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Abstract 

This paper aimed to illustrate how short-term carbon futures speculators might use short-term carbon emission futures 
data to predict and forecast carbon prices. The paper became apposite given ubiquitous research focussing on long-term 
carbon futures data, which has left out short-term carbon emission futures speculators with information. Therefore, this 
paper demonstrated that short-term speculators in carbon futures could indeed use short-term time series data on carbon 
futures to make a reliable prediction and forecasting of carbon emissions futures price volatility within a short term and 
thus decide on investment opportunity. The sample data results showed that short-term data could produce a 
dependable in-sample futures prediction since the in-sample prediction fell within the 95% confidence interval. The 
demonstration also showed that short-term carbon futures data could assist speculators to conduct a reliable short-term 
out of sample forecast of carbon futures prices within the closer period. The paper offers practical assistance to carbon 
futures speculators and is equally important for academic studies for business and economic students on discussions 
and research bordering on carbon emissions, carbon trading, environmental economics and sustainable development. 
More carbon short-term forecasting is encouraged – such research should compare short-term forecasting of carbon 
futures amongst different carbon markets. 

Keywords: carbon futures, carbon price, carbon market, emission futures, forecasting, carbon risk, the EU emissions trading 
system (EU ETS), the clean development mechanism (CDM). 
JEL Classification: Q54, G13. 
Received on: 4th of September, 2017. 
Accepted on: 4th of October, 2017. 
 

Introduction 1 

Carbon emission trading has emerged as a global 
key catalyst, amongst others, for carbon emission 
reduction and sustainable economic development 
(Xiong, Shen, Qi, Price, & Ye, 2017; Rannou & 
Barneto, 2016; Ellerman, Convery, & De Perthuis, 
2010). Similar to any other commodity traded in 
exchanges, carbon emission prices are subject to 
vagaries posed by systemic (market) events that thus 
cause fluctuations in the carbon emission futures 
market (Zhang, 2016). Given this inevitability of 
attendant volatilities and the potentially inherent 
risk, carbon emission traders and/or investors need 
information to reduce the risks that are associated 
with carbon futures volatility. The use of time series 
forecasting is one such important tool to provide the 
enabling forecast information on carbon emission 
futures either within the short term or long term.  

In conventional financial markets, a futuresmarket is 
a kind of subordinate instrument or monetary 
contract, in which two traders consent to execute an 
arrangement of money related instruments or 
physical wares for future conveyance at a specific 
cost (Kang, Rouwenhorst, & Tang, 2017). On the 
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chance that a speculator purchases a futures 
contract, the trader is fundamentally consenting to 
purchase something that a trader has not yet 
delivered at a set cost (Futures-Investor, 2017). The 
emergence of global carbon emissions markets has 
also engendered carbon emissions futures system 
with the carbon trading markets.  

Both the purchasers and traders in the carbon 
emissions futures market business principally go 
into futures contracts mostly to support normal 
business risk speculation, which thus makes it that 
futures engagement resonates as a tool for financial 
risk hedging (Kang et al., 2017; Futures-Investor, 2017). 
This thus means that futures marketing deviate slightly 
from the business mode of spot or cash market, where 
physical cash is exchanged, hence the need for 
predicting and forecasting to reduce the risk of loss 
carbon futurestrading by carbon price speculators. 

The global quest for carbon emission reduction 
(Clarke, Heinonen, & Ottelin, 2017; Doi,  Popov, 
Barcelona, & Asano, 2011) and mostly the reduction 
of industrial carbon emission has given rise to the 
management and speculation of issues in 
environmental risk management and has thus become 
part of strategic operational decisions for industries 
involved in energy intensive processes. Accordingly, 
carbon futures or contract markets have emerged to 
provide a unique form of climate financial 
services, which assists industries and/or traders to 
hedge their imminent or potential exposure and 
the attendant mitigation of risks associated with 
carbon emission compliance (ICE, 2017).  
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Whilst many of the research on carbon futures have 
focused more on long-termforecast of carbon 
futures, this paper stands outfrom others by 
demonstrating that short-term time series could also 
provide information on the carbon emission futures 
volatility for the short time carbon emission 
investors and speculators. This paper thus is 
important for short time carbon emission futures 
speculators as it demonstrates a handy non-
complicated approach for carbon emission futures 
speculators who may not be skilled in advanced 
forecasting approaches. Accordingly, the 
objective of this paper is to demonstrate the use of 
short-term time series for forecasting carbon 
emission futures price and thus provide additional 
information for short-termcarbon emission 
speculators.  

Therefore, the paper has the following structure. 
After this introduction, the paper presents a brief 
review of related literature; this is followed by the 
methodology and results section. The last section of 
this paper presents the conclusion and 
recommendation.  

1. Theoretical background 

The cap and trade of carbon. There is no longer a 
doubt (except for climate denials) that climate 
change and the attendant potential catastrophic 
result for humans is real. This is why the Stern 
Review warned that, if ignored, climate change 
would affect humankind globally as scientific 
evidence alerts. According to Stern Review:  

“The scientific evidence points to increasing risks of 
serious, irreversible impacts from climate change 
associated with business-as-usual (BAU) paths for 
emissions” (Stern, 2007, p. 3). 

The IPCC (2017) adds that a variety of studies 
ranging from physiological, ecological and physical 
add confirmation about the negative implications of 
climate change on global biological and physical 
systems.  

The warning by scientists triggered action by world 
bodies, partnerships and conventions such as the 
Kyoto Protocol, the UN Framework Convention on 
Climate Change (UNFCCC), the Intergovernmental 
Panel on Climate Change (IPCC) etcetera. Of these, 
the Kyoto Protocol stands out as the initiator of 
guidance on the capping and trading of carbon to 
alleviate the negative implications of continuous 
carbon emission in its usual stance.  

“The Kyoto Protocol is an international agreement 
linked to the United Nations Framework Convention 
on Climate Change, which commits its Parties by 
setting internationally binding emission reduction 
targets”(UNFCCC, 2014, p. 1). 

Therefore, contemporary trading and pricing of 
carbon takes a theoretical crux in the Kyoto 
Protocol; hence, this paper also draws its theoretical 
foundation on the Kyoto Protocol. This is because, 
this paper discusses a critical aspects of emission 
pricing by way of emission futures price forecasting, 
which is rooted on Kyoto cap and trade. Therefore, 
this paper contributes to the UN call for collective 
action to halt unbridled emission of carbon 
(UNFCCC, 2014).  

The Kyoto Protocol gave impetus to three genre of 
malleable carbon reduction mechanisms, namely the 
joint implementation, the clean development 
mechanism and the emission trading (Hepburn, 
2007). Emission trading functions through the cap 
and trade system. The cap system allows the 
governments to use regulatory initiatives to limit the 
quantity of carbon assigned or allowed for emission 
per year; hence, this limit is called the cap. Once a 
government has determined this cap, it then 
allocates quotas of this cap to businesses through 
emission allowance permits. This means that 
companies that exceed their allowable emission 
permits would be penalised through payment of 
carbon tax. In the same vein, businesses  that are not 
able to utilise their assigned emission permit levels 
may sell such remaining permits to other businesses, 
such unutilized emission allowances gives rise to 
buying and selling of carbon emission permits or 
carbon trading. Since such purchasing and sales 
occur in a competitive financial market 
environment, it is open to risks associated with the 
market, hence forecasting the price risks of carbon 
emission becomes necessary to assist businesses 
comply with their countries’ commitment to Kyoto 
Protocol; this forecasting is the focus of this paper. 
The following section reviews some related 
literature on carbon futures and forecasting.  

2. Related literature 

Given the newness of carbon market (Chevallier, 
2009), it is not surprised that research bordering on 
futures market still focusseson conventional 
commodity markets whilst research about carbon 
futures is emerging. Despite the newness though, 
some researchers have begun to carve a new 
research niche to position carbon market and carbon 
emission as a new commodity that deserve attention, 
trading and monitoring using the forecast method.   

Byun and Cho (2013) analyzed the instability 
determining capacities of three methodologies: 
GARCH approach that utilize carbon prospects 
prices, a suggested unpredictability from carbon 
alternatives prices, and the k-closest neighbor 
approach. In view of the outcomes, they report that 
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GARCH models perform superior to an inferred 
instability and the k-closest. This outcome 
recommends that carbon alternatives have little data 
about carbon futures because of their low 
exchanging volume. It has also been found that the 
price of energy and swapping of carbon trading has 
volatilities and correlation implication on the price 
of EU emission trading (Kanamura, 2016). Thus, the 
fluctuation effect from one market to the other 
causes risk spill over within and between the energy 
and carbon markets with the tendencies of implicit 
risk hedging volatility effect (Balcılar, Demirer, 
Hammoudeh, & Nguyen, 2016). Accordingly, if risk 
and fluctuation spill oversdo exist between energy 
and carbon markets (Balcılar et al., 2016), it 
becomes plausible to expect fluctuations in the 
carbon futures, but what might be unknown is the 
angle of fluctuation, which thus necessitates 
constant research on fluctuation prediction such as 
in this research. Forecasting the fluctuation in 
carbon futures constitutes vital information for 
carbon traders and perhaps for energy traders 
especially as it provides the ground to nurture and 
apply suitable hedging strategies (Balcılar et al., 
2016) to reduce the risk of loss in carbon trading 
arising from unplanned fluctuations. A combination 
of events study with the application of ICSS 
algorithm approach has been empirically proven to 
be an efficient tool for detecting and explaining 
structural breaks in carbon futures (Zhu & 
Chevallier, 2017). Amongst the findings of causes 
of carbon futures structural breaks include inter alia, 
periods of peak in carbon market, the 2008 and 2011 
subprime crunch and the EU debt crunch, 
respectively (Zhu & Chevallier, 2017).  

Alberola, Chevallier, and Chèze (2008) studied the 
day by day value basics of European Union 
Allowances (EUAs) exchanged from 2005 as a 
major aspect of the Emissions Trading Scheme 
(ETS). Two structural fluctuations became apparent 
on April 2006 and on October 2006 after the 
European Commission declaration of stricter phase 
of carbon trading. The outcomes broaden past 
findings by demonstrating that EUA spot costs 
respond to price of energy with weak forecasts, as 
well as to unexpected temperatures changes amid 
colder occasions. Whilst stressing the importance of 
multiple forecasting approach on carbon futures, 
Zhang, Zhang, Xiong, T., and Su (2017) applied the 
support vector regression approach with a mixture 
of another important tool, which is the particle swarm 
optimization to forecast next day’s high and low 
carbon price fluctuations. Their findings indicate 
significant results, which show that the applied hybride 
approach could greatly enhance the forecast of carbon 
price fluctuation at the interval level.  

On the other hand, the likely effect of 
macroeconomic vagaries on carbon futures has also 
been receiving research attention (Zeng, Nan, Liu, 
& Chen, 2017; Chevallier, 2011; Chevallier, 2009), 
but with conflicting arguments. Some have, based 
on empirical results, argued that the carbon market 
is not strongly affected by fluctuations in the 
macroeconomic environment, but that the carbon 
market ratherhas little or slightassociation with the 
events in the macroeconomic environment 
(Chevallier, 2009). Instead, the carbon futures 
market might have a linkage with energy 
fluctuations and issues that link with carbon 
regulations or pronouncements (Baranzini, van den 
Bergh, Carattini, Howarth, Padilla, & Roca, 2017; 
Kanamura, 2016).  

Since it is important to forecast futures volatility in 
conventional financial markets, it therefore becomes 
even more important to forecast the volatility in 
carbon futures, given the market’s newness and the 
intricacies implicit in the buying and selling of 
carbon allowances (Smits, 2017; Gao, Smits, Mol, 
& Wang, 2016). Any news whether real or mere 
anecdote that flag likely impending and/or imminent 
carbon meetings and attendant change in policies 
triggers jittery and/or signals in the carbon futures 
(Capoor & Ambrosi, 2008). The carbon futures 
offer a vibrant catalyst to global quest for carbon 
emission reduction; therefore, market-forecasting 
tool such as the time series forecast is pertinent to 
reduce the risk of loss by carbon market participants 
who might apply the forecast results to hedge 
systemic risk (Tang, Shen, & Zhao, 2015; MISFD, 
2014) in the carbon market. Tang et al. (2015) 
provide a detailed empirical study about carbon 
market systematic risk in their analysis of systemic 
risk inherent in carbon markets such as the EU ETS 
and the CDM. Their study indicate that whilst the 
EU ETS might present a systematic risk of about 
0.07%, on the contrary, the CDM market tend to 
present lower or greater systematic risk than the EU 
ETS depending on the stage of the futures contract 
(Tang et al., 2015, p. 333). Whilst the previous 
research on carbon futures forecast have dwelt on 
long-term time series; this paper uses the following 
section to demonstrate that short term time series 
data on carbon futures could provide carbon 
emission price speculators with reliable prediction 
and forecasting information on carbon emission 
price volatility.  

3. Method and results  

Data used in this carbon futures forecast were 
collected from the Investing.com carbon futures 
monthly historical price data (Investing.com, 2017) 
for the months April 2015 to July 2017. Hence, the 
data constitutes monthly carbon futures data.  
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The time series dataset set were entered into the 
Gretl software, following this, the researcher 
derived the time trend, which served as the main 
independent variable; in addition to the time trend, 
the periodic dummies were also derived and entered 
into the Gretl software. Following this, a linear 
regression analysis was conducted (Table 1); 
thereafter, an in-sample forecast of carbon futures 
was conducted to estimate the closeness of the 
prediction to actual emissions price.  

First before the forecast, a linear regression was 
conducted  using  the  monthly  carbon    price   as 

the dependent variables, whilst  the time trend and 
periodic dummies served as the independent 
variables. Thus, the linear regression model is 
represented as follows: 

 = 0  + 11 + 22 + ,                                   (1) 

where  represents the carbon price;  
0 represents the regression intercept; 
1 represents the regression coefficients;  
1 represents the time trend; 
2 represents the periodic dummies. 

 
Fig. 1. The spikes of carbon futures in April 2015 to July 2017

In Figure 1, it can be seen that spikes peak up and 
down, which connotes some elements of 
seasonality in carbon price. A sharp peak is 
evident in some months in 2015, 2016 and 2017, 
all contributing to an uneven downward trend in 

carbon price. The sharp peaks make it easier for  
a carbon speculator to watch out for likely  
repeats in future periods, hence visualisation of 
the spikes might also serve as a forecasting 
apparatus.  

Table 1. Linear regression between of carbon futures with time trend as main regressor. Model 5: OLS, 
using observations September 2015 – July 2017 (T = 23). Dependent variable: carbon price 

 Coefficient Std. Error T-ratio P-value 
const 6.895 0.901797 7.6458 0.00002 ***
time -0.107273 0.039661 -2.7047 0.02213 **
dm2 -0.482727 1.11686 -0.4322 0.67476 
dm3 -0.545455 1.11897 -0.4875 0.63644 
dm4 -0.0181818 1.12248 -0.0162 0.98740 
dm5 0.254091 1.12738 0.2254 0.82622 
dm6 -0.428636 1.13364 -0.3781 0.71325 
dm7 -0.241364 1.14124 -0.2115 0.83675 
dm8 -1.13773 1.36759 -0.8319 0.42487 
dm9 0.465909 1.12738 0.4133 0.68813 
dm10 1.28318 1.12248 1.1432 0.27960 
dm11 0.700455 1.11897 0.6260 0.54535 
dm12 1.60773 1.11686 1.4395 0.18057 

 

Mean dependent var 5.783913 S.D. dependent var 1.396368

Sum squared resid 12.45811 S.E. of regression 1.116159

R-squared 0.709578 Adjusted R-squared 0.361071

F(12, 10) 2.036053 P-value(F) 0.134330

Log-likelihood -25.58468 Akaike criterion 77.16936

Schwarz criterion 91.93078 Hannan-Quinn 80.88181

rho 0.609406 Durbin-Watson 0.723799
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Table 1 indicates that only the time trend is significant 
at a P-value of 0.02, which is smaller than the alpha 
level of 0.05; none of the monthly dummies is 
significant since all the P-values are higher  than  0.05. 

the  negative  value of   the  time coefficient indicate 
that carbon prices have the tendency to decrease with 
time (within the sample period), which is a good 
information for carbon speculators.  

Table 2. In-sample prediction September 2015 – July 2016 for 95% confidence intervals, t(10, 0.025) = 2.228 

Obs Carbon price Prediction Std. Error 95% interval 

09 2015 8.23000 7.25364 1.38757 (4.16194, 10.3453) 

10 2015 8.71000 7.96364 1.38757 (4.87194, 11.0553) 

11 2015 8.65000 7.27364 1.38757 (4.18194, 10.3653) 

12 2015 8.29000 8.07364 1.38757 (4.98194, 11.1653) 

01 2016 6.07000 6.35864 1.38757 (3.26694, 9.45033) 

02 2016 5.01000 5.76864 1.38757 (2.67694, 8.86033) 

03 2016 5.22000 5.59864 1.38757 (2.50694, 8.69033) 

04 2016: 6.18000 6.01864 1.38757 (2.92694, 9.11033) 

05 2016 6.10000 6.18364 1.38757 (3.09194, 9.27533) 

06 2016 4.47000 5.39364 1.38757 (2.30194, 8.48533) 

07 2016 4.43000 5.47364 1.38757 (2.38194, 8.56533) 

08 2016 4.47000 4.47000 1.57849 (0.952911, 7.98709) 

09 2016 4.99000 5.96636 1.38757 (2.87467, 9.05806) 

10 2016 5.93000 6.67636 1.38757 (3.58467, 9.76806) 

11 2016 4.61000 5.98636 1.38757 (2.89467, 9.07806) 

12 2016 6.57000 6.78636 1.38757 (3.69467, 9.87806) 

01 2017 5.36000 5.07136 1.38757 (1.97967, 8.16306) 

02 2017 5.24000 4.48136 1.38757 (1.38967, 7.57306) 

03 2017 4.69000 4.31136 1.38757 (1.21967, 7.40306) 

04 2017 4.57000 4.73136 1.38757 (1.63967, 7.82306) 

05 2017 4.98000 4.89636 1.38757 (1.80467, 7.98806) 

06 2017 5.03000 4.10636 1.38757 (1.01467, 7.19806) 

07 2017 5.23000 4.18636 1.38757 (1.09467, 7.27806) 

 
Table 2 presents the in-sample prediction, to 
ascertain how closely time series prediction might 
help carbon speculators. A visual overview actual 
carbon price (column 2 from the left) and  

the predicted carbon price (column 3 from  
the left) shows that the predicted price  
and the actual carbon price are very closely 
related.  

 

Fig. 2. Lines of in-sample prediction September 2015 – July 2016 and the actual lines 

Figure 2 is the line chart of in-sample prediction of 
carbon price, and it can be seen that the blue line 
(the forecast or prediction) runs very close to the 
actual carbon price (red line). The line chart 

substantiates the accuracy of the in-sample carbon 
price forecast since the red and blue lines run close 
to each other in a steady manners along the 
trajectory.   
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Table 3. Out-of-sample forecast for July 2017 – July 2018 For 95% confidence intervals, t(10, 0.025) = 
2.228 

Obs Carbon price Prediction Std. Error 95% interval 

08 2017 Undefined 3.18273 1.64868 (-0.490752, 6.85621) 

09 2017 Undefined 3.54136 2.04744 (-1.02063, 8.10335) 

10 2017 Undefined 4.25136 2.04744 (-0.310626, 8.81335) 

11 2017 Undefined 3.56136 2.04744 (-1.00063, 8.12335) 

12 2017 Undefined 4.36136 2.04744 (-0.200626, 8.92335) 

01 2018 Undefined 2.64636 1.71645 (-1.17814, 6.47086) 

02 2018 Undefined 2.05636 2.04744 (-2.50563, 6.61835) 

03 2018 Undefined 1.88636 2.04744 (-2.67563, 6.44835) 

04 2018 Undefined 2.30636 2.04744 (-2.25563, 6.86835) 

05 2018 Undefined 2.47136 2.04744 (-2.09063, 7.03335) 

06 2018 Undefined 1.68136 2.04744 (-2.88063, 6.24335) 

07 2018 Undefined 1.76136 2.04744 (-2.80063, 6.32335) 

 
Table 3 presents the out of sample forecast. Since 
there is no actual carbon price in the out of sample 
forecast to compare with, one could interpret the 

accuracy by looking at the probability level, which 
is 0.025, meaning that the forecast falls within the 
95% confidence interval, which is a good forecast.  

 

Fig. 3. Out-of-sample forecast and actual lines 

Figure 3 presents the line chart for the out of sample 
forecast. The accuracy of prediction or forecast can 
be seen from the fact that the blue line (the forecast) 
lye within or inside the 95 percent confidence 
interval – an indication of prediction reliability. This 
can provide a visual picture of the likely future of 
carbon price for carbon price speculators.  

Discussion of results 

The carbon futures price was regressed against the 
time trend, which is the main independent variable 
(the main regression in this linear regression test). 
An additional variable, periodic dummies (in this 
case the different month’sdata of carbon emission 
price) were also included, thus giving one dummy 
for each month within the period covered by the 
short time series data sample (April 2015 to July 

2017). Furthermore, in order to control for 
seasonality effect, before running the regression, 
one month dummy was excluded from the periodic 
dummy variable, which is April 2015. Firstly, a line 
chart of volatility in Fig. 1, show that indeed carbon 
futures price is fraught with some volatilities, which 
is noticeable by the up and down spikeswith a 
gradual descending price trend. Secondly, the linear 
regression results show that, as the main regressor, 
time trend does have an influence on carbon futures 
price volatility at a P-value of 0.02, which is lower 
than 5% alpha level. This thus shows that time trend 
has a significant effect on carbon futures price 
volatility even within the short-term time series and 
this provides additional information for short-term 
carbon futures price speculators to consider time 
trend as a factor in their carbon futures speculation. 

-4

-2

 0

 2

 4

 6

 8

 10

 2017.6  2017.7  2017.8  2017.9  2018  2018.1  2018.2  2018.3  2018.4  2018.5

95 percent interval
forecast



Environmental Economics, Volume 8, Issue 4, 2017 

 12 

However, the monthly periodic dummies were not 
significant. To demonstrate that short-term time 
series futures data could assist short-term carbon 
emission speculators in their carbon futures 
investment decisions, the in-sample prediction, 
which appears in Table 2 and Fig. 2 show that short-
time carbon futures time series data, can provide a 
reliable short-term prediction of carbon price. This 
is evident in Fig. 2, which shows that the prediction 
line falls within the 95% confidence on the actual 
carbon price.This in-sample result also provides a 
carbon emission futures speculator with the 
confidence to use out-of-sample forecast, which 
appears in Fig. 3 and which gives a 95% confidence 
out-of-sample forecast of some months ahead. This 
demonstration is important given that many 
investors even in carbon emissions trading engage 
in short-term period speculation; this genre of 
investors therefore deserve additional information to 
assist with their carbon emission price risk reduction 
strategies. The above illustrations have provided 
such additional information.  

Conclusion 

The objective of this paper was todemonstrate that 
carbon futures price could be reliably predicted with 
the method of time series forecasting to provide 
short-term information for carbon price speculators. 
In order to achieve this objective, the paper used a 
sample of carbon futures price from April 2015 to 
July 2017 and used the Gretl software to conduct the 
time series analysis. The analysis produced an in-
sample and out of sample predictions, which 
showed reliability of forecast at a P-value below the 
0.05 significant level or which fell within the 95% 
confidence level. This shows that short-term carbon 
price speculators might also benefit from forecasting 
using short time series, similar to the benefits 
derivable from long-term time series forecasting.  

In an era of growing global concern and campaign 
for sustainable development, carbon emission 
reduction has become the prominent focus given 
scientific evidence of the enormous impact of 
carbon emission on the ozone layer and the 
concomitant negative reverberation on climate 
change. Accordingly, international agreements on 
carbon policy has galvanized the establishment of 

carbon emissions trading and markets  to  
encourage carbon emissions reduction. Similar to 
other commodity markets, the futures market, 
which is a contract to exchange a commodity 
based on a contract price has also become 
operational in the carbon markets. Therefore, 
given the newness of carbon emission markets 
and the implicit systemic risk, carbon emission 
futures speculators need additional information to 
assist in speculating risk and to hedge such risks 
through effective investment planning. This paper 
thus made an important attempt to provide a 
demonstration of how short-term carbon futures 
speculators could use short-term carbon futures 
time series data to predict and forecast carbon 
prices within the short time period. This paper 
stands out from other similar research on carbon 
emission futures as previous papers have 
focussed on long-term time series demonstration, 
thus leaving out short-term speculators with 
enabling information on whether short-term time 
series might assist them in predicting and 
forecasting carbon futures. This paper has 
demonstrated that short-term speculators in 
carbon futures could indeed use short-term time 
series data on carbon futures to predict and 
forecast futures price volatility within a short 
term and thus decide on investment opportunity. 
The sample data results showed that short-term 
data could produce a reliable in-sample futures 
prediction since the in-sample prediction fell 
within the 95% confidence interval. The 
demonstration also showed that short-term 
carbon futures data could assist speculators to 
conduct a reliable short-term out of sample 
forecast of carbon futures prices within the 
closer period of some months ahead. Therefore, 
the paper offers practical assistance to carbon 
futures speculators and isequally important for 
academic studies for business and economic 
students on discussions and research bordering 
on carbon emissions, carbon trading, 
environmental economics and sustainable 
development. More carbon emissions futures 
short-term forecasting is encouraged – such 
research should compare short-term forecasting of 
carbon futures amongst different carbon markets.  
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