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Abstract 

Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It 
is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River 
basin management is an essential area that involves the management of upstream, river inflow and outflow including down-
stream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its man-
agement involves a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing 
users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary 
algorithms are very useful in solving this kind of complex problems with ease. They are easy to use, fast and robust with 
many other advantages. Many applications of evolutionary algorithms, which are population-based search algorithms, are 
discussed. Different methodologies involved in the modelling and simulation of water management problems in river basins 
are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. There-
fore, appropriate algorithms are suggested for diffe-rent methodologies and applications based on results of previous studies 
reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and 
easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right applica-
tion areas, can suggest superior solutions for river basin management, especially in reservoir operations, irrigation planning 
and management, streamflow forecasting and real time applications. The future directions in this work are suggested. This 
study will assist decision makers and stakeholders on the best evolutionary algorithms to use in varied optimization issues in 
water resources management. 
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Introduction © 

Water is a critical and prime resource needed by 
human and the environment so as to survive. Hence, 
it is necessary to sustainably manage it. There are a 
lot of complexities involved about its usage such as 
increased population of the world utilizing the little 
available resource, constant oil spillage and the fear 
of demand being higher than future supplies. Cli-
mate change which increases drought and seasonal 
temperatures will challenge water resources in the 
near future. Therefore, a heightened need is created 
for water resources to be managed in a sustainable 
and cost effective way since water resources are 
vulnerable (Zheng et al., 2010). Managing a river 
basin is tantamount to survival in the world, even 
the social, economic and environmental well-being 
of a country is improved. Hence, greater attention 
must be given with regards to it. Water resources are 
known to be used in various ways to satisfy human 
and environmental needs such as industrial, hydro-
power, recreation, irrigation and flood control. River 
basins, which hold a vast amount of water available 
to sustain the mentioned needs, are faced with lots 
of problems such as shortages in the supplies of wa-
ter, high demand by the society and flooding, hence, 
it must be managed effectively and efficiently. It, 
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then, becomes essential that a process of continuity 
and sustainability be imbibed for optimum utiliza-
tion of water resources [1]. A river basin consists of 
integrated planning and management unit, which 
controls, to some extent, other natural components 
such as wildlife and vegetation (Cai et al., 2003). As 
humans, we depend on water to sustain our varied 
needs. River basins, as a unit, usually present a high 
management problem ranging from different water 
sources to a mix of conflicting users and multiple 
reservoirs. Hence, river basin management is an 
essential approach to sustainable water use and dis-
tribution of resources amongst competing users [2]. 
One of the techniques for solving water resources 
problems in our society is to apply evolutionary 
algorithms. Evolutionary algorithms ascertain op-
timal solutions from a population rather from single 
point thereby placing it above other optimization 
techniques for solving real world issues [1]. 

A review on performance appraisal on application 
of evolutionary algorithms to river basin manage-
ment is the crux of this paper. The structure of the 
paper is as follows: Section 1 describes river basin 
management, Section 2 gives a brief overview of the 
concept of optimization, Section 3 presents evolu-
tionary algorithms with more emphasis on genetic 
algorithms and differential evolutionary algorithm 
which are some of the mostly used algorithms for 
water resources management, Section 4 discusses 
reservoir operations and optimization of reservoir 
operations using different evolutionary algorithms. 
A conclusion is drawn in Final section. 
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1. River basin management 

Water demand is anticipated to double by 2035 and an 
estimate of two-thirds of the population of the world is 
expected to be faced with water scarcity for the next 
several decades. As such, numerous river basins 
around the world are to meet environmental needs 
associated with the increase in population and the huge 
demand for water (Dawadi and Ahmad, 2012). River 
basins are defined by river basin organizations in In-
dia, as a ‘geographical unit’ that encloses an area 
drained by channels and streams which feed into a 
river at some point. Precipitation that falls on these 
river basins will be used by living organisms and 
plants, or it either evaporates, sinks into a river or 
ground. An assumption is also made that river basins 
operate on a steady state and can be handled by control 
systems like large dam (Asia, 1999). River basins can 
be considered the central unit of natural runoff 
processes in land region (Tsujimoto et al., 2012). 
Therefore, it is essential to coordinate all competing 
demands for water through the management of river 
basins. This can be achieved by ensuring that this wa-
tershed retains its ability to hold water. It is also impor- 
 

tant that water usage is channelled to directions which 
are socially equitable, environmentally sustainable and 
economically productive. River basins are an enclosed 
catchment of water that is used to store water during a 
season of rainfall to serve different sectors for indu-
strialization, population use and agricultural activities. 
Neither water users nor water managers have the in-
centives to conserve water rather it is either overused 
or wasted. Reservoirs are created to store away this 
scarce resource so as to be utilized when necessary. 
Reservoirs plays an essential role in water resources 
development [3]. Figure 1 shows a reservoir behind a 
constructed dam. Reservoir operations involve an in-
tricate decision-making processes that earn maximum 
benefit from diverse objectives such as irrigation, 
supply of drinking water to municipality, control of 
flood and hydropower generation. They are large scale 
non-linear optimization problems that involve hydro-
power, hydrology, reliability, agriculture, environment, 
risk and uncertainties. Its purpose is to align the spatial 
water availability and the natural stream flow [4]. 
Nevertheless, these objectives compete and conflict 
with each other thereby making it a difficult decision 
system [5].  

 
Fig 1. A reservoir with dam constructed [6] 

2. Optimization 

Bandyopadhyay and Saha [7] define optimization as 
the study of some kind of problems where one or 
more objectives which are functions of some real or 
integer variables are minimized or maximized. 
Within an allowed set, proper values of real or in-
teger variables are chosen in a systematic way. Op-
timization goals are usually to find best possible 
solutions to problems. Civicoglu [8] suggests that 
 

optimization algorithms aim to identify the best 
value for a system’s parameter in numerous circums-
tances. Olofintoye and Adeyemo [9] put it simply as 
an attempt to maximize a system’s desired property 
and concurrently minimize its adverse characteristics. 
Optimization design is optimum when cost is lowest 
throughout all feasible design region. Choices of opti-
mization design are limited to resource constraints 
such as material and labor. Optimization can be com-
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pared to human beings striving for perfection in all 
areas of life. Most objectives involve either single or 
multiple. Multiple objectives are conflicting in nature 
and comprise real world problems while single objec-
tives comprise identifying the maximum and mini-
mum of a single variable purpose [10]. A particular 
solution cannot be obtained in multi-objective optimi-
zation problem, instead, a range of good solutions 
recognized as Pareto optimal solutions exist. Pareto 
optimal set of solutions are such that movements are 
seen from one point to a new point in the set, and at 
least one objective function advances and the other 
deteriorates [10].  

3. Evolutionary algorithms (EAs) 

Inspired by various mechanisms of biological evolu-
tion, evolutionary algorithms (EAs) are the best 
established system theoretic class of metaheuristics 
that are appropriate to solving water resources prob-
lems and challenges [11]. They are motivated by 
diverse mechanisms of biological growth (e.g., mu-
tation, crossover, selection and reproduction) (Nick-
low, Reed, Savic, Dessalegne, Harrell, Chan-Hilton, 
Karamouz, Minsker, Ostfeld, Singh, Zechman, 
2010). Evolutionary algorithms are also stochastic 
search techniques which imitate the same characte-
ristics as natural biological evolution to examine 
optimal solutions in a certain problem [12]. Algo-
rithm performances are usually defined in terms of 
effectiveness, efficiency, reliability and robustness. 

EAs are multi-objective optimization methods that 
deal with discovering solutions to problems with 
several objectives. Optimality of many solutions 
known as Pareto optimal solutions are considered 
because none of the objectives are considered better 
than the other [13]. Evolutionary algorithms allow 
the discovery of a whole set of Pareto optimal solu-
tions in a single run of the algorithm. Furthermore, 
EAs are less prone to the continuity or shape of the 
Pareto front (Ghosh & Dehuri, 2005). Several types 
of evolutionary algorithms exist, including genetic 
algorithm (GA), evolution strategies, learning clas-
sifier systems, evolutionary programming and ge-
netic programming (GP). GAs have been widely 
accepted as the dominant optimization methods 
[14]. Though all the above EAs are stimulated by 
the same natural evolution, each of them constitutes 
different approach. EAs procedure includes initiali-
zation, mutation, crossover and selection [2]. 

Evolutionary algorithms have the characteristics of 
displaying an adaptive behavior. This allow (EA) to 
handle high dimensional non-linear problems with-
out precise knowledge of the problem structure. EAs 
are very robust to time-varying behavior but can 
show low speed of convergence.  

EAs have the benefits of conceptual simplicity, can 
be broadly applied, outperform classic approaches 
on real problems, likely to utilize knowledge, cros-
sbreed with other methods, parallelism in search 
method, strong to dynamic changes, used in adapting 
solution to varying circumstance, proficiency for self-
optimization and can solve problems with no identifi-
able solutions [15]. EAs also have the ability to si-
multaneously optimize contradictory objective func-
tions [16]. Some disadvantages of evolutionary algo-
rithms include high computational demand, difficult 
adjustment of parameters, heuristic principle [17].  

Evolutionary algorithms have been mostly studied by 
researchers and are, consequently, applied to river 
basins. For two decades, evolutionary algorithms 
have been used in a number of water resources stu-
dies such as hydrologic and fluvial models [18], ur-
ban drainage and sewage treatment systems [19], 
water supply and sewage treatment systems [20], 
water distribution systems  [21, 22] and subterranean 
systems [23], as highlighted in a review by [24]. 

In the past, some evolutionary algorithms previously 
used to optimize multi-objective issues pertaining to 
reservoir operations included the dynamic pro-
gramming (DP), genetic algorithm (GA), differen-
tial evolution (DE), linear programming (LP) and 
non- linear programming (NLP), stochastic dynamic 
programming [25], ant colony optimization (ACO), 
particle swarm optimization (PSO) and simulated 
annealing [4]. Many researchers have studied reser-
voir operations using single and multi-objective 
techniques [4, pp. 26-32]. In all these studies, reser-
voir problems were solved using varied optimization 
techniques. Particularly, genetic algorithm and dif-
ferential evolution algorithm have been widely used 
in optimizing reservoir operations. Genetic algo-
rithm (GA) has been demonstrated to be superior to 
most traditional methods like linear, non-linear and 
dynamic programming. For the purpose of this 
study, genetic algorithm (GA) and differential evo-
lution (DE) will be discussed. 

3.1. Genetic algorithm (GA). Genetic algorithm 
was defined by Wardlaw and Sharif [33] as explora-
tion algorithm which is based on natural selection 
mechanisms and derived from natural evolution 
theory. GA is a strong method for probing the best 
possible solutions to compound problems which 
uses guided random choice as a tool to control the 
search in complex search spaces. It represents solu-
tions with chromosomes or strings of variables 
which show the genetic formation of individuals 
using the principle of natural genetic system. GA 
uses some problem dependent knowledge, known as 
fitness function, to direct its search to favorable 
areas [7]. The genetic operators used are selection, 
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mutation and crossover. Applying GAs to water 
resource problems may cause the chromosomes that 
are generated to fail in meeting the system con-
straints such as capacity and continuity [33]. Binary 
encoding of the solution parameters was the basis on 
which GA was developed. Application of the penal-
ty function approach will reduce the chromosomes 
fitness so as to meet constraints [34]. 

3.2. Basic principles of genetic algorithm. Modelled 
on mechanism of natural genetic system, GA exploits 
historical data to speculate on new offspring with im-
proved performance. A coding parameter set of the 
GA allows it to differ from most of the usual optimiza-
tion and search procedures. GA works concurrently 
with multiple points and also computes search through 
sampling using only the payoff data. it conducts search 
using stochastic operators to produce new solutions. 
When used as an optimization technique, the search 
space may not be continuous so GA has minimal 
chance of getting stuck at a local optimum [7]. An 
important trait of GA adoption in water resources op-
timization is the ‘population-by-population approach 
when compared to the ‘point-by-point’ approach em-
ployed by classical optimization techniques such as 
dynamic programming (DP) and linear programming 
(LP), where the optimal solutions are derived. To ap-
praise the fitness or suitability of the derived solutions, 
GA needs only a suitable objective function that al-
lows it to map from chromosomal to solution spaces 
[7]. The basic principle of GA is the natural selection 
or survival of the fittest disposition. GA has the disad-
vantages of slow repetitions to reach global optimal 
solution, getting stuck at a local optimum and also 
problem of slow convergence. Examples of improved 
genetic algorithm include chaos genetic algorithm 
(CGA), non-dominated sorting genetic algorithm 
(NSGA) and non-dominated sorting genetic algorithm 
II (NSGA-II). CGA was proposed by Cheng and 
Wang [35]. The characteristics show that GA mechan-
ism did not change but the coefficient of adjustment 
and search space are continually reduced. CGA also 
has fast convergent velocity, maintains diversity of GA 
and has powerful search capabilities. NSGA, as sug-
gested by Goldberg in Srinivas and Kalyanmoy [36], 
shows that the algorithm can sustain uniform and sta-
ble reproductive prospect across non-dominated indi-
viduals. NSGA results show that it can be used to find 
multiple Pareto optimal solutions but the outcome 
involves a lot of criticisms such as high computational 
complexity of non-dominated sorting, lack of exclusiv-
ity and the need for stipulating the parameter to be 
shared [37]. 

In their study, Deb and Pratap [37] suggested an 
advanced version of NSGA and discovered that 
NSGA-II was able to converge better in an obtained 
non-dominated fronts. It was also able to sustain an 

enhanced spread of solutions. NSGA-II also has the 
properties of parameterless approach, simple, effi-
cient constraint-handling methods, elitist strategy 
and fast non-dominated sorting procedures [37]. 

3.3. Differential evolution algorithm. Differential 
evolution algorithm is an evolutionary algorithm 
introduced by Storn and Price in 1995 [38]. DE was 
proposed to achieve faster convergence and robust-
ness in optimization problems. DE algorithm is dif-
ferent from other EAs at the recombination and muta-
tion stages. Weighted difference amongst solution 
vectors to perturb the population is used by differen-
tial evolution but in GAs, perturbation occurs accord-
ing to a random quantity. Two operators used for 
DEs include the mutation and crossover. The cros-
sover operator used can either be exponential or 
binomial. The perturbation is usually made in any 
randomly chosen vector (rand) or in the best vector 
of the previous generation (best). The basic prin-
ciple of DE algorithm is survival of the fittest [39].  

According to Reddy and Kumar [14], DE technique 
has proven to be numerical, robust and faster for nu-
merical optimization problems. It is able to optimize 
all discrete and continuous variables, integers and can 
handle all nonlinear objective functions with nontrivial 
solutions [14]. DE has the advantages of handling 
difficult problems with interdependencies amongst 
input parameters, devoid of computational cost and 
operation complexities. DE also retains correlated self-
adaptive mutation step sizes so as to make quick 
progress in optimization. An example of an improved 
version of DE is multi-objective differential evolution 
(MODE), proposed by Reddy and Kumar [14] which 
was compared with NSGA-II so as to validate the 
standard performance measures and was tested with 
some benchmark problems. Results showed that 
MODE technique can be a substitute to generate op-
timal adjustments in multi-objective optimization of 
water resources structures. 

DE ignores the use of some probability functions to 
present variations to the population but uses altera-
tion between randomly selected individuals as the 
basis of random variations for a third vector known 
as the target vector. This is the reason why the trial 
solutions that will contest among the parent solu-
tions are produced by adding the weighted differ-
ence vectors to the target vector [10]. 

Differential evolution algorithm (DE) varies from 
genetic algorithm (GA) in certain ways: 

1. A new offspring in DE can only replace a ran-
domly selected vector from the population if its 
fitness level is higher but in GA, offspring rep-
laces the parents with some degree of probabili-
ty irrespective of their fitness. 
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2.  Real number representation is used by DE while 
GA uses binary strings, although some GA uses 
real number representation or integer occasionally.  

3.  In DE, the crossover strategies involve selection 
of three parents while the child is a perturbation 
of one of them but in GA, selection for crossov-
er involves two parents while the child is a re-
combination of the parents [10]. 

4. Reservoir operations 

Reservoirs are facilities used to stored away water 
for future use. Other reservoir purposes include 
recreation, flood control, irrigation, domestic and 
industrial water supplies. Reservoirs are created, 
most importantly, to provide flood protection for 
downstream areas and also for low flow regulation, 
especially during dry seasons. Reservoirs which are 
composed of varied physical components such as 
pipelines, irrigation area and hydropower plants 
have a heightened need for information on the reser-
voir guideline process. A reservoir guideline process 
is critical for ideal use of water from the system the-
reby allowing adequate management of water re-
sources (Rani and Moreira, 2010). To determine the 
reservoir size before a dam construction, an optimiza-
tion modelling is needed before the plan takes place. 
Irregular inflow of water must be catered for through 
reservoir erections so that the stored water can be 
utilized in period of low rainfall [40]. 

4.1. Optimization of reservoir operations using 
different evolutionary algorithms. The functions 
of any reservoir are multipurposed in nature such as 
monitoring stream flow and impounding water for 
future use. Inflows, discharge, return flows, storag-
es, domestic and industrial water supply demand 
and diversions are many intricate problem variables 
that make it difficult to manage reservoir operations. 
Popularity has been gained tremendously since 
1990s when evolutionary algorithms (EAs) were 
used for optimizing reservoir operations. Globally, 
researchers have used optimization techniques for 
reservoir systems operation control [26, pp. 41-44].  

Several studies have reported the use of evolutio-
nary algorithms in reservoir operations in river ba-
sins. Regulwar and Choudhari [3] applied differen-
tial evolution (DE) for the best operation of multi-
purpose of reservoir with the interest of exploiting 
the hydropower production. The algorithm applica-
tion was undertaken through Jayakwadi project 
stage-1, Maharashtra state, India. The outcomes of 
GA and ten DE strategies show that both results can 
be compared. Chang and Chang [29] applied a mul-
ti-objective evolutionary algorithm, the non-
dominated sorting genetic algorithm (NSGA-II), to 
observe a Taiwan multi-reservoir system operation. 
The study was applied to the Feitsui and Shihmen 

reservoirs in Northern Taiwan. Realization of op-
timal joint operating strategies by NSGA-II was the 
objective of the model. This was to minimize the 
shortage indices (SI) value. A day to day operational 
simulation model to reduce the shortage indices (SI) 
values of both reservoirs for a long term simulation 
period was developed. The results showed that a 
promising approach is provided by NSGA-II by 
providing enhanced operational strategies which 
would lessen the SI for both reservoirs using a 49-
year data set. 

Reddy and Kumar [26] present a multi-objective 
evolutionary algorithm (MOEA) to develop a set of 
optimal operation plans for a multipurpose reservoir 
system. A population-based search evolutionary 
algorithm named multi-objective genetic algorithm 
(MOGA) to create a Pareto optimal set was applied to 
Bhadra reservoir system in India. The outcomes speci-
fied that the evolutionary algorithm proposed was able 
to suggest many alternate plans for the reservoir opera-
tor thereby allowing flexibility in choosing the best, 
hence, proving that MOGA was capable of solving 
multi-objective optimization issues. Li and Wei [45] 
developed a parallel dynamic programming algorithm 
to optimize a multi-reservoir system joint operation. 
The parallelization is based on the message passing 
interface (MPI) protocol and the distributed memory 
architecture. The results show that the good perfor-
mance in parallel efficiency was exhibited by the pa-
rallel DP algorithm and was also applied to five-
reservoir system in China. In another study, Zhang and 
Jiang [46] presented the improved adaptive particle 
swarm optimization (IAPSO) to resolve the problem 
of reservoir operation optimization (ROO) that in-
volves a lot of conflicting objectives and constraints. 
The results of this method show that IAPSO gives 
better operational results with much robustness and 
effectiveness when compared with other methods. 

In his study, Chang [47] recommends a reservoir 
flood control optimization model with linguistic de-
scription of existing and required procedures for co-
herent operating decisions. A genetic algorithm (GA) 
was used to represent a search instrument and formu-
lated reservoir flood process as an optimization issue. 
GA was used to examine a global optimum of a com-
bination of mathematical and non-mathematical in-
ventions. The recommended methodology was ap-
plied to the Shihmen reservoir in North Taiwan. 
Hence, it was discovered that a penalty-type genetic 
algorithm can conveniently offer balanced hydro-
graphs, especially, when some constraints are vi-
olated due to its huge number and the proposed mod-
el can help in guiding the GA search process.  

Chang and Chang [30] proposed a procedure which 
includes the constrained genetic algorithm (CGA) 
whereby the natural base flow necessities are taken 
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into consideration as limitations to reservoir opera-
tion water flow when optimizing the 10-day reser-
voir storage. A lot of penalty functions aimed for 
diverse types of limitations were integrated into the 
operational goals of the Shih-Men Reservoir to form 
the fitness function. The Shih-Men Reservoir and its 
downstream were used as a case study. Hence, it 
was concluded that to optimize reservoir operations 
for numerous users and enhance the effectiveness 
and efficiency of water supply ability to natural base 
flow requirements and human needs, CGA approach 
is the best option to use.  

Karamouz and Ahmadi [48] focused on presenting a 
method to improve operating tactics that can be used 
for releasing water from a reservoir with adequate 
quantity and quality. The model that they proposed 
comprises a genetic algorithm (GA)-based optimiza-
tion model associated with a reservoir water quality 
simulation model. A support vector machine (SVM) 
model is required to create the functional guidelines 
for the discerning extraction from the real time 
process of the reservoir. The method proposed was 
applied to the Satarkhan Reservoir in the north-
western part of Iran. It was concluded that the 
planned model might be used as operative tools in 
reservoir operation.  

Genetic algorithm (GA) and linear programming 
(LA) approaches are compared and utilized in real-
time reservoir process of a current Chiller Reservoir 
system in Madhya Pradesh, India by Azamathulla 
and Wu [49]. The performance of the two models 
was analyzed and it was found that the GA model is 
superior to the LP model. An ideal reservoir operat-
ing strategy that combines field level resolutions 
was obtained and also agrees on time and quantity 
of water to release from reservoir.  

In another study, Wang and Chang [28] proposed a 
multi-tier interactive genetic algorithm (MIGA) that 
disintegrates a complex structure into numerous 
trivial scale sub-systems with GA used on each sub-
system while the multi-tier evidence interacts equal-
ly among single sub-systems to discover a prime 
outcome of long-term reservoir process. The Shih-
men Reservoir in Taiwan was used as their case 
study. The results were compared to a three long 
term process of an individual GA search and a simu-
lation based on the reservoir rule curves and it 
showed that MIGA was far more resourceful than 
the individual GA and can intensify the chance of 
attaining an optimal solution.  

Karamouz and Ahmadi [48] presented a procedure 
to improve operating plans for a reservoir release 
with satisfactory quality and quantity. A model that 
takes account of a genetic algorithm (GA) optimiza-
tion model associated with a reservoir quality simu-

lation model was recommended. To reduce the run 
time of the GA-based optimization model, the key 
optimization model was divided into a stochastic 
and deterministic one. The independent role of the 
optimization model was based on the Nash bargain-
ing theory so as to take full advantage of the relia-
bility of attaining to the demands of the downstream 
chain with suitable water quality, prevention of the 
reservoir degradation and maintaining a steady bal-
ance of reservoir storage level. The proposed me-
thod was applied to the Satarkhan Reservoir in the 
north-western part of Iran. The results showed that 
the recommended model can be utilized in reservoir 
operation as an operational tool. Modelling and 
analysis method for assessing water supply abilities 
of reservoir/river structures that may be used on 
river basins worldwide using the water rights analy-
sis package (WRAP) was studied by Wurbs [50].  

Another optimization technique called bayesian 
network (BN) was presented by Malekmohammadi 
and Kerachian [51] for making monthly functional 
rules of a cascade system of reservoir for irrigation 
and flood control. The inputs of the BN include 
water demand from downstream, monthly flows 
and reservoir storage at the start of a month. The 
extended period optimization model in monthly 
gauge was adopted to reduce excessively the agri-
cultural water shortage costs and the expected 
flood. A link was created between a flood damage 
estimation model and a short period optimization 
model that offers the optimal hourly releases for 
the duration of flood. 

Also, a study presented by Chaves and Kojiri [52] 
shows application of stochastic fuzzy neutral network 
(SFNN) accomplished by a GA based model for de-
veloping reservoir operational approaches taking into 
consideration the water quantity and quality aims. A 
quasi optimal solution was produced. The SFNN 
was applied well to the optimization of the monthly 
working plans while allowing for maximum water 
utilization and water quality improvement. 

In their study, Regulwar and Kamodkar [32] de-
signed a fuzzy linear programming reservoir process 
technique and applied this approach to Jayakwadi 
reservoir stage-II, Maharashtra state, India with the 
aim of maximizing the hydropower and irrigation 
releases using three different models. The primary 
model involves fuzzy resources, second model con-
siders fuzzy technological factors and third model 
reflects both the first and the second models. The 
outcomes revealed that the recommended method 
provides a useful instrument for reservoir operation. 

Zheng et al. (2014) designed the water distribution 
network (WDN), a novel multiobjective optimiza-
tion system, to advance the efficacy of a typically 
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difficult water resource problem using decomposi-
tion techniques. A propagation method was pro-
posed to evolve Pareto fronts of different sub-
networks towards the full network Pareto front. The 
results from the proposed approach showed that it is 
able to find better fronts than conventional complete 
search algorithms with better efficiency.   

The optimal design of water distribution systems 
(WDSs) as an example to show how efficient the ge-
netic algorithms (GAs) can be improved through the 
use of heuristic domain knowledge in the sampling of 
the initial population was studied by Bi and Dandy 
[54]. A new heuristic procedure called the prescreened 
heuristic sampling method (PHSM) was proposed and 
tested on seven WDS cases of varied sizes. The result-
ing performance was compared with another heuristic 
sampling method and two non-heuristic sampling 
methods. It was concluded that the PHSM performs 
better both in computational effectiveness and capabil-
ity to discover near-optimal solutions.  

Elferchichi and Gharsallah [55] presented a stochas-
tic methodology that depends on real coded genetic 
algorithms for enhancing the process of reservoirs in 
an on-demand irrigation system. It was shown that 
the procedure analyzes the appropriateness of the 
difference between supply and demand accounting 
for the storage volume of the reservoirs. A weighted 
objective function, containing damages of the per-
missible reservoir water levels, was also proposed. 
The study was tested on the Sinistra Ofanto irriga-
tion scheme (Foggia, Italy). The results showed that 
the model was robust and efficient. 

In a similar study, Chen and Mcphee [56] developed 
and applied a novel multi-objective optimization 
known as macro-evolutionary multi-objective genet-
ic algorithm (MMGA) to a reservoir operation. 
MMGA was applied to rule-curve optimization of a 
multipurpose reservoir scheme. This issue involves 
a nonlinear problem with mixed integer variables 
and a non-convex Pareto frontier. Decisions can be 
made by the operators with respect to hydropower 
generation and water supply release from the operat-
ing rule curves by defining long term targets release 
and storage level. Implementing the algorithm is 
easy and it yielded enhanced range of solutions than 
NSGA-II. Their results showed that MMGA discov-
ered an adequate solution spread on the Pareto front 
with a low diversity metric. 

Genetic algorithm (GA) has been proven scientifi-
cally to be superior in computation than traditional 
methods such as linear programming, particularly in 
reservoir operations, a subset of river basin and a 
field of water resources engineering [2]. 

Conclusion 

For almost two decades, evolutionary algorithms 
have been applied and studied vastly in many re-
search fields. Numerous approaches have been de-
veloped by the researchers worldwide so as to solve 
optimization problems as shown in the literature 
review. Evolutionary algorithms, with vast applica-
tions in water resources management, are worth-
while and easy algorithms utilized in most of the 
applications. EA have also exhibited many pros-
pects from its applications to optimization problems. 
Evolutionary algorithms have been applied to dif-
ferent facets of river basins such as irrigation plan-
ning, crop planning and reservoir operations which 
are all variables that emanated from river basins 
concept. River basin management is similar to con-
flict management when compared to human beings 
and their environment. Shortage of water will ulti-
mately place a huge pressure on economic growth, 
social and technological demands of any country in 
the world. Reservoir operation models are mostly 
identified in single and multi-objectives. Reservoir 
operations are usually formulated with multidimen-
sional, nonlinear objective functions with lots of 
constraints. The research gap identified in this re-
view of previous studies is such that appropriate 
algorithms are not identified specifically for differ-
ent methodologies and applications. The review also 
notes another research gap that it is imperative to 
streamline or have a specific identifier for each al-
gorithm in relation to a particular aspect of water 
resources multi-objectives aligning them to advan-
tages and drawbacks of each. It is recommended 
that evolutionary algorithms, used in the precise 
application areas, can suggest superior solutions for 
river basin management, particularly in reservoir 
operations, irrigation planning and management, 
streamflow forecasting and real time applications. 
Therefore, future researches should concentrate on 
determining the best, among all proposed evolutio-
nary algorithms, that can conveniently and suffi-
ciently reach an optimal solution when applied to a 
river basin to enhance its management.  
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