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Abstract. Thermotaxis or motion in the field of 
temperature gradient is a very common phenomenon and 
can be found in many events in nature, from biological 
ones to the migration of colloidal particles. In this paper, 
we suggest a deterministic model to describe the 
collective behavior of a microorganism population with 
a general form of stimuli gradient-based taxis in porous 
media. This population has the mass density slightly 
heavier than the water density and forms a suspension. 
The suspended cells are actively in motion with a 
thermotaxis behavior (temperature gradient follower). 
Based on an Eulerian framework, the model comprises 
basically the Darcy equation for the fluid motion in 
porous media, equation of cell conservation for the 
microorganism population and equation of conservation 
for the considered stimuli. To take into account the 
density effects, the Boussinesq’s approximation will be 
used. Linear stability analysis shows that there are 
interesting effects of temperature on the bioconvection 
pattern of the thermotactic microorganisms.  
 
Key words: Thermotaxis, gradient-based motion, linear 
stabiliy, thermotactic bioconvection.  
 
1. Introduction 

One of the adaptive behavioral responses of living 
organisms in their environment is ‘thermotaxis’, by 
which they migrate toward a preferred temperature or 
away from the uncomfortable heat sources. Thermotaxis 
or motion in the field of temperature gradient is a very 
common phenomenon and can be found in many events 
in nature, from biological ones such as the motion of 
Dictyostelium slugs (Maree et al. [1]), self organized 
thermoregulation of honeybees (Watmough and 
Camazine [2]), Caenorhabditis elegans behaviors 
(Matsuoka et al. [3]), human and animal sperm (Bahat 

and Eisenbach [4], Bahat et al. [5]), to the migration of 
colloidal particles (Golestanian [6]). Different models 
were suggested to mathematically describe the 
thermotactic behavior such as the model of Watmough 
and Camazine [2] with thermotaxis diffusion for thermo-
regulating bees, the model of Maree et al. [1] with  the 
motion of the D. discoideum slugs, the  hybrid cellular 
automata/partial differential equation of Savill and 
Hogeweg [7], etc. We can also cite here the works of 
Matsuoka et al. [3] with a simple Monte-Carlo model of 
simulation for C. elegans behavior, the model for 
thermophylic and cryophilic tendencies of worms 
suggested by Ito et al. [8], and a simple biased random 
walk model of the C. elegans population behavior of 
Nakazato and Mochizuki [9], which reflects the results 
of individual movement assays. Their results assert the 
importance of the steepness of the thermal gradient that 
may change the migration behavior drastically in 
experiments on thermotaxis. However, none of the 
models has mentioned the feedback convection which 
can be generated by the collective behavior of 
thermotactic microorganisms. In this paper, we 
investigate this aspect in porous media. The 
mathematical model we suggest is a coupled system of 
partial differential equations wherein the thermotaxis is 
described under the form of temperature gradient 
following term. The linear stability analysis will be used 
to define the onset of the thermotactic patterns, known 
under the name thermotactic bioconvection. Related to 
the bioconvection patterns in porous medium, 
Kuznetsov [10, 11] and Nguyen-Quang et al. [12] 
summarized most of works on different aspects (stability 
analysis and numerical simulation) of bioconvection in 
porous medium. The results in this paper will highlight 
the study of critical thresholds for thermotactic 
bioconvection in porous medium as well as provide 
insight into several fundamental processes under the 
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gradient-based motion and give direction for our future 
research involving thermotaxis, chemotaxis and prey-
taxis behavior of microorganism populations.  
 
2. Mathematical formulation 

2.1. Dimensional governing equations 

For the conceptual model of bioconvection in a 
porous medium, the governing equations for unsteady 
flow in a porous medium are obtained by volume 
averaging the equations of Pedley et al. [13] according 
to the theory of Whitaker [14].  The replacement of the 
Laplacian viscous terms with the Darcian terms 
describing viscous resistance in a porous medium is the 
basic concept of this approach (Nguyen-Quang et al. 
[12, 15, 16]). The validity of Darcy’s law in the porous 
medium bioconvection model is therefore assumed 
similar to that in a natural convection model in a layer 
being heated from below. We consider a two-
dimensional horizontal porous layer of thickness H’ 
containing an initially uniform concentration N’ of 
thermotactic microorganisms. The upper and lower 
boundaries of the layer are impermeable and subjected 
to constant temperatures. The porous medium is 
assumed isotropic with a permeability K as shown in 
Fig. 1. 
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Fig. 1. Physical description of the problem 
 

The following hypotheses are also assumed in order 
to ensure that the thermotactic behavior is not disturbed: 
(1) the porous matrix does not absorb microorganisms, 
(2) the pore sizes are significantly larger than the 
microbial cell sizes and the microorganism suspension is 
dilute; therefore, the change of permeability of the 
porous matrix due to cell deposition is negligible, (3) the 
possible local vorticity generated by flow through the 
pores does not affect the ability of microorganisms to 
reorient themselves; (4) the mortality and the 
multiplication of microorganism cells are neglected, in 
other words, the cells are assumed not to die or grow; 
the number of cells is therefore constant. We assume 
that all physical properties of the fluid are constant 
except the density in the buoyancy term of the 
Boussinesq’s approximation. It is also assumed that the 
suspension of microorganisms is incompressible. 

The governing equations are therefore: 
. 0V′ ′∇ =

r
                                  (1) 

V P
K

g′ ′ ′= − ∇ +
r rµ

ρ                           (2) 

( ) ( ) .( ) .( )p f p
TC C T V k T
t

′∂ ′ ′ ′ ′ ′ ′+ ∇ = ∇ ∇
′∂

r
ρ ρ        (3) 

.( ) .( )c c
N N V N V D N
t

′∂ ′ ′ ′ ′ ′ ′ ′ ′+ ∇ = −∇ − ∇
′∂

r r
ε          (4) 

where ( , )V u v′ ′ ′
r

is the fluid velocity, P′ the pressure, 

cV ′
v

the average cell swimming velocity due to 
thermotaxis and gr  the acceleration of gravity.  

The thermotaxis velocity is defined as follows. 

0cV W T′ ′ ′ ′= ∇
uurv

                        (5) 

• Where 0W ′  is a constant standing for the 
capacity of thermotactic motion of microorganisms 
(with the dimension m2s-1K-1), that actually is the 
diffusivity of microorganisms per 1 temperature degree.  

• T′ ′∇
uur

is the thermal gradient exerted on the 
considered system (K/m).  

If we introduce the dimensionless velocity of 
thermotactic microorganisms Pe (Peclet number), we 
will have: 

0 0
1

c c

HPe W W T
D D

′
′ ′= = ∆              (6) 

We can notice that the system of governing equations is 
quite similar to the one of gravitactic bioconvection with 
double-diffusion treated by Nguyen-Quang et al. [16] except 
for the swimming velocity term Pe.  This would be a base of 
discussion of our results in the next part. 

We would remind herein the swimming velocity of 
microorganisms in the case of gravitaxis, which is  

(0, )c cV V′ =
v

 with Vc is upward gravitactic swimming 
speed (m/s) (Nguyen-Quang et al. [16]). 

In the thermotactic behavior, this swimming 
velocity would be assumed as 0cV W T′ ′ ′ ′= ∇

uurv
with an 

amplitude (swimming speed) defined as follows  

0
0

W
W T

H
′

′= ∆
′

 (m/s)                      (7) 

In the above equations ( ) fCρ  and ( ) pCρ  are 

respectively the heat capacity of fluid and of saturated 
porous medium. Also, ε  is the porosity of the porous 
medium and K  the permeability of the porous medium. 
The fluid containing microorganisms is assumed to 
satisfy the Boussinesq’s approximation. The density 
variation with temperature and concentration is 
described by the state equation: 

0 0 [1 ( ) ( )]f T NT T N N′ ′ ′ ′= − − + −ρ ρ β β          (8) 

where fρ  is the fluid density at temperature 0T T ′′ =  

and concentration 0N N′ ′=  and Tβ  and Nβ  are the 
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thermal and concentration expansion coefficients, 
respectively. 

The boundary conditions applied on the walls of the 
layer are  

0 . 0v T T J n′ ′ ′ ′= − = =
r r          at 0y′ =        (9a) 

0 . 0v T T T J n′ ′ ′ ′ ′= − − ∆ = =
r r       at y H′ ′=    (9b) 

where     
( )c cJ N V V D N′ ′ ′ ′ ′ ′= + − ∇

r r r
                    (9c) 

 
2.2. Scaling of the governing system of equations 

The system of governing equations is normalized by 
using scaling length by 'H , velocity by /cD H ′  and 

time by 2( ) /[( ) ]p f cC H C D′ρ ρ . Also, we introduce the 

reduced temperature 0( )T T T T′ ′ ′= − ∆  and the reduced 
concentration 0( )N N N N′ ′ ′= − ∆ . Using these scales, 
Eqs (1)-(4) can be transformed in terms of the stream 
function Ψ  to the following dimensionless form: 

2  N T
N TRa Le Ra
x x

∂ ∂
∇ Ψ = −

∂ ∂
             (10a) 

2 T T T Le T
t y x x y

∂ ∂Ψ ∂ ∂Ψ ∂
+ − = ∇

∂ ∂ ∂ ∂ ∂
          (10b) 

2 2

N T N T NPe Pe
t y x x x y y

N PeN T

   ∂ ∂Ψ ∂ ∂ ∂Ψ ∂ ∂
+ + + − + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

= ∇ − ∇

φ
 (10c) 

where, in order to satisfy the continuity equation, the 
stream function Ψ  is defined such that /u y= ∂Ψ ∂ , 

/v x= −∂Ψ ∂ . 0 / cPe W T D′= ∆  is the Peclet number, 
/N N cRa g N H K D′ ′= ∆β ν  is the bioconvection 

Rayleigh number, /T T pRa g T H K′ ′= ∆β να  is the 

thermal Rayleigh number, /p cLe D= α  the Lewis 

number and  ( ) /( )f pC C=φ ε ρ ρ  the normalized 

porosity.  
The corresponding boundary conditions are   

0
1Pe

N Pe TT PeN
y ye

∂ ∂
Ψ = = − − =

∂ ∂−
     at 0y =     (10d) 

1 0
1Pe

N Pe TT PeN
y ye

∂ ∂
Ψ = − = − − =

∂ ∂−
 at 1y =     (10e) 

When the fluid is motionless ( 0BΨ = ), the system 
of equations with boundary conditions (10a,b,c,d,e)  
yield the following temperature and concentration 
profiles :  

BT y=  (linear profile)                     (11a) 
and   

 

1

Pe y

B Pe
eN

e
=

−
      (exponential profile)        (11b) 

3. Linear stability analysis and numerical 
procedure for resolution 

We perform the linear stability analysis to study the 
onset of diffusion convection caused by thermotactic 
microorganisms and by thermal effects. The results are 
presented as stability diagrams showing the critical 
Rayleigh number RaN vary with the wave number k, and 
as a function of thermal critical Rayleigh number RaT. 
These critical Rayleigh numbers represent for the onset 
of spatial-temporal pattern predicted by linear stability, 
focusing on the predicted impacts of thermal 
stratification on microorganisms hydrodynamic 
processes. Hydrodynamic processes, or flow regimes, 
are represented by the streamlines traced from the 
stream function.  This dimensionless stream function 
denotes the path of a fluid particle. In our analysis, 
streamlines reveal the path of thermotactic cells or/and 
temperature trajectories in a flow field where 
temperature and microorganisms interact. 

The stability to small perturbations from the 
quiescent state ( BΨ , BT , BN ) is introduced by 
rewriting the governing equations using B= Ψ − Ψψ , 

BT T= −θ   and BN N= −η .  As usual, the disturbance 
solution is assumed to have the following functional 
form: 

( , , ) ( )

( , , ) ( )

( , , ) ( )

pt ikx

pt ikx

pt ikx

t x y y e

t x y y e

t x y y e

+

+

+

=
= 


= 

%
%

%

ψ ψ

θ θ

η η

               (12) 

where ( )y%ψ , ( )y%θ  and ( )y%η  describe the vertical 
perturbation profiles and rp p i= + ω  is the complex 
growth rate of the perturbation. In the above equation 

/k = π λ  is the real wave number, λ  the wavelength, 

rp  the grow rate of instability and ω  the frequency of 
instability. 

Introducing (12) into (10a,b,c) and neglecting 
second higher-order nonlinear terms yields the following 
linear system:  

2 2( )        0T ND k i k Le Ra i k Ra− + − =%% %ψ θ η        (13a) 
2 2 ( )     BLe D k i k DT p− + =% %%θ ψ θ           (13b) 

2 2 2 2( )    ( ) 

       
B B

B B

D k Pe DT D Pe N D k

Pe DN D i k DN p

− − − − −

− + =

%% %
% % %

η η θ

θ ψ φ η
   (13c) 

The boundary conditions, corresponding to 
equations (10d,e) are: 

 0
1Pe

PeD Pe D
e

= = − − =
−

% %% % %ψ θ η η θ  at 0,1y =     (14) 

where /D d dy= . 
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The perturbed state equations (13a,b,c) with the 
boundary conditions (14) may be written in a compact 
matrix form as: 

( ) ( )A BM k p M k=Y Y                       (15) 

where [ , , ]=Y %% %ψ θ η  is a two-component vector of the 
perturbation and ( )AM k  and ( )BM k  are two linear 
differential operators that depend on the control 
parameters NRa , TRa , Le , Pe and φ . 

For the linear stability analysis, the set of equations 
(15) is solved using a discretization scheme by finite 
differences, which is one of the straightforward ways to 
deal with this kind of problem.  The system is 
discretized by using fourth and second-order central 
difference schemes in the domain between 0y =  and 

1y = . For n discretized points, the resulting discrete 
system has 3n eigenvalues that can be found by using a 
standard subroutine for eigenvalues such as EIGENC. 
The value of NRa  for which the maximal growth rate 

rp  cancels is iteratively determined by Newton’s 
method, holding wave number k , TRa , Le , Pe  and φ  
constant. The time needed for computational process to 
achieve a convergence remains quite reasonable 
however. The numerical procedure needs hence a 
discretisation number n greater than 100. 

 
4. Results and discussion  

4.1. The thresholds of thermotaxis patterns  

In Fig. 2, we show a family of stability curves 
obtained with various RaN vs k when Le=1 and 

Pe = 0.5. It divides the parameter space (RaN, k) into 
two regions: the region above the stability curve is 
unstable, while the one below is stable. For each 
value of Pe, we get one stability curve with a 
minimum at RaN = Rac, k = kc. This is referred to as 
the critical point for the onset of bioconvection 
caused by thermotaxis. 

 

 
Fig. 2. Stability curves RaNvs k for different values  

of RaT when  0.5Pe = , 1Le =  
 
Fig. 3 show the onset of the bioconvection patterning 

via iso-lines of stream function, concentration and 
temperature for the case of 0.5Pe = , 1Le =  when  RaT 
adopted three different values 0,  -5,  and 5. 

 

           
а                                                   b                                                   c 

Fig. 3. Iso-lines of stream function (left), concentration (middle) and temperature (right)  
for the case of 0.5Pe = , 1Le =  when  (a) 5TRa = , (b) 0TRa = , (c) 5TRa = −  

 
4.2. Effects of the thermotaxis speed 

Fig. 4 shows the curves of RaN vs k in functions 
of Pe , for the case of 0TRa =  (i.e no double-
diffusion effects) and 1Le = . We can see that when  
Pe  varies, influences of mobility on the pattern are 
very significant.  Precisely, when 0Pe → , the 

threshold of thermotactic bioconvection NCRa  tends 
to the value of  4π2 while the critical wavenumber 

Ck  tends to π. It is very interesting to observe that 
these thresholds correspond exactly to the thresholds 
of a porous layer heated from below with a constant 
temperature (Nield and Bejan [17]). To understand 
this important discovery, we have to recall that for 

Ψ 

N 

T 
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the case of 0Pe → in pure gravitactic bioconvection 
published in Nguyen-Quang et al. [15], the obtained 
thresholds are equivalent to a porous layer  
heated from below by a constant flux 
( 12NCRa → , 0Ck → ). 

From Fig.5, we also observed that there 
exists a critical value of Pe for the minimal value 
of NCRa . That critical Pe value is around 5.9 (where 
RaNC reached the minimum value shown in Fig. 5). 
The equivalent wavenumber Ck  is not however the 

equivalent minimum value and we notice that Ck  
gets its minimum value when Pe is approaching 
closer to 1.03. In other words, the critical values of 
RaNC and of wavelength kC  do not happen in the 
same moment.  

 
Fig. 4. RaN vs k  in functions of Pe   

for the case 0TRa =  and 1Le =  

 

     
Fig. 5. NCRa and Ck vs Pe  for the case 0TRa =   

and 1Le = (left: normal scale and right:log-scale) 
 

4.3. Effects of the double-diffusion  

Fig. 6 illustrates the curve NCRa  vs TRa  for the 
case of 1Le =  at different values of swimming 
speeds Pe  (it is reminded that /p cLe D= α  is the ratio 

between thermal diffusivity and cell diffusivity). We 
notice that negative values of TRa  (i.e. heating from 
below according to our temperature gradient context 
assumed in Fig. 1) destabilize the system, because the 
system becomes exactly the classical thermo-convection 
configuration heated from below by a constant 
temperature (Nield and Bejan [17]). From Fig. 6, it is 
observed that 0NCRa = when 24TRa = − π  (i.e. at the 
exact value of thermal threshold to decline the thermo-
convection) with any value of Pe. In this case, 
convection patterning may happen and be governed by 
thermal effects. 

When Lewis number Le varies, we obtain the curve 
of NCRa  versus Ck  for 0TRa =  and 10Pe = (Fig. 7). 

We recognized that contrarily to the gravitactic thermo-
bioconvection (Nguyen-Quang et al. [16]) where the 
Lewis number Le did not have any effect when 

0TRa = , here this ratio plays  a very significant role in 
the quantification of RaNC. From Fig. 7, we can see that 
when RaT = 0, the larger Le, the higher RaNC and vice-
versa. However, the critical wave number Ck  changes 
only slightly with this ratio Le. 

It is extremely interesting to underline that the 
thermotaxis linear stability analysis can lead to the case 
of overstability when Le = 0.1 (i.e the cell diffusivity is 
ten times greater than thermal diffusivity). Fig. 8 (left) 
gives us two critical thresholds of RaN versus the 
wavenumber with three different cases of RaT. This 
phenomenon can be explained by the fact that from 
equations (12), rp p i= + ω  was assumed as the 
complex growth rate of disturbances where rp  and ω  
stand for the growth rate and the frequency of instability 
respectively. 
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Fig. 6. NCRa vs TRa   

for 1Le =  at various Pe  

 
Fig. 7. NCRa and Ck vs  Lewis number 

for 0TRa =  and 10Pe =  

 

               
Fig. 8. RaN vs k in function of RaT , case of Pe = 0.5,  

with Le = 0.1 (left-Overstability) and Le = 1 and 10 (right) 
 
 

By the theory of linear stability for natural 
convection, we knew that if p is real, the amplitude 
of the velocity is a monotonic function of time; and 
when the growth rate p is a complex quantity, the 
system will become overstable, equivalent to the 
exponential increase with time of velocity amplitude 
but this increase varies periodically (Kosmeider 
[18]). The results we obtained herein showed that 
calculated values of ω  are non zero (Table 1), 
meaning clearly that our growth rate p is a complex 
quantity, hence the overstability occurs (Fig. 8 left).  
When the cell diffusivity is equal or less than the 
thermal diffusivity (Le= 1 or 10, Fig. 8 right), we 
will not have the overstability anymore. 

 

Table 1 
Variation of ω versus k  in the case  

of Pe = 0.5, RaT = 0 and Le = 0.1 

k  
RaN ω  

1.56 21.90 3.56 
2.69 26.45 3.46 
3.23 26.38 0 
4.80 17.92 0 

 
4.4. Discussion on the case of RaT=0 

If we replace the expression (6) above 
'

0 0
' 1 '

c c

HPe W W T
D D

= = ∆  in the formula 
' ' 'T

T
g T H K

Ra
∆

=
β

να
, 
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we will get the thermal Rayleigh number in function of 
Peclet number Pe as follows. 

'
0

' 'T c
T

g H K D Pe
Ra

W
β

=
να

                  (16) 

Based on (16), we can discuss following different cases: 
4.4.1. If  ΔT’ = 0, it means that there is no thermal 

gradient, RaT = 0, then Pe = 0 (from (6)), and we will 
have no pattern nor thermotactic behaviors occurring.  In 
this case, the system could be understood as having no 
thermal effects and hence no thermotactic patterns 
happening. 

4.4.2. However, because we have already applied 
the Dirichlet condition for T’ = 1 at the top and T’= 0 at 
the bottom, i.e. ΔT’ cannot cancel out, hence there exists 
always a temperature gradient in the system. We also 
assumed previously that the capacity of thermotactic 
motion of microorganisms is  Wo (eq. 7). Therefore,  Pe 
can tend to 0 when Wo tends to 0 in the case of 
microorganism cells having a very weak thermotactic 
motion capacity or not having it anymore due to age or 
stress. This case of Pe à 0 was previously discussed.   

When Pe ≠ 0 and ΔT’ ≠ 0, RaT = 0 could be 
understood as the following scenarios in the system 
according the equation (16). 

a) RaT = 0 when Dc → 0: The diffusion 
coefficient of microorganisms is very small. Depending 
on the species and taxis velocity, this coefficient varies 
very much. Le becomes much higher when Dc → 0 
( /p cLe D= α ), and RaN can be much stronger. In this 

case, the pattern can be generated by RaN and Lewis 
effects; 

b) RaT = 0 when K → 0: When the porous 
medium permeability is so low such as in a rock 
structure (but the porous matrix is large enough for the 
movement of microorganisms passing through), the RaT 
can tend to 0. Bioconvection patterns may happen due to 
a temperature gradient and thermotactic motion capacity 
of cells existing in the system; 

c) RaT = 0 when βT → 0: This case can happen 
when the coefficient of thermal expansion of the 
considered porous medium (ici c'est plutôt le coefficient 
du fluide non?) is zero. Because this coefficient 
describes how the size of the medium changes with a 
change in temperature, it would imply that the volume 
of isotropic porous medium does not change 
significantly under the temperature effects. The 
thermotactic patterns would happen under RaN  effects, 
when ΔT ≠ 0 and RaT ≠ 0, we will have definitely the 
case of thermotactic or thermophilic patterns.  If we 
simulate the system of governing equations for the 
supercritical cases, we would observe a very interesting 
phenomenon: microorganisms will have a preferable 
place to move forward and to accumulate. This means 

that the highest concentration zone of cells is not at the 
top (where T =1) but somewhere in the lower level 
because microorganisms would show their behavior to a 
comfortable and preferable temperature to be growing 
up. Some very first step simulations (not presented here) 
of the system of equations and equivalent boundary 
conditions (10) can show that obtained results seem to 
fit with many experiences on the thermotactic behaviors 
of microorganisms. The profound simulations with high 
precision and accuracy are part of our future research. 
 
6. Concluding remarks 

In this paper, we used the linear stability analysis to 
predict the onset of thermotaxis patterns in porous 
media.  Results obtained by linear stability analysis 
show that thermotactic behaviors may be analogous to 
the thermal convection heated from below by constant 
temperature when the Peclet number (capacity of 
thermotactic motion) is very weak (approaching 0) and 
there exists an important overstability state when the cell 
diffusivity is much greater than the thermal diffusivity.  

In the system where temperature and cell motility by 
thermotaxis can both result in hydrodynamic patterns, 
we found strong interactions between thermal gradients 
and cell population via the spatial distribution of cells.  
Although this pioneering work still has to be developed 
and tested in natural systems, laboratory experiments 
with thermophilic species such as Tetrahymena 
thermophila (Shiurba et al. [19]) or Caenorhabditis 
elegans would confirm the results of our model.  

The results reported here reveal a bio-physical 
coupling that results from the scale of individual 
behavior. They also suggest its importance to define the 
spatiotemporal pattern over larger ecological scales of 
porous medium.  Further investigation will elucidate the 
robustness of this gradient-based taxis model and its 
importance in natural ecological systems such as the 
behavior of algal blooms. 
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Nomenclature 

cD  mass diffusivity of microorganisms 
g  gravitational acceleration 
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H ′  height of porous layer 
k   wave number  

pk  thermal conductivity of the porous medium  

K  permeability of the porous medium 
Le  Lewis number, ( / )p cDα  

N  reduced concentration of microorganisms, 
0( )N N N′ ′ ′− ∆  

p   complex growth rate of the perturbation.  

rp   real grow rate of instability  
P′  pressure 
Pe  Peclet number, 0( / )cW T D′∆  

NRa  bioconvection Rayleigh number, 
/N cg N H K D′ ′∆β ν  

TRa  thermal Rayleigh number, /T pg T H K′ ′∆β να  

t  dimensionless time, 2( ) /[( ) ]f c pt C D C H′ ′ρ ρ  

T dimensionless temperature, 0( ) /T T T′ ′ ′− ∆  
u  dimensionless velocity in x  direction, 

( / )cu H D′ ′  
v  dimensionless velocity in y  direction, 

( / )cv H D′ ′  

cV ′
v

 average cell swimming velocity due to 
thermotaxis 

0W ′  constant standing capacity of thermotactic motion 
of microorganisms 

x  dimensionless coordinate axis, ( / )x H′ ′  
y   dimensionless coordinate axis, ( / )y H′ ′  

 
Greek symbols 

pα  thermal diffusivity 

Nβ  concentration expansion coefficient 

Tβ  thermal expansion coefficient 
µ  dynamic viscosity of fluid 
ν  kinematic viscosity of fluid 
ε  porosity of the porous medium 
φ  normalized porosity,  ( ) /( )f pC Cε ρ ρ  

λ  wavelength  

ρ  density of fluid, 3/kg m  
ω  frequency of instability 
Ψ  dimensionless stream function, /′Ψ α  
 
Subscript 

0  reference state 
 
Superscript 

 ′  referring to dimensional variable 
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