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its implications for depletable resource management 
Abstract 

The concept of genuine savings has in recent years become widely accepted as a dynamic welfare indicator, which first 
appeared in Weitzman (1976) and then “formalized” by Pearce and Atkinson (1993). This paper attempts to generalize 
this concept in a stochastic setting using the Dasgupta-Heal-Solow growth model under the Merton (1975) type of 
population growth uncertainty. It is shown that the formula for genuine savings under uncertainty also involves a va-
riance component reflecting the welfare loss from risk aversion (cf. Li and Lofgren, 2012). Moreover, the welfare im-
plications of the risk-adjusted genuine savings on depletable resource management are explored. 
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Introduction © 

It has been known for quite a while that genuine 
savings are a welfare indicator in a comprehensive 
deterministic dynamic growth model of the Ramsey 
type. More precisely, growth in the aggregate value 
of net investments of all relevant capital stocks indi-
cates welfare improvement. The concept shows up 
in Weitzman (1976) for the first time in the proof of 
a main theorem on the proportionality between the 
Hamiltonian and the present value of future utilities. 
Later on, its implications for sustainability are ex-
plored by Arrow, Dasgupta and Maler (2003), 
Asheim (1994), Heal and Kristrom (2005) and 
Pearce and Atkinson (1993), among others. The 
measure has been popularized by Hamilton (1994), 
and used in practice by, among many others, Hamil-
ton and Clements (1999) and Atkinson and Hamil-
ton (2007). The purpose of this paper is to general-
ize this welfare measure in a stochastic context and 
explore its implications for depletable resources 
management. We will use a stochastic dynamic 
growth model with capital goods, a man-made capi-
tal and an exhaustible resource (c.f. Dasgupta and 
Heal, 1974; Hartwick, 1977; Solow, 1974; and Li 
and Lofgren, 2012) to show how the standard ge-
nuine savings formula from a deterministic setting 
should be completed by a variance component. Al-
though the model is simple, the derivations are 
enough to understand how the result generalizes to a 
multi-sector version of the model under uncertainty.  

The remaining parts of the paper is structured as 
follows. Section 1 presents the basic concept of 
genuine savings in a deterministic setting and dis-
cusses its welfare significance. Section 2 derives the 
main result on the risk adjusted concept of genuine 
savings in a stochastic growth model framework, and 
shows how the Weitzman foundation can be genera-
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lized. Section 3 explores the welfare implications of 
the result for depletable resource management, and 
the final section concludes. 

1. The concept of genuine savings 

To derive the concept of genuine savings in its most 
general form, we take advantage of the standard multi-
sector dynamic general equilibrium growth model. Let 
C(t) denote a vector of comprehensive consumption 
goods at time t, including environmental services and 
other externalities, and U(C(t)) the utility derived from 
consumption. Assume that the utility function U satis-
fies the usual regularity conditions, and let K(t) denote 
a vector of all capital stocks at time t, including natural 
and environmental assets. The vector of net invest-
ments is denoted by ( ) ( )I t K t= & , i.e. the change in 
capital stocks over time. The society’s objective is to 
maximize intertemporal welfare (the present dis-
counted value of today’s and future utilities) i.e. 

( ) ( ){ }
( )

0,
max ( ( ))exp

C t I t
U C t t dtθ

∞
−∫     (1) 

subject to the initial condition K(0) = K0, stock dy-
namics ( ) ( )K t I t=& , the terminal stocks lim ( ) 0,t K t→∞ ≥

 
and the feasibility constraint (C(t), I(t), K(t)) ∈ A(a), 
where A(a) is a convex attainable possibility set sub-
ject to certain institutional constraints. The pure rate of 
time preference is assumed to be positive i.e. θ > 0. 
Suppose that { }0

*( ), *( ), *( )C t I t K t ∞  is the unique 
solution to problem (1). Then, by the maximum prin-
ciple, the pair { }*( ), *( )C t I t  maximizes the cur-
rent value Hamiltonian ( , , ) ( ( ))H C I K U C t= +  

( ) ( )t I t+Ψ  conditional on the capital stock K*(t) at 
each time t, i.e. subject to the initial condition 

0(0)K K= , stock dynamics ( ) ( )K t I t=& , the terminal 
stocks lim ( ) 0t K t→∞ ≥ , and the feasibility constraint 
( ( ), ( ), ( )) ( )C t I t K t A α∈ , where ( )A α  is a convex 
attainable possibility set subject to certain institu-



Environmental Economics, Volume 4, Issue 3, 2013 

 21 

tional constraints. The pure rate of time preference 
is assumed to be positive i.e. 0>θ . Suppose that 

0{ ( ), ( ), ( )}C t I t K t∗ ∗ ∗ ∞  is the unique solution to prob-
lem (1). Then, by the maximum principle, the pair 
{ ( ), ( )}C t I t∗ ∗  maximizes the current value Hamilto-
nian ( , , ) ( ( )) ( ) ( )H C I K U C t t I t= + Ψ , conditional 
on the capital stock ( )K t∗  at each time t , i.e.  

( ( ), ( ), ( ))

( ) ( ( )) ( ) ( )
max ( ( )) ( ) ( )

C t I t K t A

H t U C t t I t
U C t t I t

∗ ∗ ∗

∈

= + Ψ =
= + Ψ ,                  (2) 

where ( )tΨ  is a vector of shadow prices of capital, 
satisfying the Euler equation ( ) ( ) ( ) /t t H t Kθ ∗Ψ − Ψ =−∂ ∂& . 
By advocating the dynamic envelope theorem, Weitz-
man (1976) derived the following result  

( ) ( ) ( )H t t I tθ∗ = Ψ&       (3) 

which together with equation (2) yields 
( ) [ ( ) ( ( ))]H t H t U C tθ∗ ∗ ∗= −& . The solution to this 

differential equation reads  
)()( tWtH ∗∗ = θ ,      (4) 

where  

( ) ( ( ))exp( ( ))
t

W t U C t s t dsθ
∞∗ ∗= − −∫               (5) 

denotes the maximal intertemporal welfare at time t, 
i.e. the comprehensive wealth. The relationship in 
(4) is the well-known Weitzman foundation, namely 
the maximized Hamiltonian in (2) corresponds to 
“the interest on wealth” or the constancy-equivalent 
of future utilities. Since the rate of time preference 
θ  is assumed to be positive, the equation is (4) 
implies growth in the flow value of the Hamiltonian 

( )H t∗  and that in the stock value of ( )W t∗  is also 
proportional to each other, and therefore growth in 
the Hamiltonian value over time ( )H t∗&  indicates 
welfare improvement/sustainability at time t such 
that ( ) 0W t∗ >& . It is worth mentioning that while the 
main result in and Weitzman (1976) and Weitzman 
(2003) was the correspondence theorem in (4), the 
welfare significance of (3) was left aside as an in-
termediate step in the proof of the theorem. In 
another influential paper by Pearce and Atkinson 
(1993), the aggregated value of net investments in 
all relevant capital stocks i.e. ( ) ( )t I tΨ  in (3) was 
formalized as genuine savings. Since the pure rate 
of time preference 0θ > , a positive value of ge-
nuine savings implies growth in the maximized 
Hamiltonian value ( ) 0,H t∗ >&

 indicating welfare 
improvement/sustainability such as ( ) 0W t∗ >& . 
Loosely speaking, this means that the future pros-
pect as seen from tomorrow is better than that of 
today and in an intergenerational context this can be 

interpreted as that development from this to the next 
generation is sustainable. 

2. Genuine savings in a stochastic context 

In this section, we analyze the genuine savings issue 
under uncertainty using the Dasgupta-Heal-Solow 
growth model (Dasgupta and Heal, 1974; Solow, 
1974) with a homogenous capital good and an ex-
haustible natural resource. In the same vein as in Mer-
ton (1975), we consider a stochastic population growth 
and explore the degree of such uncertainty on capital 
formation, resource depletion and dynamic welfare. 
We assume that the production function (net of depre-
ciation) ))(),(),(( tLtEtKF  is homogenous of degree 
one, with K(t) as the capital stock, E(t) as the input 
of extracted natural resource, and L(t) labor input at 
time t. As shown in Solow (1974), in a deterministic 
setting, the capital stock evolves according to  

( ) ( ( ), ( ), ( )) ( )
( ) ( ( ), ( ),1) ( ),

K t F K t E t L t C t
L t F k t e t C t

= − =
= −

&

    (6) 

with 0)0( 0 >= KK , where dttdKtK /)()( =& , and C(t) 
denotes consumption. The last equality follows from 
homogeneity of the production function with 

)(/)()( tLtKtk = , )(/)()( tLtEte = , )(/)()( tLtCtc =  
defined as the per capita value of capital, resource 
input and consumption, respectively. The dynamics 
equation for the exhaustible resource is simply  

)()( tEtX −=& ,       (7) 

with 0)0( 0 >= XX . Let the population at time t  
be )exp()0()( ntLtL =  with an initial size 0)0( >L  
and a growth rate of n. Then, the per capita capital 
and resource dynamics equations can be readily 
derived as  

)()()(
)()())(),(()(

tnxtetx
tctnktxtkftk

−−=
−−=

&

&
    (8) 

with ),())0(),0(( 00 xkxk = , where ( ( ), ( ))f k t x t =  
( ( ) / ( ), ( ) / ( ),1)F K t L t X t L t=  denotes the per capita 

production function (net of depreciation) at time t . 
The per capita production function is assumed to 
satisfy the Inada conditions 0(.)>kf , 0>xf , 0<kkf , 

0<xxf  and 02 >− kxxxkk fff , where subscripts denote 
partial derivatives. To introduce uncertainty in the 
model, we now assume that the growth of the labor 
force follows a geometric Browning motion1 of the 
following form (Merton, 1975):  

                                                      
1 Geometric Browning motion is used to guarantee that the labor force 
remains positive. Note, however, that this does not result in an equation 
for the capital and resource stocks per capita that is Geometric Brow-
nian motion. 
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( ) ( ) ( ) ( ),dL t nL t dt L t dz tσ= +     (9) 

where )(tdz  is the stochastic differential of a simple 
Wiener process. The drift of the process in (9) is go-
verned by the expected rate of labor growth n . In 
other words, over a short interval of time dt , the pro-
portionate change of the labor force ( LdL / ) is nor-
mally distributed with mean dtn)(  and variance 

dt2σ . We can now use Ito’s lemma to transform the 
uncertainty of growth in the labor force into uncertain-
ty about the growth of the per capita capital and re-
source stock. By a straightforward derivation, we 
obtain  

2

2

( ) [ ( ( ), ( )) ( ) ( ) ( )] ( ) ( )

( ) [ ( ) ( ) ( )] ( ) ( )

dk t f k t x t c t n k t dt k t dz t

dx t e t n x t dt x t dz t

σ σ

σ σ

= − − − −

= − − − −  
(10) 

with ),())0(),0(( 00 xkxk = . In other words, we have 
translated uncertainty with respect to the growth rate 
of the labor force into uncertainty with respect to the 
capital and the resource per unit of labor and, indi-
rectly, to uncertainty with respect to output per unit 
of labor, ))(),(()( txtkfty = . The optimization 
problem as of date t  is to find an optimal consump-
tion policy, and the stochastic Ramsey problem is 
typically written as  

( ), ( )
max ( ( )) exp( ( ))

T

t tc s e t
E u c s s t dsθ− −∫               (11) 

subject to the initial conditions tktk =)(  and 

txtx =)(  and the dynamics equations in (10) for all 
ts ≥ , where tE  denotes the mathematical expecta-

tion taken at time t . The function  ))(( scu  is the 
instantaneous utility function at time s  which is 
assumed to be twice continuously differentiable, and 

0>θ  is the pure rate of time preference. The upper 
integration limit T is the first exit time from the 
solvency set G i.e. inf{ ; ( ), ( ) }s sT s t k x Gω ω= ≥ ∉  
with { ( ), ( ); 0, 0}s s s sG k x k xω ω= > > . In other 
words, the process is stopped when the capital stock 
becomes non-positive (when bankruptcy occurs). In 
most contexts it is realistic to assume that the op-
timal control process )(sc∗  for ts ≥  is condi-
tioned solely on past observed values of the state 
process )(sk  and )(sx . In such a case, mathemati-
cians would say that the control process is adapted 
to the state process. Here, it is assumed that the op-
timal control function is a time autonomous Markov 
control of the following type ( ) ( ( ), ( ))c s c k s x s∗ =  
meaning that the control at time s  only depends on 
the state of the system at this time. In particular, it 

does not depend on the starting point or time as a 
separate argument. Then, the optimal value function  

( , ( ), ( )) ( ( ))exp( ( )) ,
T

t t
V t k t x t E u c s s t dsθ∗= − −∫     

 (12) 

will also be time-autonomous as stated in the fol-
lowing lemma. 

Lemma. ( , ( ), ( )) (0, (0), (0))V t k t x t V k x=  for )0()( ktk =  
and ( ) (0)x t x=  where the endogenous time spent in 
the solvency set G is tTTG −= , q.e.d. 

Proof. The optimal control is a Markov control, i.e., it 
depends only on the initial stock ))(),(( txtk  at time 
t . Let ts −=τ , then we can express the optimal con-
sumption stream by )()( tcsc += ∗∗ τ  with 0=τ  for 

ts =  and GT=τ  for Ts = . The time spent in the 
solvency set tTTG −=  for a given experiment 

ts−=ωωτ  is endogenous and the solvency set does 
not change due to the rescaling. Therefore, we have  

( , , ) ( ( ), ( ))exp( ( ))
T

t t
V t k x E u k s x s s t dsθ∗= − − =∫

0 0
( ( ), ( ))exp( ) (0, , ).GT

E u k x d V k xτ τ θτ τ∗= − =∫          (13) 

The second equality follows since substituting 
( ) ( )k s k tτ= +  and ( ) ( )x s x tτ= +  into the time auto-

nomous stochastic differential equation (10), we 
obtain a process that starts at (0, , )k x  with the same 
probability law on an equivalent solvency set as the 
process that starts at ( , , )t k x , and the optimal control 
is Markov. The third equality follows from the defi-
nition of a value function. 

Since the value function does not explicitly depend 
on the initial calendar date t , we redefine it by 

( ( ), ( )) ( , ( ), ( )).W k t x t V t k t x t=                            (14) 

According to the principle of optimality, the value 
function which should satisfy the following Bellman 
equation  

0 max{ ( ) ( , ) ( , )},c

c
u c W k x A W k xθ= − +               (15) 

with cA  as the backward operator for a given c  
such that:  

1 1
( , ) [ , ] [ , ]

2
kk kxc

t k x

xk xx

W Wdk dk
AW k x E W W dk dx

W Wdx dxdt
= +

⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤
⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥⎩ ⎣ ⎦ ⎣ ⎦⎭⎣ ⎦  

(16) 

where subscripts denote partial derivatives, i.e. 
/iW W i= ∂ ∂  for xki ,= , and 2 /ijW W i j= ∂ ∂ ∂  for 

xki ,=  and xkj ,=  are the first and second-order 
partial derivatives of the value function to the capi-
tal and resource stocks, respectively. Given the 
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optimal consumption policy )(tc∗ , a light rear-
rangement of equation (15) leads to the following 
proposition. 

Proposition 1. Along the optimal growth path )(tc∗ , 
the interest on intertemporal welfare is equal to a 
risk-adjusted value of the current value Hamiltonian  

( , ) ( ) ( , ),cW k x u c A W k xθ ∗= +                            (17) 

i.e. the maximum expected sustainable utility over time. 
The proposition is a generalized version of Weitz-
man foundation (4) with an extra variance compo-
nent, the last term in (16), being added to the deter-
ministic Hamiltonian function (cf. Aronsson and 
Löfgren, 1995). Note that for this particular model, 
the shadow price vector ( )tΨ  in (4) is given by 

),( xk WW . To derive a dynamic welfare measure 
like the genuine saving, we follow Weitzman (1976) 
and Arrow, Dasgupta and Mäler (2003) by differen-
tiating the value function ))(),(( txtkW  with re-
spect to time using the Leibniz rule to obtain  

( ( ), ( )) ( ( )) ( ( ), ( )).W k t x t u c t W k t x tθ= − +&            (18) 

Now, using the differential equation in (18), we obtain 
after substituting for ),( xkWθ  in (17) the following 
proposition on the generalized genuine saving. 

Proposition 2. The risk-adjusted genuine savings 
i.e. the expected rate of change in the value function 
at concurrent time t  can be expressed as  

( ( ), ( )) ( , )

1 1
[ , ] [ , ] .

2

c

kk kx
t k x

xk xx

W k t x t A W k x

W Wdk dk
E W W dk dx

W Wdx dxdt

= =

= +
⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤
⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎩ ⎭

&

   (19) 

Note that the row vector ],[ xk WW  are the account-
ing prices per unit of capital and resource stock, and 
thus the first term after the second equality sign 
corresponds to the conventional genuine savings 
under certainty i.e.  

2 2

1
[ , ]

[ ( , ) ( )] [ ( )],

t k x

k x

dk
E W W

dxdt

W f k x c n W e nσ σ

=

= − − − + − − −

⎡ ⎤
⎢ ⎥⎣ ⎦  (20) 

and the second term  

{ }2 2 2 2 2

1
[ , ]

2

1
2

2
,

kk kx
t

xk xx

kk kx xx

W W dk
E dk dx

W W dxdt

W k W kx W xσ σ σ

=

= + +

⎧ ⎫⎡ ⎤ ⎡ ⎤
⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎩ ⎭

               
(21) 

is the variance component originated from Ito calcu-
lus. It can be readily shown that the matrix the ma-
trix ijW  for xki ,=  and xkj ,=  is negative defi-

nite for “well-behaved” maximization problems 
with regular utility and production functional 
forms1. To satisfy this condition, it is sufficient for 
the utility function to be jointly concave in all con-
sumption goods, and the production to be jointly 
concave in all relevant capital stocks. This means 
that we would under a stochastic growth problem 
expect that a positive net investment value would 
not be enough to indicate a local welfare improve-
ment. The value of net investment has to be large 
enough to compensate for the risk aversion loss 
from the uncertainty in order for the dynamic wel-
fare not to decline over time. Loosely speaking, if 
we regard the terms kkW2

1 , xxW2
1  and kxW  as the 

“prices” of risk and 22kσ , 22 xσ  and kx2σ , re-
spectively, as the “quantities” of risk, then the whole 
expression on the right-hand-side of (19) can be 
interpreted as a generalized genuine savings meas-
ure. A reasonable economic interpretation of this 
result is that, under the presence of uncertainty, 
precautionary savings (cf. Leland, 1968; and Tur-
novsky and Smith, 2006) corresponding to the abso-
lute value of the variance component are required in 
order to sustain the same dynamic welfare as in the 
deterministic case. 

3. Welfare implications on depletable resource 
management 

In the literature of natural resource economics, two 
important rules have been proposed for efficient re-
source utilization (Hotelling’s rule) and sustainable 
development (Hartwick’s rule). For a cake-eating 
economy with some fixed initial stock such as oil and 
minerals, Hotelling’s rule says that along an optimal 
resource extraction path, the user cost per unit of the 
stock, Wx i.e. the net price of the extracted resource 
after the marginal extraction cost being accounted for 
should grow at the same rate of the interest rate. For 
the productive economy with a depletable resource 
described above with the Dasgupta-Heal-Solow 
model, Hartwick’s rule indicates that when the de-
terministic genuine savings as in equation (20) are 
equal to zero i.e. 0// =+ dtdxWdtdkW xk , a constant 
level of consumption c  and thereby utility )(cu  
can be sustained. In other word, if the cost of re-
source depletion 0/ <dtdxWx  for 0/ <dtdx  can 
be compensated by a corresponding increase in the 
value of the productive capital k  namely  

/ 0kW dk dt > , then a constant level of consumption 
and utility can be sustained (c.f. Hartwick, 1977). Of 
course, the rule with zero genuine savings should be 

                                                      
1 In case that σ = 0, the variance term would vanish and the result col-
lapses to the deterministic genuine savings measure. 
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followed through the entire time path over the future 
(cf. Asheim et al., 2003). In the presence of uncer-
tainty, however, the simple Hartwick investment 
rule with / / 0k xW dk dt W dx dt+ =  is obviously not 
sufficient to sustain consumption of utility. With the 
variance component as in (21) being negative as 
touched upon above, the deterministic-equivalent 
part of the genuine savings amount has to be en-
hanced for sustainable development via for example 
slower resource extraction or faster capital accumu-
lation. Concerning the economics of sustainable 
development, it is worth mentioning that the interest 
has been shifted from sustaining the narrow instan-
taneous utility )(cu  time to sustaining the more 
general intertemporal welfare ))(),(( txtkW  over 
time. A direct welfare implication of Proposition 2 
is the following local-in-time sustainability result. 
Proposition 3. If the deterministic part of genuine 
savings given in (20) can, at least, compensate for 
the risk-aversion loss given in the variance compo-
nent in (21) such that the sum of them as in (19) is 
non-negative, then dynamic welfare ))(),(( txtkW  
can be sustained over an infinitesimal period dt  
from a concurrent date t  i.e. the development at 
time t  is sustainable. 

Note that this proposition means that the prospect as 
of time dtt +  may look better (at least not worse) 
than that of time t  in terms of the present value of 
current and future utilities if the generalized genuine 
savings in (19) at time t  are non-negative. Howev-
er, it does not imply that the instantaneous utility 
would follow the same trend. An increase in the 
wealth-like measure ( ( ), ( ))W k t x t  at time may be per-
fectly consistent with a short-term sacrifice in con-
sumption i.e. ( ) ( ) 0c t dt c t+ − <  combined with some 
larger increase in ( )c s  in some future dates dtts +> . 
With a greater wealth ))(),(( txtkW , the future con-
sumption set would be larger and if a resource alloca- 
 

tion over time would be feasible, then in principle the 
instantaneous utilities would be larger. If the genera-
lized genuine savings in (19) at time t are non-
negative over the whole future, the  development 
becomes globally sustainable over time. 

Conclusion 

In this paper, we have attempted to generalize the 
concept of genuine savings in a stochastic growth 
framework and explore its welfare implications. 
This is accomplished by using the Dasgupta-Heal-
Solow model with two capital stocks, a man-made 
capital good and a natural resource stock that is 
depletable. To simplify the analysis, we take ad-
vantage of the Merton stochastic population growth 
to introduce uncertainty in the per capita (man-
made) capital and resource stocks. The derived 
results are, however, general for multi-sector 
growth models under uncertainty, provided the 
regularity conditions on utility and production 
functions are satisfied. If the value function, de-
fined as the expected present value of future utili-
ties, is jointly concave in all capital stocks, then the 
risk-related variance component associated with 
the generalized genuine savings would always be 
negative. Thus, to achieve sustainable develop-
ment, more precautionary savings are needed to 
compensate for the welfare loss from risk aversion. 
Concerning the well-known Hartwick’s rule, the 
result here means that it is not sufficient to re-
invest the resource rent in the productive capital 
stocks to retain a constant utility level over time. 
As long as the uncertainty is present, the conven-
tional genuine savings component has to be posi-
tive, i.e. the rate of capital accumulation should be 
faster than that in the deterministic case to com-
pensate the loss in resource depletion. Since the 
variance component term depends on the degree of 
uncertainty, any measure that can reduce the fluc-
tuation of the per-capita capital and resource stocks 
also improves welfare and promotes sustainability. 
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