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Abstract 

This study examined the effects of the likely change in rainfall on food crop prices in Rwanda, a landlocked country 
where agriculture is mainly rain-fed. The empirical investigation is based on nonlinear autoregressive distributed lag 
cointegration framework, which incorporates an error correction mechanism and allows estimation of asymmetric long-
run and short-run dynamic coefficients. The results suggest that food crop prices are vulnerable to rainfall shocks and 
that the effect is asymmetric in both the short and long run. Moreover, there was evidence of seasonal differences, with 
prices falling during harvest season and rising thereafter. Considering the ongoing threat of global climate change, and 
in order to cope with rainfall shortage and uncertainty, increase food affordability and ultimately ensure food security 
throughout the year, there is a need to develop and distribute food crop varieties and crop technologies that reduce the 
vulnerability of farming to rainfall shocks.  
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Introduction 24 

Despite attempts to sustainably maintain a steady 
food supply, agriculture remains heavily dependent 
on seasonal weather, especially in developing 
countries, where greenhouse farming is yet to be 
developed. The economics of food production and 
price dynamics clearly predict that food price spikes 
emerge as the natural consequences of demand 
growth consistently outpacing supply expansion and 
importantly the unseen forces of climate change 
(Barrett, 2013; Deaton & Laroque, 1992). The latter 
is regarded as major threat to global food production 
and is potentially expected to exacerbate food 
insecurity in many parts of the world (Burke, 
Hsiang, & Miguel, 2015). The impacts will be 

particularly great in sub-Saharan Africa  the food 

crisis epicentre of the world  where poor 
smallholders depend heavily on agriculture and have 
limited livelihood alternatives (Scholes & Biggs, 
2004; Watson, Zinyowera, & Moss, 1998). 
Furthermore, it has been found that climate events 
played an important role in the surge in global food 
price in 2008 (Ericksen, Ingram, & Liverman, 
2009). The consequences of climate changes such as 
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flooding, higher temperatures and unexpected 
frequent and extreme weather events negatively 
affected food production, leading to a decrease in 
food supply and ultimately in higher prices. It has 
beenargued that climate change is linked to poverty 
traps in developing regions (Enfors & Gordon, 
2008)25

1. Moreover, extreme climate events are 
expected to increase in frequency and severity as the 
global climate changes (Field, 2012). Jones and 
Thornton (2003) simulated the effects of possible 
future climate change on rain-fed smallholder maize 
production and found an estimated overall reduction of 
10% in maize production by 2055 in Africa and Latin 
America, which is equivalent to losses of $2 billion per 
year. They also found that the future effects of climate 
change will be severe in developing countries, where 
the majority of farmers are still heavily dependent on 
subsistence agriculture.  

Moreover, the global economic crisis between 2005 
and 2007 and the subsequent food price spikes on 
the international market in late 2008 until early 2011 
have raised concerns among the policymakers on issue 
of food shortage and unpredictability of climate 
change. For instance, wheat prices went up by 70% 
and rice prices by 20%, while the price of powder milk 
and maize was 90% and 70% higher, respectively 
(Dillon & Barrett, 2015; Ivanic & Martin, 2008).  

The use of rainfall26

2 as a proxy for climate change is 
justified, especially in developing countries, where 

                                                      
1 Enfors, E. I., and Gordon, L. J. (2008) report that in dryland parts of 
Tanzania, farmers frequently deplete their asset holdings during 
droughts, which perpetuates climate-related poverty traps. 

2 Besides rainfall, another strand of literature highlights a significant 
negative effects of increasing temperatures on crop yields. See, e.g., 
articles by FUNK, C.C., and Brown, M. E. (2009) and Gourdji, S. M. et 
al. (2013). 
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irrigation systems and agricultural mechanization 
are yet to be developed. Blanc (2012) showed that 
the unexpected variability of temperature and 
rainfall in Sub-Saharan Africa have had substantial 
adverse effects on maize, millet, sorghum and 
cassava production in the region. Baez, Lucchetti, 
Genoni, and Salazar (2015) investigated the effects 
of rainfall shocks on household welfare in 
Guatemala and found a substantial negative impact 
of shocks in precipitation, with the effect being 
particularly high among urban households. They 
also found that rainfall shocks increase poverty by 
18% and reduce household food consumption by 
10%. Similarly, in a study by Sassi and Cardaci 
(2013) investigating the consequences of different 
rainfall scenarios on Sudan’s food availability, a 
strong relationship was found between climate 
change and variability, poverty and food shortage. 
They also uncovered a direct correlation between 
unpredicted precipitation change and sorghum, 
millet and wheat yield.  

Moreover, the effects of climate change are likely to 

fall disproportionately on developing nations and 

on poorer, agrarian households within those 

nations (Jarvis et al., 2011; Schmidhuber & 

Tubiello, 2007; Jarvis et al., 2011; Schmidhuber 

& Tubiello, 2007; Wood, Jina, Jain, Kristjanson, 

& DeFries, 2014).  

As in most parts of East Africa that are essentially 
dependent on rainfall, agriculture in Rwanda faces 
adverse effects from climate change (De la Paix, 
Anming, Lanhai, Ge, & Habiyaremye, 2011; 
Kseniia Mikova, Enock Makupa, & Kayumba, 
2015; Poulton, Kydd, Wiggins, & Dorward, 
2006). Volatile precipitation patterns increase the 
risk of short-run crop failure and long-run 
production declines. The latter, together with 
excessive urbanisation, population increase and 
income growth, leads to high food price inflation 
(World Bank, 2015). Nelson et al. (2009) argue 
that the overall effects of climate change on 
agriculture are likely to be severe, threatening 
food security in developing countries. In Rwanda, 
agriculture sector remains a considerable engine 
of economic growth. 

The sector has been growing at 4-5% over the past 
decade, contributing 33% to overall annual national 
income. The agriculture sector employs 
approximately 80% of the total labor force, while 
generating more than 43% of Rwanda’s export 
revenues (World Bank, 2011). 

 

Fig. 1. Monthly average nominal price of the staple crops cassava roots, beans and potatoes in Rwanda, 20002015 

Source: authors’ calculations based on data from the National Institute of Statistics of Rwanda (NISR) (2016). 

In this study, we focus on dynamic asymmetric 

changes of three food crops prices, namely 

cassava roots, beans and potatoes 27

3 and overall, 

                                                      
3 According to Rwandan Integrated Living Conditions Survey (EICV4, 
2013/14), the consumption rate of dry beans, cooking cassava and Irish 
potatoes in Rwanda is 89.5%, 59% and 61% respectively. This indicates 
the weight of the three crops in terms of food demand in the country. 

the prices of these crops have exhibited 

significant variability and an upward trend in the 

past decade (Figure 1).  

Rwanda has recognized the necessity of agricultural 
development. The National Agricultural Policy 
(NAP) was devised in 2004 with the aim of 
transforming the sector, increasing rural income 
and improving food security and the nutritional 
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status of the population (World Bank, 2015). 
However, the supply side faces imminent 

challenges  farmers depend heavily on rain-fed 
farming systems4, where agricultural 
mechanization and irrigation systems are yet to be 
implemented at advanced stage and consequently 
crop yields are affected by rainfall changes.  
The effect of this eventually emerges in the form 

of higher food prices at local markets.  
Figure 2  depicts  the distribution  of average  monthly 
precipitation in Rwanda during the period 

20002012. As can be seen, there is excess 
rainfall from September until the end of May, a 
period that corresponds to two agricultural 
seasons. Thereafter, rainfall decreases from early 
June until late August, the harvest season. 

 

Fig. 2. Distribution of mean monthly rainfall (mm) in Rwanda, 20002012 

Source: authors’ calculations based on data from the World Bank’s climate change portal, 2016. 

Considering the ongoing threat of climate change 
and the evidence that its relative effect is greater in 
low-income countries (Tol, 2010), a clear 
understanding of the significance and magnitude of 
the effect of rainfall on food prices is of utmost 
importance for policy making. However, there is a 
lack of empirical evidence in this regard. This leads 
to an important research question: How do food 
prices respond to precipitation changes? 28 

A number of previous studies have analyяed 
asymmetries in the transmission of information 
between stages of the food chain (Santeramo & 
von Cramon-Taubadel, 2016; Von Cramon-
Taubadel, 1998), while other studies have 
considered spatial and transportation costs and 
market price cointegration (Kouyate, von 
Cramon-Taubadel, & Fofana, 2016). However, 
less is known on the symmetric effect of rainfall 
on food crop prices, which is essential 

                                                      
4 Rwanda experiences three main agricultural seasons A, B and C. 
Season A runs from September to January and season B from February 
until the end of May. A and B are rainy seasons. The quantity of rain 
during these seasons has a direct effect on crop production, and hence 
on market food prices. Season C runs between June and September, and 
is the dry season, during which harvest of large crops takes place, 
especially cereals such as rice, maize and wheat and starchy foods such 
as cassava and potatoes, among others. 

information, especially in a developing country 
context, where a high proportion of household 
income is spent on food and where crop 
production heavily depends on rain-fed farming. 

The aim of this study is to complement the 
existing literature in investigating the driving 
forces and the vulnerability of food prices to 
weather shocks in developing countries (Baulch & 
Hoddinott, 2000; Bellemare, Barrett, & Just, 
2013; Dillon & Barrett, 2015; Hill & Porter, 
2017; Kassie et al., 2017; Mawejje, 2016). 
Although some studies consider non-linear effects 
of rainfall on food prices (Dillon & Barrett, 2015; 
Mitra, 2014), the majority of the existing studies 
assume a linear relationship. The present study 
advanced this strand of literature by considering 
possible non-linear and asymmetric effects. To this 
end, we applied the recently developed asymmetric 
non-linear autoregressive distributed lag (NARDL) 
cointegration framework proposed by Shin Shin, 
Yu, and Greenwood-Nimmo (2014).  

The remainder of this paper is organized as follows: 
section 1 describes the theoretical model and 
estimation techniques. Section 2 presents the data 
and descriptive statistics, while section 3 presents 
and discusses the empirical findings. Final section 
lists some conclusion and recommendations. 
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1. Econometric methods 

A great number of studies have applied 
cointegration to study asymmetric price 
transmission (APT) in food crop markets (Tifaoui & 
von Cramon-Taubadel, 2017; Von Cramon-
Taubadel, 1998; von Cramon-Taubadel, 2017).  The 
present study did not investigate APT in the supply 
chain, but rather examined the transmission of 
rainfall changes to food crop prices. In a related 
strand of literature, several studies have questioned 
the assumption that weather-related variables affect 
crop yield in a linear  way (Burke & Emerick, 2012; 
Dell, Jones, & Olken, 2014; Deressa, Hassan, & 
Poonyth, 2005; Lobell, Schlenker, & Costa-Roberts, 
2011; Ma & Maystadt, 2017). Nonlinearities and 
asymmetries in the effect of rainfall on food crop 
prices can be quite often expected.Nonlinearity 
comes from the fact that insufficient rainfall 
is expected to reduce crop yield and eventually lead 
to an increase in food prices, but so does excess 

rainfall, which is sometimes associated with floods 
(see, e.g.,Wang et al. (2009) for the effect of a rise 
in precipitation on agriculture in Northern China). 
We wanted to investigate whether there is an 
asymmetric knock-on effect of rainfall on food prices.  
For this task, we employed the NARDL framework, 
which is  a generalization of the ARDL bounds testing 
approach of M. H. Pesaran Shin, and Smith (2001) that 
incorporates an error correction mechanism and 
allows estimation of asymmetric long-run and short-
run dynamic coefficients in a cointegration 
framework.  

The starting point is the standard linear 
Autoregressive Distributed Lag (ARDL) model of 
order p and q proposed by H. Pesaran and Shin 
(1999) and M. H. Pesaran et al. (2001). The 

relationship between two series tp (food crop price) 

and tr (rainfall) can be expressed in a cointegration 

model as follows: 

      

1 1

0 1 1

1 0

p q

t t t j t j j t j t t

j j

p a p r a p r z    
 

   
 

           ,                              (1)

where Zt is a vector of three agricultural seasons A, 

B and C that we control for; t is an iid process. 
Under the null hypothesis of no cointegration,  

 =  = 0. The ARDL framework has several 
advantages. One advantage that deserves mention 
is that it can be applied even when the series are 
integrated of different order.  

The series can be either I(0), I(1) or a mixture of 

the two ( M. H. Pesaran et al., 2001). 

Following Shin et al. (2014), we extended the linear 

ARDL and decomposed rainfall into positive and 

negative partial sum rt
and rt

  to account for 

asymmetries, such that: 

 ,
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From the above expression, the asymmetric long-
run equilibrium relation can then be tested via: 

0t t t tp r r r u        ,                                 (3) 

where   
 and   

 are   long-run  parameters   that 

represent, respectively, the effect of positive and 
negative changes in rainfall on food crop price.  

Next, we combined the linear ARDL(p,q) in Eq. 1 

and the asymmetric long-run relationship in Eq. 3 to 

obtain the NARDL (p,q), expressed as follows: 
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              ,       (4)

where 
 




  and 
 




 . The null 

hypothesis of no cointegration is 0    , 

which was tested using the FPSS-test statistic of M. 

H. Pesaran et al.’s (2001) bound test. Long-run 

symmetry requires    , which was tested by 

means of the F-test.  Short-run symmetry in its 

strong form requires j j      for   1,..., 1j q  . 

The less restrictive (weak) form, on the other 

hand, requires

1 1

0 0

q q

j j

j j

 
 

 

 

  . Following recent 

empirical literature (for instance, Fousekis et al., 

2016), we tested the less restrictive form of short-

run symmetry.  

Furthermore, we captured the asymmetric 
responses to positive and negative rainfall shocks 

by cumulative dynamic multipliers ( mh

 and mh

  ) 

at horizons 0,1, ...,h H . These multipliers show 
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the change in the food crop price following a 
(positive or negative) rainfall shock. They are 
defined as follows:  

,

0
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t j

h r

j t
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    and ,

0
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h
t j

h r

j t

p 







 ,          (5) 

when h   , mh    and mh   , where 

 
and  

are the asymmetric long-run 

coefficients. The multipliers represent nonlinear 
dynamic adjustments in food crop price following 
rainfall  shocks. We used bootstrap confidence 
bands to test for asymmetries at different 
horizons.  

2. Data and descriptive statistics 

Data on the monthly average price of beans, 
potatoes and cassava roots were obtained from the 
National Institute of Statistics of Rwanda (NISR). 
These are nominal retail prices that prevail on the 
markets in the country as shown in Figure 1. From 
these nominal prices, we computed real prices 
using the consumer price index (CPI), taking 
January 2005, as the base. The data series on 
rainfall were extracted from the World Bank’s 
climate   change   knowledge   portal.  Table  1  in 

Appendix presents descriptive  statistics (mean, 
standard deviation, minimum, maximum and 
coefficient of variation) for the real prices of 
cassava roots, potatoes and beans and the amount of 
rainfall in the study period. The statistics are 
presented month-wise to capture rainfall seasonality.  
Looking  at  the mean  rainfall,  there was an 
increase from January to April and a small decrease 
in May, followed by the lowest levels of rain during 
June, July and August, and then an increase from 
September to December. This distribution 
corresponds to the three agricultural seasons in 
Rwanda. To control for this observed seasonality, 
we included seasonal dummies in our regression 
analysis. 

2.1. Unit root tests. The ARDL framework is 

applicable irrespective of whether the series is purely 

I(0), purely I(1) or mutually cointegrated  

(M. H. Pesaran et al., 2001). Hence, it must be 

ensured that the order of integration of the series is not 

higher than one. Accordingly, we tested the null 

hypothesis of a unit root using the modified Dickey-

Fuller (DF) Generalized Least Square t-test (hereafter 

referred to as DF-GLS), as suggested by Elliot, 

Rothenberg, and Stock (1996), and the Zivot and 

Andrews (ZA) unit root test (Zivot & Andrews, 2002). 

Table 2. Unit root tests 

Variables 
Level First difference  

DF-GLS ZA DF-GLS ZA Break point 

Cassava roots -2.53(3) -4.74 (3) -3.51***(5) -6.01*** (2) 2003m3 

Potato -1.64(9) -5.05*(3) -6.05***(4) -11.02***(2) 2007m9 

Beans -1.43 (10) -6.53***(1) -6.77***(1) -8.81*** (2) 2007m3 

Rainfall -1.37 (11) -9.11***(2) -9.57***(1) -10.09***(3) 2002m6 

Notes: superscripts *, **and *** indicate rejection of the null hypothesis of a unit root at the 10, 5 and 1% significance levels, 
respectively. The optimal lag length is given in brackets, and is based on the Schwarz Information Criterion. 

The DF-GLS test is more efficient, especially 

when an unknown mean or trend is present in the 

series. The ZA test allows for an alternative 

hypothesis that the series is trend-stationary with 

a one-time break in the level or trend or both.  

Table 2 presents the results. The DF-GLS test 

suggested that all the series had unit roots in 

levels, but that the first differences were 

stationary, i.e., they were all I(1). The ZA unit 

root test suggested that, except for cassava roots, 

other series were stationary around an intercept 

shift or both an intercept shift and a trend break. 

The last column of the table shows the month and 

the year of the break point for each series. 

Overall, the series were either I(0) or I(1), which 

makes the ARDL framework appropriate.  

 
 

3. Empirical results and discussion   

Table 3 presents estimates of the parameters in 
Eq. (4) for the price of beans, potato and cassava 
roots. The parameter restimates and p-values are 
shown. The first column contains short-run 
elasticities of asymmetric (positive and negative) 
effects of rainfall on the price of beans. The 
estimates indicated that positive changes in 
rainfall were associated with a significant 
decrease in the price of beans and that these 
effects emerged in the third month from the time 
when the rainfall period started. Therefore, the 
figures 0.63 and 1.09 are parameter elasticities, 
meaning that a 10% increase in rainfall (expressed 
in mm) induces a reduction by 0.63% and 1.09% 
in the price of beans in the third and fourth 
months, respectively. 
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On the other hand, a decrease in rainfall induced 

an instant increase in the price of beans. This means 

that rainfall shortage affects crop yield negatively, 

reduces supply on the market and eventually 

increases the price of beans. This suggests that crop 

yield depends heavily on amount of rainfall and its 

variability. Weather variability has previously been 

found to be an important determinant of farmer 

cropping decisions (Wood et al., 2014) and of crop 

yields (Lobell et al., 2011). Climate variability 

affects the stability of food supplies and vulnerable 

people’s ability to access food at affordable prices 

(Schmidhuber & Tubiello, 2007). 

The second column of Table 3 contains the short-
run elasticities of asymmetric (positive and 
negative) effects of rainfall on the price of potatoes. 
Unlike the price of beans, the effect of rainfall 
changes in either directions is associated with a 
reduction in potato prices. One tentative explanation 
relates to the fact that crop yield depends on both 
rainfall and sunshine.  

Potato farmers need moderate rain and sunshine 
interchangeably. Therefore, by controlling for 
farming season, we were able to show that rainfall 
does not exclusively influence potato supply, and, 
hence, its price.  

Table 3. Dynamic asymmetries in the price of beans, potatoes and cassava roots 

Beans Potatoes Cassava roots 

Variable Estimate Variable Estimate Variable Estimate 

Pbeanst-1 -0.197*** Ppotatot-1 -0.261*** Pcassavat-1 -0.230*** 

 (0.046)  (0.064)  (0.070) 

∆Pbeanst-3 -0.163** ∆Ppotatot-1 0.377*** ∆Pcassavat-1 -0.238** 

 (0.076)  (0.088)  (0.106) 

+
3-t

rainΔ  -0.063*** ∆Ppotatot-2 -0.164* ∆Pcassavat-5 0.249** 

 (0.024)  (0.093)  (0.109) 

+
-t

rain 4Δ  -0.109*** +
1-rain t  -0.047* +

1-rain tΔ  0.191** 

 (0.020)  (0.025)  (0.089) 

-
1-raintΔ  0.054* +

3-train  -0.047** -
-train 2Δ  0.181** 

 (0.032)  (0.021)  (0.089) 

-
-train 2Δ  0.064** -

1-rain t  -0.051** -
-train 3Δ  0.188** 

 (0.029)  (0.025)  (0.082) 

-
-train 3Δ  0.070*** -rain tΔ  -0.028* +

4-t
rainΔ  0.164** 

 (0.022)  (0.016)  (0.076) 	  0.042 	  -0.028  0.052 

 (0.039)  (0.034)  (0.057) 	  -0.086** 	  -0.005  0.016 

 (0.033)  (0.030)  (0.055) 

 2.501***  2.505***  1.466 

 (0.810)  (0.780)  (1.112) 

Notes: superscripts *, ** and *** indicate rejection of the null hypothesis at 10, 5 and 1% significance level, respectively. All the 
variables are in natural logarithm, so the coefficients can be interpreted as elasticities. 

The role of agricultural seasons is of paramount 
importance in determination of the degree of food 
price transmission in Rwanda, since crop farming 
depends heavily on rainfall. The parameter estimates 
on agricultural seasons indicated that the price of beans 
and cassava roots increased by 4.2% and 5.2%, 
respectively, in season A relative to season C. It is 
worth mentioning that during season C there was a 
substantial food price decrease, as farmers in Rwanda 
harvest most of their crops in this season. Because 
these farmers have no or limited access to crop 
storage, they tend to sell their produce as soon as they 
harvest  it, especially  food crops like potatoes  that are  

difficult to store. Consequently, an increase in demand 

for food cropsand eventually a hike in their market 

prices in the following season can be expected, not only 

for urban households, which depend entirely on food 

purchases, but also for rural households that buy food 

crops that they may usually produce but cannot store. 

Moreover, the results showed that price of beans was 

8.6% lower during season B than in season C. One 

tentative explanation for the lower prices in season B 

is that beans are harvested during January-February 

and the market price falls immediately, since most 

rural households then become sellers rather than buyers.  
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On the other hand, the seasonality effects on potato 
prices were relatively low. However, we did not 
expect significant differences in potato prices across  
seasons, mainly because potatoes are produced 
throughout the year, mostly in Northern Rwanda. 
The differences in the price of food crops across 
seasons highlight the need for crop storage facilities 
in the country. The importance of seasons in 
explaining the effects of climate change on agricultural 
output has also been demonstrated for South Africa by 
Benhin (2008) who reported that a fall in 
precipitation leads to a fall in net crop revenue, 
but with significant seasonal differences in 
impacts. 

In the last column of Table 3, we present short-
run elasticities of asymmetric (positive and 
negative) effects of rainfall and other controls on 
the price of cassava roots. As the estimates show, 
rainfall changes in either direction are associated 
with increased crop prices. This implies that 
positive/negative rainfall changes may affect the 
supply of cassava roots negatively and eventually 
increase the price. Under these circumstances, we 
can say that crop yield depends not only on 
quantity of rainfall per se, but also on its 
variability. Another important aspect that needs to 
be considered here is that during the rainy season, 
farmers need to buy seeds, leading to an upward 
trend in prices and explaining the observed 
positive effect of rainfall on food crop prices 
(Table 3). Moreover, it is important to highlight 
the effect of expectations;low levels of rainfall are 
a signal to the farmer to anticipate an increase in 
future food prices. A rational farmer would then 
delay selling their harvested crop, which would 
result in even higher food prices on the market. 
All these factors explain the positive coefficients 
obtained in this study. 

The upper part of Table 4 presents long-run 
asymmetric effects of rainfall effects on the price of 
the three main food crops. The middle part of the table 
presents the results of tests of the significance of these 
asymmetries, which indicate strong significance of 
both short-run and long-run asymmetries, especially 
for the price of beans. The lower part of the table 
provides diagnostic statistics on the validity of the 
NARDL model estimates. 

The estimated long-run effect (+) of rainfall on crop 
prices was -0.438, -0.252 and -0.179 for cassava roots, 
beans and potatoes, respectively. This implies that in 
the long-run, a 1% increase (decrease) in rainfall is 
associated with a 0.44%, 0.25% and 0.18% decrease 
(increase) in the price of cassava roots, beans and 

potatoes, respectively.  On  other  hand, the  estimated -

was 0.76%, 0.27% and 0.19%, respectively, meaning 
that a 1% decrease (increase) in rainfall is associated 
with a 0.76%, 0.27% and 0.19% increase (decrease) 
in   the  price  of  cassava   roots,   beans   and   potatoes, 
respectively, in the long run. Looking at both scenarios, 
the results show that negative shocks in rainfall are 
transmitted to crop prices with substantially greater 
intensity than positive shocks in rainfall. In particular, 
the negative long-run elasticity of rainfall shocks on 
cassava root prices was roughly 32 percentage points 
higher than that of positive rainfall shocks. 

Table 4. Asymmetric statistics on rainfall effects of 
food prices 

 Cassava roots Beans Potatoes 

 Coef. Coef. Coef. 

Long-run positive effects+ -0.438 -0.252 -0.179* 

 (0.194) (0.134) (0.095) 

Long-run negative effects 0.766* 0.268 0.196* 

 (0.071) (0.114) (0.070) 

Long-run and short-run asymmetry tests  

Rainfall_F.statLR 3.08* 17.44*** 43.48*** 

 (0.083) (0.000) (0.000) 

Rainfall_F.statSR 8.01*** 18.58*** 0.92 

 (0.006) (0.000) (0.340) 

Diagnostic statistics of the NARDL model 

R_Squared 0.394 0.549 0.595 

Observation 142 151 150 

Bound test 1.697 8.380*** 3.374** 

Chi_ARCH 0.059 0.262 0.218 

 (0.808) (0.608) (0.640) 

Chi_SC 0.025 6.428 2.460 

 (0.874) (0.11) (0.117) 

Notes: the superscripts + and – represent, respectively, the 
positive and negative partial sums.  

The F.statLR  is the F-statistic for log-run symmetry in Eq. 

(4) that ˆ ˆ    and  F.statSR is the short-run F-statistic for 

the null of less restrictive (weak) form symmetry defined as 
1 1

0 0

q q

j j
j j

 
   
 

 

The Bound Test for levels relationship is an additional proof 
for testing long-run relationships between food crop prices 
and rainfall. Chi_ARCH is a test for autoregressive 
conditional heteroscedasticity, while Chi_SC is a test for 
serial correlation. P-values are in brackets. Superscripts *, 
** and *** indicate rejection of the null hypothesis at 10, 5 
and 1% significance level, respectively. 

An effect of rainfall on food crop prices has also 
been found in other Sub-Sahara African countries. 
For instance, in a study in Ethiopia, Hill and Porter 
(2017) found that rainfall shortage caused sudden 
increases in food prices and a 9% reduction in 
consumption for rural households.  

The tests of short-run and long-run asymmetry are 
also presented in Table 4. The null hypothesis of long-

run asymmetry (+=-) was rejected for all three food 
crops. Similarly, short-run (weak) symmetry was 
rejected, except for potatoes. In the lower part of the 
table,  various  diagnostic tests  are reported.  To  judge  
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the goodness of fit, R-squared was used. The bound 
test 5 was highly significant and indicated rejection of 
the null hypothesis that the coefficients of the lagged 
level variables are jointly equal to zero. This is 
significant evidence of the existence of a long-run 
cointegrating relationship between the variables in 
the model. The null hypothesis of homoscedasticity 
could not be rejected for all three food crop model 
estimates. Moreover, the test of serial correlation 
(Chi_SC) indicated no evidence of serial 
correlation. The bound test indicated a very 
significant long-run cointegrating relationship 
between rainfall and potato and bean prices. 

For further analysis, we derived cumulative effects 
of rainfall on the food crop prices. These multipliers 
showed the change in the food crop price following 
a (positive or negative) rainfall shock. Figure 3 
shows the change in the price of cassava roots 
following a rainfall shock. As can be seen, in line 
with results in Table 4, the price of cassava roots 
responded positively to a reduction in rainfall, while the 

response was negative following an increase in rainfall.  
This highlights the presence of asymmetries in  the 
relationship.  Figure 3  also   shows   the   path   towards 
the equilibrium correction, which was achieved after 20 
months for a positive shock and around 27 months 
following a negative shock.  

Figure 4 depicts the change in the price of beans 
following a shock in rainfall. It was found that the effect 
on bean prices was very asymmetric, with the response 
to an increase in rainfall being larger than the response 
to a decrease (negative shock).  

However, a negative shock was more persistent, since 
the equilibrium correction was achieved after 4 months 
following a positive change, while the effect of a 
negative shock extended beyond 6 months.  

Figure 5 shows the change in the price of potatoes 
following a shock in rainfall. Here, potato prices 
responded asymmetrically to rainfall shocks, but at 
almost the same rate. Equilibrium was achieved 
after 4 months.  

 

Fig. 3. Dynamic multipliers. Effect of rainfall on cassava root prices 

 

Fig. 4. Dynamic multipliers. Effect of rainfall on bean prices29 

                                                      
5 Pesaran et al. (2001) propose using the usual F-test. Unlike the usual F-test, however, the critical values of the bound test depend upon the 
integrating properties of the variables. If all variables in the model are I(0), the decision is then based on  a lower bound critical value. On the other 
hand, if all variables are I(1), one has to refer to the upper bound critical value. The latter critical values are also valid in the presence of a mixture of 
I(0) and I(1) variables in the model. 
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Fig. 5. Dynamic multipliers. Effect of rainfall on potato prices

Conclusion 

This study investigated the dynamic and asymmetric 

effect of rainfall on food crop prices with an 

application to Rwanda, a landlocked country with 

rain-fed agriculture. More specifically, it examined 

whether both short- and long-run rainfall changes 

significantly affect staple food prices in Rwanda.  

The nonlinear ARDL framework, a relatively recent 
methodology that incorporates an error correction 
mechanism and allows estimation of asymmetric 
long-run and short-run dynamic coefficients in a 
cointegration framework, was applied to examine 
the price of beans, potatoes and cassava roots, three 
very important staple foods in Rwanda. The findings 
indicate that food crop prices are vulnerable to 
rainfall shocks and that the effect is asymmetric in 
both the short and long run. Considering the 

sensitivity of food crop prices to rainfall, it is 
essential to adopt climate adaptation strategies in the 
agriculture sector and to provide farmers with 
improved seeds that can resist rainfall shortages. 

We also found evidence of seasonality, whereby 
prices fall during the harvest season and rise 
thereafter. This highlights the necessity for crop 
storage systems in Rwanda to help to smooth food 
prices across the agricultural year. This would break 
the recurring cycle, whereby farmers sell their 
produce at low prices and buy it later at very high 
prices, and thus significantly improve the livelihood 
of agrarian households. These findings add to the 
recent literature on the effect of climate-related 
factors on food crop prices and higlight the need to 
develop and distribute foodcrop varieties and crop 
technologies that reduce the vulnerability of farming 
to rainfall shocks. 
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Appendix 

Table 1. Descriptive statistics on key variables of interest in the study (real prices are expressed in Rwandan 
Francs; rainfall is in millimetres) 

  Cassava roots Potato Dry beans Rainfall 

January Mean 93.55 81.37 193.59 108.13 

 SD 36.73 40.42 90.30 44.36 

 Min 33.6 30.90 80.00 45.67 

 Max 139.5 157.30 317.90 195.70 

 CV 0.39 0.50 0.47 0.41 

February Mean 94.54 89.35 185.25 110.83 

 SD 38.05 45.16 87.32 62.71 

 Min 33.1 30.90 78.10 60.53 

 Max 153.8 177.40 294.20 293.25 

 CV 0.40 0.51 0.47 0.57 

March Mean 100.68 95.88 193.71 133.07 

 SD 38.04 48.94 91.45 31.25 

 Min 37.8 34.20 78.10 68.57 

 Max 156.1 200.90 311.90 180.50 

 CV 0.38 0.51 0.47 0.23 

April Mean 99.68 97.38 204.85 150.65 

 SD 37.80 49.39 98.14 33.82 

 Min 35.6 35.20 80.30 95.68 

 Max 158.1 192.50 336.80 224.25 

 CV 0.38 0.51 0.48 0.22 

May Mean 101.9 94.02 207.82 109.97 

 SD 40.22 48.51 100.60 31.16 

 Min 38 33.60 84.10 71.81 

 Max 156.4 180.40 362.50 172.64 

 CV 0.39 0.52 0.48 0.28 

June Mean 101.55 96.52 205.70 32.25 

 SD 41.64 49.11 98.82 27.72 

 Min 35.9 31.10 89.80 4.76 

 Max 157.5 172.40 362.80 85.43 

 CV 0.41 0.51 0.48 0.86 

July Mean 101.56 99.11 216.09 15.63 

 SD 40.65 45.25 98.35 4.20 

 Min 42 36.10 101.10 8.69 

 Max 168.1 178.50 345.70 18.97 

 CV 0.40 0.46 0.46 0.27 

August Mean 102.65 107.59 232.33 43.16 

 SD 40.32 48.56 104.91 19.78 

 Min 43.2 40.90 103.80 13.16 

 Max 174.3 198.90 377.20 89.86 

 CV 0.39 0.45 0.45 0.46 

September Mean 107.22 117.21 246.12 89.40 

 SD 42.26 56.47 109.81 27.70 

 Min 47.7 44.30 114.50 50.06 

 Max 178.2 217.50 395.10 136.32 

 CV 0.39 0.48 0.45 0.31 

October Mean 106.11 116.29 260.19 125.91 

 SD 39.67 54.18 105.39 30.42 

 Min 42.8 42.60 104.30 88.54 

 Max 173.5 216.70 384.20 196.41 

 CV 0.37 0.47 0.41 0.24 
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Table 1 (cont.). Descriptive statistics on key variables of interest in the study (real prices are expressed in 
Rwandan Francs; rainfall is in millimetres) 

  Cassava roots Potato Dry beans Rainfall 

November Mean 105.86 103.31 268.93 147.62 

 SD 40.37 45.70 110.61 42.99 

 Min 45.7 37.30 102.00 82.04 

 Max 172 178.00 444.00 239.83 

 CV 0.38 0.44 0.41 0.29 

      

December Mean 103.03 89.55 251.52 120.29 

 SD 40.44 38.84 98.33 31.86 

 Min 37.4 35.40 92.40 55.55 

 Max 168.6 155.40 405.60 184.96 

 CV 0.39 0.43 0.39 0.26 

Source: authors’ calculations. SD = standard deviation, CV = coefficient of variation.


