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This work presents an enhanced multi-camera system for a 3D photo-realistic map building
task. The main contribution is the implementation of a new probabilistic approach for map building
using FastSLAM 2.0 algorithm. The proposed algorithm is successfully implemented on the multi-
camera system and is capable of real-time operation. Experiments within an indoor environment
were conducted and the results show good improvement over the conventional approach.

Introduction. Map building is an active re-
search topic among the machine vision commu-
nity. In most cases the map is not available be-
forehand and the autonomous system has to in-
crementally build the map with zero knowledge.
This brings forward a combination of the local-
ization and mapping problem known as simul-
taneous localization and mapping or SLAM
[1;4]. Although SLAM can be handled using a
single stereo camera system [2;8] there is still a
certain shortcoming. The main problem of the
single camera implementation is the small field
of view which leads to motion ambiguity error
of the translation along the optical axis and
small rotation about the axis perpendicular to
the optical axis [5]. A solution to this problem is
to use an optical lens with larger field of view.
However, using optical lens with large field of
view reduces the quality of the stereo calcula-
tion [3] which consequently results in the poor
3D map quality.

In previous work [6] a multi-camera system
is introduced to overcome these problems. The
multi-camera unit or so called MCU uses unique
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hardware arrangement to overcome motion am-
biguity as well as maintaining the performance
of the stereo algorithm since an optical lens with
large field of view is not needed. More cameras
also mean more data can be acquired at a time
which is a big advantage for the map building
task. The MCU is capable of estimating six de-
gree of freedom (DoF) motion and producing a
photo-realistic map of the observed environment
in real-time. However the system faces difficul-
ties when large measurement error and motion
estimation error arise which lead to the corrup-
tion of the algorithm.

This paper presents a further enhancement
to the existing MCU system. A stochastic ap-
proach for real-time SLAM, namely the Fast-
SLAM 2.0 [4], is implemented in order to deal
with the measurement and motion estimation
error.  FastSLAM  2.0  is  an  approach  to  the
SLAM problem based on particle filtering
where feature points within the map are esti-
mated conditionally independent to the given
camera trajectory. This approach eases the im-
plementation for real-time system compared to
EKF-based SLAM approach since the calcula-
tion complexity is lower. Section 3 describes
FastSLAM 2.0 in more detail.
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This paper is organized as follows-section 2
gives a brief review of the MCU system, section
3 describes the FastSLAM 2.0 implementation
using  MCU  system,  section  4  presents  the  ex-
periment results and the last section contains the
conclusion of this work

1. Multi-camera unit
The multi-camera unit (MCU) introduced in

[6]  is  designed  to  improve  sensitivity  of  the
real-time 3D motion estimation as well as to in-
crease the data acquisition rate for 3D map
building task. By having three cameras pointing
all perpendicular to each other in x-, y- and z-
axis  the  correct  six  DoF  motion  can  be  effi-
ciently detected since the motion ambiguity
from one camera is always canceled out by the
other two cameras. The raw output from the
MCU includes six 2D images and three 3D im-
ages which are all calibrated and referred to the
same reference frame. Fig.1 shows the current
MCU hardware and its example output images.

Fig. 1. The MCU hardware (a);
the 2D images and disparity images from all
three stereo cameras (b); the 3D points cloud
composed of 3D images from all stereo cameras
on the MCU) (c)

The overview of the MCU system is shown
in Fig.2. The main processes include feature
points extraction, motion estimation between
two successive frames and map building. The
result of these operations is a 3D photo-realistic
map of the observed environment as well as the
detailed 3D trajectory of the MCU during the
map building process.

The detailed description of each process in
the MCU system is given in the following sub-
sections.

1.1. Feature extraction
Corner-type feature is used as feature point

in this work. The corner response function
(CRF) is used to extract corners from the 2D
images. The goal of the CRF is to determine the
response  value  of  the  target  pixel  which  is  de-
fined by
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Fig. 2. System overview

Where ip and ip´ is the intensity of point p
and p´ whose locations defined by the specific
shape of the mask and ic is the intensity of the
target pixel. More information about the CRF
algorithm can be found in [9].

1.2. Feature matching
Feature matching relates the same feature

point between two successive frames. The nor-
malized cross correlation (NCC) is used for the
2D feature matching. The NCC coefficient be-
tween point f and t is defined by
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Where f(x,y) and t(x,y) are the pixel intensity at
corresponded locations within previous and cur-
rent image frame and f , and t  are the mean
intensity in the 9 9 pixels region under point f
and t respectively.

1.3. Outlier detection
In practice it is possible that the NCC gives

wrong matches. Two outlier detectors are im-
plemented to eliminate these outliers. The first
one uses color information or more precisely the
hue value of the target pixels. The hue value is
represented in degree and it runs from 0° to
360°. To simplify the process, the hue value is
quantized using 60° interval (0°, 60°, 120°,…,
360°). If the hue values of the matched feature
on both successive image frames are different
then the match is considered an outlier. The
second outlier detector uses motion information
detected using 2D features. If the matched fea-
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ture has different motion direction than the ma-
jority of the matches then it is considered an
outlier. This motion detection using 2D features
is described in the section 2.4.

1.4.  3D motion detection using 2D
features

By using just the 2D images from the
MCU, a very accurate 3D motion can be de-
tected. This is done by simply calculating the
2D  movement  (up,  down,  left  and  right)  of  x-,
y- and z-camera. This movement is derived
from the displacement of the 2D feature points
between two successive frames. By putting to-
gether the 2D movement information from all
three cameras the direction of the 3D motion
can be found. Fig. 3 illustrates the direction of
the 2D movement from all three cameras and
Table 1 gives some examples of the resultant
motion according to this combination scheme.

Fig. 3. Direction of the 2D movement of all
three stereo cameras on the MCU

1.5. Six DoF motion estimation
Now that the correct matched feature points

are found, the six DoF motion (Tx, Ty, Tz, roll,
pitch, yaw) can be estimated. This is done by
applying the RANSAC algorithm to find initial
value of the transformation parameters between
two successive frames. These initial values are
then used by the iterative closest point (ICP)
algorithm to iteratively determine the final mo-
tion estimation.

Applying the ICP algorithm is straightfor-
ward since the correspondences between feature
points are known. The ICP algorithm deter-
mines the optimal rotation R and translation t by
iteratively minimizing the Euclidean distance
between the two set of matched feature points
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Where p and p´ are the feature points from

the previous time step and current time step re-
spectively. More detail about motion estimation
can be found in our previous work [9] where the
similar approach is used.

Table 1. MCU motion using 2D movement
information

Cam
X

Cam
Y

Cam
Z

MCU mo-
tion

up - up up
down - down down

- left left forward
- right right backward

up right - ccw, z-axis
down left - cw, z-axis
left left ccw, y-axis

right right cw, y-axis
(note: cw=clockwise, ccw=counter-clockwise)

2. 3D map building using FastSLAM 2.0
In order to obtain a real-time performance

the use of full resolution 3D images is avoided.
It is sufficient and more efficient to use just the
feature points since the amount of data points to
process is much lower. This can be safely done
since the feature points are actually sharing the
same coordinate with the full resolution 3D im-
ages and the resultant transformation derived
using feature points can be directly applied to
the full resolution images to produce photo-
realistic 3D map.

Let  the  map  consisting  of N feature points
be  denoted  as   =  1, … , N and the trajectory
of  the  MCU is  denoted  as st = s1, … ,st where t
is the time index and st is the pose of the MCU
at time t. The goal of the SLAM algorithm is to
estimate the posterior distribution

),,|,( tttt nuzsp .                     (4)
Where zt = z1, … ,zt is the sequence of mea-

surements of the feature point locations and
ut = u1, … ,ut is  the  sequence  of  the  MCU  mo-
tion estimation. In [4], FastSLAM 2.0 factorizes
this posterior distribution as
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The trajectory of the MCU is sampled using
particle filter with m particles and the feature
point locations are estimated independently of
each other using N EKFs.

At each time step, the new poses of the
MCU within each particle are sampled based on
the latest trajectory information and the meas-
urement of the feature point locations

),,,|(~ ,1 tttmt
t

m
t nzussps .           (6)

The feature points are updated according to
the following posterior
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Where  is a normalize [m] =
11,1 ),,,|( tttmt

t nzuszp . In the next step the
importance weight for each particle is calculated
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Finally the resample of the particle is done
based on the calculated importance weight

m
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At each iteration, the MCU position and

orientation as well as the feature point locations
are updated using the state variable of the parti-
cle with highest importance weight. The full

resolution 3D images are then merged to the ex-
isting map according to the most up-to-date po-
sition and orientation of the MCU.

The FastSLAM 2.0 and all other software
modules within this work are implemented us-
ing C++ language. The operational speed of the
MCU (including the image grabbing from three
stereo cameras, stereo image calculation, feature
extraction, feature matching, motion estimation
and FastSLAM with 100 particles) is approxi-
mately 2 Hz on a PC system with Intel Pentium
Core 2 Quad 2.4 GHz CPU and 4 GB RAM
running 32-bits Linux operating system.

3. Results
Some significant results are presented here

to compare the performance of the MCU against
a single camera system. A single stereo camera
system is emulated by using only one camera on
the MCU to supply input images to the same
software algorithm. Several tests including mo-
tion estimation using 15 degree rotation around
y-axis (illustrated in Fig.4,a) and motion estima-
tion using 50 mm translation along y-axis (illus-
trated in Fig.4,d) are conducted and the results
are shown in Fig.4.

Fig. 4. Motion estimation results using single camera and multi-camera system: a – motion es-
timation using 15 deg rotation around y-axis; b – rotation estimation using only the x-axis
camera; c – rotation estimation using three cameras; d – motion estimation using 50 mm translation
along y-axis; e – translation estimation using only the y-axis camera; f – translation estimation
using three cameras
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By  using  only  one  camera,  namely  the  x-
axis  camera,  the  small  rotation  during  each
movement is mistaken as translation due to the
motion ambiguity. This motion ambiguity oc-
curs since the rotation takes place in the axis
that is perpendicular to the optical axis and
therefore the rotation estimation result is poor
(Fig.4,b) compared to the result obtained using
three cameras setup (Fig.4,c) where the esti-
mated rotation (-16.42 degree) is close to the
real value (-15.00 degree).

Fig. 5. Motion estimation along predefined
trajectory (a) actual trajectory (b) estimated tra-
jectory  and  (c)  real-time  plot  of  the  trajectory
and the feature points being observed during the
test

For pure translation, the weakness of a sin-
gle camera setup can be observed when the di-
rection of translation is parallel to the optical
axis of the camera because the error from stereo
depth estimation corrupts the motion estimation
process. By using only the y-axis camera to ob-
serve the translation along y-axis an inaccurate
test result is obtained (Figure 4e) while the re-
sult obtained using the setup with three cameras
(Fig.4,f) shows a good estimated value (-49.07
mm) compared to the real value (-50 mm).

In the next test the MCU is moved along a
predefined trajectory which consists of five

straight line segments (Fig.5, a). The MCU sys-
tem produces the resultant trajectory which is
close to the real trajectory. This result is shown
in Fig. 5.

For the map building task, the MCU system
captures multiple 3D images from all stereo
cameras and incrementally merges them to the
existing map in order to create a photo-realistic
map. Fig.6 shows an example of a 3D photo-
realistic model obtained from the MCU system.

The quality of the obtained map can be ob-
served in Fig.7 where the close-up view of the
finished 3D model is rendered at high resolu-
tion.

Fig. 6. An example of 3D photo-realistic
model  obtained  from  the  MCU  system  (a),  the
3D model of the test environment captured after
a half circle trajectory (b), feature points and
MCU trajectory maintained by FastSLAM algo-
rithm (c)  the  panoramic  image  of  the  test  envi-
ronment
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Fig. 7. Close up of the 3D photo-realistic
model

Conclusion
This work presents an enhanced multi-

camera system for real-time 3D motion estima-
tion and map building task. The main improve-
ment is the full implementation of the Fast-
SLAM 2.0 approach which improves the ro-
bustness of the system against the feature point
measurement and motion estimation error. The
system has been tested within an indoor envi-
ronment for motion estimation and map build-
ing task where accurate six DoF motion is cor-
rectly estimated in real-time. Lastly a 3D photo-
realistic map of the test environment with good
texture quality is also obtained.
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