symbol ‘∝’ to denote ‘is proportional to.’ In view of the prior-to-posterior conjuga-
cy shared by each model that we consider, we adopt the notational convention employed by (Drèze and Richard, 1983) 
wherein postscripts indicated ‘o’ reflect prior information and postscripts indicated ‘*’ reflect posterior information; 
accordingly ƒ(θ|θo) ≡ π(θ) and ƒ(θ|θ*) ≡ π(θ|y). Additionally, we will find it useful, to refer separately to the observed 
responses, which we denote Y; distinguish between the observed responses and those that are latent, which we denote, 
Z; and distinguish, again, between the observed and latent responses and another, we reference, when the observed and 
latent responses are combined, which we denote V. The exact dimensions of the response quantities, Y, Z and V will 
become apparent when their model-specific dimensions are defined, subsequently. Finally, we use indices i = 1, 2, .., 
N, to reference the households in question, where, we remind the reader, N = 68; use t = 1, 2, .., T in order to reference 
periods within the ‘panel,’ in which T = 3; and use S to denote the sample collection which is S = N × T = 204.  
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3. Probability density functions  

We use three probability density functions. The first, which we use to model correlation in equation errors, is the in-
verted-Wishart distribution, namely, ( ) ( )( ) { }1 .5 .5( 1).5 .25 ( 1) 1

1| , 2 .5 1 exp .5 .v v MiW vM M M m
M M if S v Г v i S trace Sπ − − + +− − − −
× =Σ ≡ × ×∏ + − × ×Σ × − Σ  

The second, which we use to model covariate response, is the matrix-Normal distribution, which we specify as 

( ) ( ) ( ) ( ).5 .5 .5 1 12 expˆ ˆ.5 ˆ| .NM N MmN
N Mf traceπ − − − − −
×

⎧ ⎫′Σ , Ω ≡ × Σ × Ω × −Θ Θ, Θ − Θ Θ − ΘΣ × Ω⎨ ⎬
⎩ ⎭

 Finally, we make use of 

the uniform distribution ( ) ( ) 1

1 1 | .Uf α β γ βγ −

×
, ≡ −  With reference to ( )| ,iW

M Mf S v× Σ , we emphasize that Σ has dimension 

M × M; with reference to ( )ˆ|mN
N Mf × Θ Θ, Σ, Ω , we emphasize that Θ has dimension N × M; and with reference to 

( )1 1 |Uf α γβ× , , we emphasize that α is a scalar. Occasionally, we reference the multivariate-Normal and the univa-

riate-Normal distributions, which are special cases of  ( )ˆ|mN
N Mf × Θ Θ, Σ, Ω , wherein M = 1 in the first case and N = M 

= 1, in the second. Frequently, we reference the covariance matrix of dimension NM × NM, corresponding to the col-
umn expansion of Θ, of dimension N × M, which is Σ ⊗ Ω, and where ‘⊗’ denotes the Kronecker product. Finally, we 
make repeated use of the well-known transformation property corresponding to the matrix-Normal (see, for example, 
17, p. 72, and the references cited there), namely that, given ( )ˆ|mN

N Mf × Θ Θ, Σ, Ω , and the transformation Λ ≡ A Θ B, 

where A is a P × N matrix of rank P ≤ N and B is an M × Q matrix of rank Q ≤ M; then Λ ≡ A Θ B has distribution 
( )ˆ| .mN

P Q A Af AΒ Β Β× ′ ′ ′Λ Θ , Σ , Ω  

4. Observational equations 

Each of the estimating models we consider can be specified as variants of the observational equation 

F = G × ϑ + U,                                                               (A.1) 

where F ≡ (f1, f2, .., fM) denotes an S × N collection of responses, G ≡ (g1, g2, .., gR) is an N × R collection of observations 
on known covariates, ϑ ≡ (ϕ1, ϕ2, .. ϕM) is an R × M collection of unknown covariate responses and U ≡ (u1, u2, .., uM) is 
an S × M collection of random disturbances. In addition, and retained throughout as a maintained hypothesis, we assume 
that the disturbance matrix U has the matrix-Normal distribution, ( ),| ,S M

m
S

N
N M Of U I× , Σ,  where ,S MO  denotes the S × 

M-dimensional null matrix and where IS denotes the S-dimensional identity matrix. 

5. Specifications 

The total number of variants that we consider is twelve, being the Cartesian product Specifications × Models in which 
‘Specifications’ refers to assumptions about the hierarchical structures and in which ‘Models’ refers to assumptions 
about the censoring mechanisms. On the first count, Specification One, assumes that hierarchical structures are non-
existent; in this case G ≡ X ≡ (x1, x2, .., xK) of dimension S × K defines a (dense) covariate matrix of observations on 
relevant covariates; the corresponding response matrix is ϑ = Ψ ≡ (ψ1, ψ2, …, ψM), of dimension K × M; and we place 
investigator-specific priors on the distributions for Σ and Ψ. We detail the prior information used subsequent to intro-
ducing the remaining specifications and the various censoring mechanisms. Specification Two introduces hierarchical 
constants, in which case G is partitioned into G ≡ [W X] where W ≡ (w1, w2, .., wM) ≡ IN⊗ιT, of dimension S × N, is a 
binary matrix of unit vectors; X ≡ (x1, x2, .., xK) retains dimension S × K, as before; we partition ϑ as ϑ ≡ [Ξ Ψ], of 
dimension S × M, where Ξ ≡ (ξ1, ξ2, …, ξM) has dimension N × M; we assume, in the hierarchical spirit, that Ξ, in turn, 
evolves according to ( )0| , , ,mN

N M Cf ov× Ξ ΗΓ ΞΣ where H ≡ IM⊗ιT, CovΞ0 denotes an investigator-induced component 
of the covariance matrix Σ ⊗ CovΞ0 corresponding to the column expansion of Ξ; and we place investigator-induced 
priors on the matrices Σ, Γ and Ψ. Finally, Specification Three, assumes that all of the regression coefficients evolve 
hierarchically, in which case we restructure G into P ≡ block-diagonal{X} where block-diagonal{X} ≡ diagonal{X1′, 
X2′, .., XN′}′ is the NT × NK block-diagonal arrangement of the household-common components of X with typical ele-
ment, Xi, a matrix of dimension T × K; we redefine ϑ as ϑ ≡ Δ where Δ ≡ (δ1, δ2, …, δM), of dimension NK × M; we 
assume that Δ, in turn, evolves according to ( )0Δ | , , ΔmN

NK M Qf CovΨ× Σ , Q ≡ ιN ⊗ IK, CovΔ0 denotes an investigator-
induced component of the covariance matrix Σ ⊗ CovΔ0 corresponding to the column expansion of Δ; and we place 
investigator-induced priors on the matrices Σ and Ψ.  

6. Models 

Turning to specializations of the separate specifications, we enact four distinct formulations, henceforth referred to as 
Models in order to accommodate the censoring which is prevalent within the data. For this purpose, introduce Τ ≡ {τij, i 
= 1, 2, .., N, j = 1, 2, .., T} and consider specializations across the four, respective forms. In the first specialization, 
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which we refer to as Model One, we assume that the thresholds are non-existent and, thus, ignore the presence of cen-
soring. In the second formulation, Model Two, we enact conventional censoring as in (Tobin, 1957) and define τij = 0, 
for all i = 1, 2, .., N and j = 1, 2, T. In the third formulation, which is Model Three, we enact a random censoring thre-
shold, which is τij = τ, common for all i = 1, 2, .., N and j = 1, 2, .., T. And in the final formulation, Model Four, we 
enact, conditional censoring wherein τij ≡ zij = xij′βm+1 + uijm+1, for all i = 1, 2, .., N and j = 1, 2, .., T, where xij denotes 
covariate information and βm+1 denotes the corresponding vector of response coefficients. In this latter setting three 
features of the sampling environment warrant comment. First, unlike Models One, Two and Three, the Model Four 
censoring threshold is agent-and-period specific; it allows for the possibility of cross-equation correlation; requires 
implementation of an additional equation containing the latent censoring thresholds; and extends important, preceding 
work, most notably the random-censoring-threshold (Nelson, 1977) and, more recently, the single-equation Bayesian 
implementation of the Tobit regression of (Chib, 1992). Finally, we emphasize that, whereas, Models One, Two and 
Three contain estimating systems of dimension S × M, under Model Four the system assumes dimension S × (M + 1).  

7. Prior probability density functions 

In conceptualizing priors proprietary is necessary in order to enable model comparison. We adopt the approach of em-
ploying ‘weak but proper’ forms and additional comment is relevant. Whereas conjugacy imposes restrictions on the 
cross-equation covariances of Γ and Ψ, conjugacy of itself does not impose stringent a priori restrictions on the distri-
bution of Σ. Hence, we allow Σ to evolve a priori according to ( )0 0| ,iW

M Mf S v× Σ , S0 = IM × 102, ν0 = M + 2, which is 
indeed ‘weak’ but ‘proper.’ Second, although the restriction that the conjugate prior covariance matrices conditioned 
by Σ revert to ‘restrictive ‘block-diagonal structures is well documented (Drèze and Richard, 1983) – see especially, 
their comments on page 541; an indication they attribute to (Rothenberg, 1963) – those criticisms are less relevant here, 
for three reasons. First, by view of the fact that we place a priori weight equally across twelve models the restrictive 
feature of any one form is mitigated. Second, the inclusion of hierarchical components permit sufficient variability 
across coefficient columns that they further mitigate these concerns. Third, conjugacy endows the posterior quantities 
with an attractive feature that considerably facilitates models comparison. Thus, the prior assumptions that we invoke 
for the relevant response matrices are ( )0 0Ψ |Ψ , , ΨmN

K Mf Cov× Σ , where Ψ0 = 0KM, CovΨ0 = IK × 102 and 

( )0 0| , ,mN
K Mf Cov× Γ ΣΓ Γ , Γ0 = 01M, CovΓ0 = I1 × 102, which are also ‘weak’ but ‘proper.’ 

8. Parameter estimation strategy 

Despite complications, the estimation retains the same basic simplicity inherent in all Normal-data models. Moreover, 
because all of the essential vector-valued results in (Lindley and Smith, 1972) extend intuitively and readily to the 
matrix form, the entire posterior analysis would be available in closed-form, if not for censoring. In the presence of cen-
soring we adopt a Gibbs-sampling estimation strategy and the execution is routine. Here, we outline the basic estimation 
algorithms and detail amendments required to incorporate censoring. In terms of Specification One, Model One represents the 
basic matrix-Normal formulation wherein ( ), , ,mN

M SS Y | Xf I× ΣΨ  ( )0 ,,iW
M Mf | S v× Σ  and ( )0 0Ψ |Ψ , , ,ΨmN

K M Covf × Σ  
comprise the joint distribution for the data and the parameters. It follows that the joint posterior for the unknown quantities is 
defined by the conjugate distributions ( )* *,iW

M Mf | S v× Σ  and ( )* *Ψ |Ψ , , ΨmN
K Mf Cov× Σ  and that the fully conditional 

distributions underlying the Gibbs-sampling algorithm are ( )# #,iW
M Mf | S v× Σ  and ( )# #Ψ |Ψ , , ,ΨmN

K M Covf × Σ  where, 
S# ≡ (Ψ - Ψ0)′ CovΨ0

-1 (Ψ - Ψ0) + (Y - XΨ)′ IS (Y - XΨ), ν# ≡ K + S, CovΨ# ≡ (X′ISX+CovΨ0
 -1)-1 and Ψ# ≡ CovΨ# (X′ISX 

+ CovΨ0
 -1Ψ0)-1. On the first count, the definitions of S# and ν# follow, straight-forwardly, from the definition of the 

inverted-Wishart distribution. On the second, count, the definitions CovΨ# and Ψ# are available from well-known re-
sults (Zellner, 1971; Bauwens, 1983; Drèze and Richard, 1984) for the matrix-Normal model. Nevertheless, we expli-
cate developments in order to introduce a procedure automating repeated derivations for the response coefficients. 
Each of the matrix-Normal coefficient matrices, for example, Θ, has a fully-conditional, data-dependent form derivable 
in terms of generic matrices A, B, C, D and E, namely, ƒ(Θ) ∝ exp{ -.5 trace (A - BΘ)′ C (A-BΘ) Σ-1 } × exp{-.5 trace 
(Θ-D)′ E (Θ - D) Σ-1}. Thus, completing the square in similar fashion to the vector-Normal (Zellner, 1971, p. 381; 19, 
pp. 5 and 6) we have 

ƒmN(Θ) ∝ exp{-.5 trace (Θ-Θ#)′ CovΘ#
-1 (Θ-Θ#) Σ-1} ∝ ƒmN(Θ|Θ#, Σ, CovΘ#),                                           (A.2) 

where CovΘ# ≡ (B′CB + E)-1 and Θ# ≡ (B′CB + E)-1 (B′CA + ED). Thus, one can confirm that CovΨ# ≡ (B′CB + E)-1 
and Ψ# ≡ (B′CB + E)-1 (B′CA+ED) where A ≡ Y, B ≡ X, C ≡ Is, D ≡ Ψ0 and E ≡ CovΨ0

-1, as conjectured, and that the 
formal, Gibbs-sampling algorithm required for implementing Specification-One, Model-One consists of consecutive 
draws from ( )# #,iW

M Mf | S v× Σ  and ( )# #Ψ |Ψ , , ΨmN
K Mf Cov× Σ . In the conventional censoring extension of Model One, 

Model Two employs V in place of Y and contains the additional draw from ( ]( )1 1 | , , ,0ijk ijk ij
tN

kf z μ σ× −∞  for {ijk} ∈ c 

≡{ijk | yijk = 0}, where c denotes the censor set for households i = 1, 2, .., N in time periods j = 1, 2, .., T and with respect 
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to output quantity k; and from ( ]( )1 1 | , , ,0ijk ijk ij
tN

kf z μ σ× −∞  denotes the (fully conditional) truncated-Normal, univa-

riate distribution, with mean μijk and standard deviation σijk, defined on the interval (-∞,0] for the scalar latent quantity 
zijk. Here the univariate-Normal draws are retrievable by direct application of the decompositions in (Zellner, 1971, pp. 
381-382) and direct, one-to-one draws are available from the probability-integral transform as outlined, for example, 
in (Albert and Chib, 1993, p. 202). Under Specification One, Model Three, we require an additional draw for the ran-
dom censoring threshold, which is a (scalar) uniform distribution ( )min#1 1 m #ax| , ,Uf τ τ τ×  where (exploiting similarities 
between the posterior distributions for the ordered-probit bin boundaries in (Albert and Chib, 1993) and the fully conditional 
posterior distribution for the threshold parameter, τ) we deduce that τmin# ≡ max{max{zijk,{ijk}∈c},τmin0} and τmax# ≡ 
min{min{yijk, {ijk}∉c},τmax0}. Here, parameters τmin0 and τmax0 comprise the support for τ within the prior pdf 

( )min1 1 0 min 0| ,Uf τ τ τ×  and ( ]( )1 1 | , , ,ijk ijk ijk
tN zf μ σ τ× −∞  denotes the (fully conditional) truncated-Normal distribution for the 

latent data. Finally, Model Four introduces the conditional censoring threshold such that from (( )1 1 1| , , ,ijk ijk ij
tN

k ijMz zf μ σ +× ⎤−∞ ⎦  

now denotes the relevant truncated-Normal distribution and the following details are emphasized. First, introduction of the 
threshold introduces one additional entire column of latent data into V. Accordingly, in the absence of restrictions on 
the parameter space, the regression model is unidentified. A convenient remedy (borrowed from probit analysis) is to 
restrict one of the diagonal terms in Σ to one and derive the fully conditional distributions for the remaining, non-restricted 
components of Σ. The idea for this modification stems from an investigation of ‘infinite regression’ (Dawid, 1998), with 
further modifications and refinements arising in the context of multinomial-probit estimation (Nobile, 2000; McCulloch and 
Rossi, 2000), with, finally, explicit derivations for the draw for Σ outlined in an appendix to an application on transport 
choice (Linardarkis and Dellaportas, 2003). Finally, in addition to the covariance restriction, one must draw the latent data 
in the M + 1st column of V, which are made according to )( )11 1 | , , , ,ijM ijk ijk ij

N
k

t z zf μ σ× + ⎡ +∞⎣  for {ijk}∈c, and 

(( )11 1 | , , , ,ijM ijk
tN

ijk ijkz zf μ σ+× ⎤−∞ ⎦ for {ijk}∉c. Turning to Specification Two, the basic model has component conditional distribu-

tions consisting of five forms, namely ( )| ,S S
mN

M Y Wf X I× Ξ Σ,, ψ,  ( )0 0| ,mN
S M Covf × ψ ψ , ψΣ,  ( )0| ,mN

S M Cof v× Ξ ΗΓ , ΞΣ,  
( )01 0| ,mN

Mf Cov× Γ Γ , ΓΣ,
 

and ( )0| .iW
M M vf S× Σ ,

 
The joint posterior is defined by the conjugate distributions 

( )* * ,,iW
M M | Sf v× Σ ( )*1 *| , , ,mN

M Covf × Γ ΣΓ Γ  ( )* *|mN
N Mf Cov× Ξ Ξ Σ,, Ξ

 
and ( )* *|mN

K Mf Cov× ψ ψ Σ,, ψ  and the fully 

conditional distributions required for implementation are ( )# # ,,iW
M M |Sf v× Σ  ( )#1 #| ,mN

Mf Cov× Γ Γ , ΓΣ,  ( )# #| ,mN
N M Covf × Ξ Ξ , ΞΣ,  

and ( )# #| ,mN
K M Covf × ψ ψ , ψΣ,  where S# ≡ (Γ – Γ0)′ CovΓ0

-1 (Γ – Γ0) + (Ξ – HΓ)′ CovΞ0
-1 (Ξ – HΓ) + (Ψ – Ψ0)′ CovΨ0

-1 (Ψ 
– Ψ0) + (Y – WΞ – XΨ)′ IS (Y-WΞ – XΨ), ν# ≡ 1 + N + K + S, CovΓ# ≡ (B′CB + E)-1 and Γ# ≡ (B′CB + E)-1 (B′CA + ED) 
where A ≡ Ξ, B ≡ H, C ≡ CovΞ0, D ≡ Γ0 and E ≡ CovΓ0

-1, CovA# ≡ (B′CB + E)-1 and Ξ# ≡ (B′CB + E)-1 (B′CA + ED) where A 
≡ Y-XB, B ≡ W, C ≡ Is, D ≡ Ξ0 and E ≡ CovΞo

 -1 and CovΨ# ≡ (B′CB + E)-1 and Ψ# ≡ (B′CB + E)-1 (B′CA + ED) where A ≡ Y – 
WΞ, B ≡ X, C ≡ Is, D ≡ Ψ0 and E ≡ CovΨ0

-1. The conventionally-censored, randomly-censored and conditionally-censored 
regressions (respectively, Model Two, Model Three and Model Four) are executed in similar fashion to the manner described 
under Specification One. Specification Three consists of the distributional components ( ) ,| S

mN
S M Y Pf I× Δ, Σ,  

( )0| ,mN
KN M Q Cof v× Δ ψ , ΔΣ,  ( )0 0| ,mN

K M Covf × ψ ψ , ψΣ,
 

and ( )0 0| ;iW
M M S vf × ,Σ  the joint posterior contains components 

( )# # ,,iW
M M | Sf v× Σ  ( )* *|mN

K Mf Cov× ψ ψ Σ,, ψ
 
and ( )* *| ;mN

NK Mf Cov× Σ,Δ Δ , Δ  and the corresponding fully conditional 

distributions are ( )# # ,,iW
M M | Sf v× Σ ( )* *|mN

K Mf Cov× ψ ψ Σ,, ψ
 
and ( )* *| ,mN

NK Mf Cov× Σ,Δ Δ , Δ
 
where S# ≡ (Ψ – Ψ0)′ CovΨ0

-

1 (Ψ – Ψ0) + (Δ– QΨ)′ CovΔ0
-1 (Δ– QΨ) + (Y – PΔ)′ IS (Y – PΔ), ν# ≡ K + NK + S, CovΔ# ≡ (B′CB + E)-1 and Δ# ≡ (B′CB + 

E)-1 (B′CA+ED) where A ≡ Y, B ≡ P, C ≡ CovΔ0, D ≡ QΨ and E ≡ CovΔ0
-1, CovΨ# ≡ (B′CB + E)-1 and Ψ# ≡ (B′CB + E)-1 

(B′CA + ED) where A ≡ Δ, B ≡ Q, C ≡ CovΔ0
-1, D ≡ Ψ0 and E ≡ CovΨ0

-1. Finally, as above, the conventionally-censored, 
randomly-censored and conditionally censored regressions (respectively, Model Two, Model Three and Model Four) are 
executed in similar fashion to the manner described in Specification One. 

9. Models comparison strategy 

The essential input in models comparison is the marginal likelihood, estimates of which demand numerical methods 
due to the presence of censoring. The technique preferred by us is a generalization of the Gibbs-sampling technique 
proposed by (Rothenberg, 1963) who shows that a robust estimate of the marginal likelihood is available via simple 
extensions of the basic Gibbs algorithm used in parameter estimation. However, we find it convenient and considerably 
more efficient to execute models comparisons using the marginal distributions for the data as opposed to the fully con-
ditional data distributions one typically employs. Because, in the generalization to the matrix-Normal, the vector-
Normal contributions in Drèze and Richard (1984, equation (4), page 5) go through in the same way, the marginal 
distributions are easily obtained. Under Specification One the marginal distribution for Y remains 
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( ), , ;mN
S M SY | Xf I× Σψ  under Specification Two the marginal distribution is ( ), ;,mN

S M SY |Wf X I× ΗΓ Σ+ ψ  and under 

Specification Three the marginal distribution for the data is ( ), , .mN
S M SY | Pf Q I× Σ  Thus, Specification One is enacted 

according to the Gibbs-sampling algorithm already discussed. Under Specification Two we draw, respectively, from 
( )# # ,,iW

M M |Sf v× Σ ( )*1 *| , , ,mN
M Covf × Γ ΣΓ Γ  and ( )* *| ,mN

K M Covf × ψ ψ , ψΣ,
 
where S# ≡ (Γ – Γ0)′ CovΓ0

-1 (Γ – Γ0) + (Ψ – Ψ0)′ 
CovΨ0

-1 (Ψ – Ψ0) + (Y – WVΓ XΨ)′ (IS + WCovΞ0W′)-1 (Y- WVΓ-XΨ), ν# ≡ 1+K+S, CovΓ# ≡ (B′CB + E)-1 and Γ# ≡ 
(B′CB + E)-1 (B′CA + ED) where A ≡ Y, B ≡ WH, C ≡ (IS+WCovΞ0W′)-1, D ≡ Γ0, E ≡ CovΓ0

-1; and CovΨ# ≡ (B′CB + E)-

1 and Ψ# ≡ (B′CB + E)-1 (B′CA + ED) where A ≡ Y – WHΓ, B ≡ X, C ≡ (IS + WCovΞoW′)-1, D ≡ Ψ0 and E ≡ CovΨ0
-1. Final-

ly, under Specification Three the Gibbs-sampling algorithm consists of draws from ( )# # ,,iW
M M |Sf v× Σ  and 

( )* *| ,mN
K M Covf × ψ ψ , ψΣ,

 
where S# ≡ (Ψ – Ψ0)′ CovΨ0

-1 (Ψ – Ψ0) + (Y – PQΨ)′ (IS + PCovΔ0P′)-1 (Y – PQΨ), ν# ≡ K 
+ S, CovΨ# ≡ (B′CB + E)-1 and Ψ# ≡ (B′CB + E)-1 (B′CA + ED) where A ≡ Y, B ≡ PQ, C ≡ (IS + PCovΔ0P′)-1, D ≡ Ψ0 
and E ≡ CovΨ0

-1. 

10. Marginal likelihood computation 

Defining the non-observed data, collectively, as Z; defining the parameters, collectively, as Θ; and defining the ob-
served data, collectively, as Y; the joint distribution for all quantities, ƒ(Θ, Z, Y), can be written, alternatively, as ƒ(Θ, 
Z, Y) = ƒ(Θ, Z|Y) × ƒ(Y), ƒ(Y, Θ, Z) = ƒ(Y, Θ|Z) × ƒ(Z), or ƒ(Z, Y, Θ) = ƒ(Z, Y|Θ) × ƒ(Θ). Writing the joint density in 
this fashion is important because it emphasizes the important feature of the estimation yielding alternative strategies for 
computing the marginal likelihood for the data, ƒ(Y), which is the essential input into models comparisons. More spe-
cifically, using the facts that ƒ(Θ,Z) = ƒ(Z|Θ) × ƒ(Θ) and ƒ(Θ, Z|Y) = ƒ(Z|Θ, Y) × ƒ(Θ|Y), we can write ƒ(Y) = ƒ(Y|Θ, Z) 
× ƒ(Z|Θ) × ƒ(Θ) ÷ ƒ(Z|Θ, Y) ÷ ƒ(Θ|Y) and, more usefully, ƒ(Y) = ƒ(Y, Z|Θ) × ƒ(Θ) ÷ ƒ(Θ|Z, Y) ÷ ƒ(Z|Y). The strategy 
that we adopt here is the familiar one of integrating over the latent data so that, on the computationally convenient 
logarithmic scale, our estimating equation, for the marginal likelihood, is ln ƒ(Y) = ln ƒ(Y|Θ*) + ln ƒ(Θ*) - ln ƒ(Θ*|Y), 
which is the multiple-equation analog of text equation (5). In our setting, each of the components on the right-hand 
side, except the last component, is available in closed form. The quantity, ƒ(Y|Θ*), is the matrix-Normal density, eva-
luated at the point Θ = Θ*, integrated over the latent data, Z; and the quantity ƒ(Θ*|Y) is simply the conjugate posterior 
distribution for the parameters, evaluated at the point Θ = Θ*, and once, again, integrated over the latent data, Z. By 
noting that ƒ(Y, Z|Θ) = ƒ(Y|Z, Θ) × ƒ(Z|Θ), and that ƒ(Z, Θ|Y) = ƒ(Θ|Z, Y) × ƒ(Z|Y), we note that appropriate Monte 
Carlo estimates of ƒ(Y|Θ*) and ƒ(Θ*|Y) are, respectively, ( ) ( )( )* *

1

1ˆ | |G g
g

f Y f Y Z
G =

Θ ≡ ,Θ∑
 
where Z(1), Z(2), .., Z(G) denote 

draws marginally from the density ƒ(Z|Θ) and ( ) ( )( )* *
1

1ˆ | |G g
g

f Y f Z Y
G =

Θ ≡ Θ ,∑  where Z(1), Z(2), .., Z(G) denote draws from 

the density ƒ(Z|Y). Thus, a robust estimate of the marginal likelihood in the presence of latent data is available by ex-
tending procedures outlined in Chib (1998). Finally, all of the algorithmic developments are implemented in MAT-
LAB© version 7.10 with the Statistics Toolbox© installed on a modest hardware platform and the entire computer 
code and the data are available from the authors upon request. 

Appendix B 

 
Notes: The grey dotted entry depicts the line of perfect fit. The grey squares along the grey dotted line depict the observations on 
milk output from each of the households at each period in the panel. The black dots depict predictions on milk output obtained from 
the three canonical statistical forms. 

Fig. 1. Single-equation posterior predictions: milk output (liters per household per day) 
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Notes: Marginal products attributable to crossbreed animals are depicted horizontally and marginal products attributable to indigen-
ous-breed animals are depicted vertically. Gradual intensity of grey spectrum depicts gradual intensity of mass. Posterior means 
coordinates estimate (2.62, 1.30); posterior medians coordinates estimates (2.69, 1.28); ninety-five percent highest posterior density 
coordinates estimates ([1.54, 3.33], [0.98,1.77]). 

Fig. 2. Single-equation, marginal-product contours: milk output increments (liters of milk per household per day) per unit 
increment in livestock (crossbreed and indigenous-breed cows) 

 
Notes: The grey dotted entry depicts the line of perfect fit. The grey squares along the grey dotted line depict the observations on 
milk output from each of the households at each period in the panel. The black dots depict predictions on milk output obtained from 
the three extended statistical forms. 

Fig. 3. Multiple-equation posterior predictions: milk output (liters per household per day) 

 
Notes: Marginal products attributable to crossbreed animals are depicted horizontally and marginal products attributable to indigen-
ous-breed animals are depicted vertically. Gradual intensity of grey spectrum depicts gradual intensity of mass. Posterior means 
coordinates estimate (2.68, 1.30); posterior medians coordinates estimates (2.68, 1.29); ninety-five percent highest posterior density 
coordinates estimates ([1.86, 3.38], [1.04,1.64]). 
Fig. 4. Multiple-equation, marginal-product contours: milk output increments (liters of milk per household per day) per unit 

increment in livestock (crossbreed and indigenous-breed cows) 
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Notes: Values of economic loss attributable to crossbreed animals are depicted on the horizontal axis and values of economic loss 
attributable to indigenous-breed animals are depicted vertically. Gradual intensity of grey spectrum depicts gradual intensity of 
mass. Posterior means coordinates estimate (3.84, 3.37); posterior medians coordinates estimates (3.79, 3.37); ninety-five percent 
highest posterior density coordinates estimates ([3.06, 4.84], [4.84, 4.25]). 

Fig. 5. Multiple-equation, catastrophic-livestock loss contours: present economic values ($US × 1010) per unit increment in 
1997 Ethiopian national herds (all crossbreed cows and all indigenous-breed cows) 


