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CRITICAL LOAD OF SELF-EXCITED INDUCTION GENERATORS
The maximum load of a self-excited autonomous induction generator is derived as a function of velocity and ca-

pacitance. The maximum value of the capacitance and the minimum frequency are determined as well. Three-
dimensional plots of self-excitation boundaries are presented for a practical example.

Отримано аналітичну залежність критичного навантаження автономного асинхронного генератора з
самозбудженням від швидкості та ємності конденсаторів. Визначено максимально допустиме значення ємно-
сті та мінімально можливу частоту. Представлено тривимірну межу самозбудження асинхронного генера-
тора.

Получена аналитическая зависимость критической нагрузки автономного асинхронного генератора с са-
мовозбуждением от скорости и емкости конденсаторов. Определена максимально допустимая величина ем-
кости и минимально возможная частота. Представлено трехмерную границу самовозбуждения асинхронного
генератора.

1. Introduction
Induction generators have found applications in

renewable energy (wind and hydro), due to their ability to
generate electric power at frequencies that are not exactly
tied to their frequency of rotation. The focus of the paper
is on self-excited induction generators (SEIG), which
generate power off-grid with capacitors providing the
necessary reactive power. A mathematical model of SEIG
with resistive load includes six differential equations and
a static non-linearity due to saturation of the magnetizing
inductance [2,4]. To determine possible self-excitation
conditions, it is necessary to find parameters of the model
that guarantee singularity of a 6x6 matrix [1,3].

The objective of the paper is to extend the results of
[1,3] to determine  the critical resistive load of SEIG, the
maximum possible capacitance for self-excitation, the
minimum sufficient frequency and the maximum load for
different frequencies. The self-excitation boundaries of
the SEIG will be presented as three-dimensional plots
suitable for the development of future control strategies.

2. Self-excitation boundaries of induction
generator

Consider a two-phase induction generator with
resistive loads connected in parallel with capacitors to the
stator windings. The self-excitation boundary of the gen-
erator is described by the quartic equation [1,3]

4 2
1 2 3 0w + w + =e ef f f , (1)
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with s= +S S ML L L , s= +R R ML L L .
Fig. 1 shows the general shape of the magnetization

inductance ML  as a function of the magnitude of the

magnetizing current Mi  [2,4]. The curve includes an
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ascending part rising from 0ML  to MAXL , a (more or less)

horizontal part at MAXL  corresponding to a linear
magnetic regime, and a descending part corresponding to
magnetic saturation.
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Fig.1. The  magnetization inductance as a function of
magnetizing current

The following notation is used: we  is the angular
electrical frequency, C  is the capacitance, LY  is  the  ad-
mittance of the resistive load, sSL  and sRL  denote the
stator and rotor leakage inductances, SL  and RL  denote
the stator and rotor inductances.

The quartic equation is a quadratic equation in 2we ,
which has a real positive solution if and only if

2 1 32< -f f f . (2)
If (2) is satisfied, there are two real positive solu-

tions to the quadratic equation, and we denote the two
square roots of these solutions ,minwe  and ,maxwe . These
are the solutions of the quartic equation. The velocity w
can be determined from we  using [1,3]
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where pn  denotes a number of pole pairs.
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From ,minwe  and ,maxwe , velocities minw  and maxw
can be determined in this manner. The velocities
constitute the boundaries where self-excitation is possible.
If the procedure is applied with =M MAXL L , the
boundaries of self-excitation (which may require
triggering to be reached) are obtained. If 0=M ML L  is
used, the boundaries of spontaneous self-excitation are
obtained [2,3].

Alternatively, equation (1) can be presented as a
quadratic equation

2
1 2 3 0- + =g C g C g , (4)

where
2 4 2 2

1 ( ) 0= - w + w >S S R M e S R eg L L L L R L ,
2 2

2 (2 ) 0= - w >S R M eg L L L ,
2 2 2 2

3 ( ( ) ) 2 0= - w + + + >L S S R M e R S R S L Rg Y L L L L L R L R Y L .
The quadratic equation has two real positive solu-

tions if and only if
2

2 1 34 0- >g g g . (5)
The solutions of the quadratic equation are minC  and

maxC . Substitution them into equation (3) gives minw  and

maxw .
3. Critical load of induction generator for

different frequencies
Rewrite equation (1) in the following manner

2
1 2 3 0+ + =L La Y a Y a , (6)

where
2 2 2

1 ( ) 0= - w + >S S R M e R Sa L L L L L R , 2 2 0= >R Sa L R ,
2 2 4 2 2

3
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Equation (6) has a single solution

( )2
2 2 1 3 14 /(2 )= - + -LY a a a a a (7)

that is positive or zero if and only if 3 0£a .
The last inequality can be put in a form

2
3 1 2 3( ) 0= - + £a C b C b C b , (8)

where 2 4 2 2
1 ( ) 0= - w + w ³S S R M e S R eb L L L L R L ,

2 2
2 (2 ) 0= - w ³S R M eb L L L , 3 0= >Rb L .

The function 3 ( )a C  is  negative  or  zero  for  all  ca-
pacitance values between the two solutions of equation
(8)

( )2
1,2 2 2 1 3 14 /(2 )= ± -C b b b b b , (9)

if and only if 2
2 1 34 0- ³b b b .Note, that the values 1,2=C C

correspond the case with 0=LY .
Substituting 1b , 2b  and 3b  into the last inequality

leads to
22 /w ³e R S ML R L . (10)

Since equations (1) and (6) describe the self-excitation
boundary, the minimum possible operating frequency of
the generated voltage of the SEIG cannot be lower than

( )2
min /= pop R S MAXf L R L  and the minimum value is for the

unloaded generator. The minimum spontaneous self-
excitation frequency of the unloaded SEIG cannot be
lower than ( )2

min 0/= pse R S Mf L R L

The  maximum  value  of   the  load LY  in (7) corre-
sponds  to  a  minimum  value  of 3 ( )a C . Equating

3 ( ) /¶ ¶a C C  to zero gives the value of capacitance
2

2
2 2 2

1

2
0

2 2( ( ) )
-

= = >
- w +
S R M

ex
S S R M e S R

L L Lb
C

b L L L L R L
. (11)

Since 2 2
3 1( ) / 2 0¶ ¶ = >a C C b , the value exC  corresponds

to the minimum of 3 ( )a C  and 3 ( ) 0<exa C .
Substituting equation (11) into equations (8) and (7)

gives the dependency of the maximum possible loads  for
different angular frequencies.
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Combining the final expression  with equation (3)
gives the dependency on velocities.

4. Maximum possible value of the capacitance
Rewrite inequality (8) as follows

4 2
3 1 2 3( ) 0w = w + w + £e e ea d d d , (13)

where 2 2
1 ( ) 0= - >S S R Md C L L L L , 3 0= >Rd L ,

2 2 2
2 (2 )= - -S R S R Md R L C C L L L .

The quartic equation is a quadratic equation in 2we ,
which has a real positive solution if and only if

2 1 32< -d d d . (14)
If (14) is satisfied, the function 3 ( )wea  is negative

or zero for all angular frequencies values between the two
solutions of equation (13)

( )2
1,2 2 2 1 3 14 /(2 )w = - ± -e d d d d d . (15)

Note, that the values 1,2w = we e  correspond to the no
load case 0=LY .

Substituting 1d , 2d  and 3d  into inequality (14)
gives

2 2

2

2 2 ( )- - -
< S R M S R S R M

S R

L L L L L L L L
C

R L
. (16)

Therefore, the maximum capacitance that cannot be ex-
ceeded for successful triggered self-excitation of SEIG is

2 2

max 2

2 2 ( )- - -
= S R MAX S R S R MAX

op
S R

L L L L L L L L
C

R L
. (17)

In this case 1 2 2 1/(2 )w =w = -e e d d  and 0=LY . Substi-

tuting 0ML  instead MAXL  into (17) gives the maximum
possible value max seC  for spontaneous self-excitation of
the unloaded SEIG.

It would be tempting to assume that the minimum
value of the negative 3 ( )wea  would correspond the
maximum LY . In this case, in equation (7), not only 3a
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but also 1a  are functions of we . Unfortunately, differen-
tiation of LY  with respect to we  and equating the result to
zero does not give an implicit solution for extreme angu-
lar  frequency.  It  is  necessary  to  find  a  real  solution  of  a
polynomial of 12-th order.

5. Maximum possible value of the load
Substituting 1a , 2a  and 2b , 3b  into equation (12)

and dividing both the nominator and denominator by
S RL L  results in

2 2

2 2 2

2 ( 1)
2 2

- + s- w
=

sw +
S S e

L
S e S

R L
Y

L R
, (18)

where ( )2 /( ) 0s =- >S R M S RL L L L L .

Since 21 /( ) 0s- =- <M S RL L L  and 0³LY  then

2 2 2
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, (19)

and 22 /( (1 )) 2 /w ³ -s =e S S R S MR L L R L .
Equating ( ) /¶ w ¶wL e eY  to  zero  gives  a  quadratic

equation from which  the value of the angular frequency
corresponding to the maximum load  can be deduced to be

12 1 /( (1 ))
2
s+æ ö

w= ± -sç ÷
sè ø

eYLMAX S SR L . (20)

The condition of inequality from (19) is satisfied if the
“+” sign is chosen. After simple transformations, the for-
mula  becomes

(1 )
(1 )
+ s

w =
s - s

S
eYLMAX

S

R
L

. (21)

Substituting weYLMAX  into equation (19) gives the maxi-
mum load that cannot be exceeded

2( 1)
4
s -

=
s

LMAX
S

Y
R

. (22)

Substituting weYLMAX  into equation (11) gives a corre-
sponding value of the capacitance

2

2

( 1)
4
s -

= S
YLMAX

S

L
C

R
. (23)

Therefore, the SEIG can sustain a largest load if the angu-
lar frequency equals weYLMAX  and the capacitance is

YLMAXC . The largest load cannot exceed LMAXY . Substitut-

ing MAXL  into (21)-(23) gives  the maximum possible
load for the operating mode of SEIG (or for triggered self-
excitation) while substituting of 0ML  gives the maximum
possible load during spontaneous self-excitation.

6. Computation and experimental results
A small two-phase induction motor (Bodine KCI-

22A1, with rated values 7.5W, 24V, 60 Hz, and 3350
rpm) was used for experiments. The following parameters
of the generator were determined in [4] SR =49.5 Ω,

RR =24 Ω, s s=S RL L =0.027H, pn =1, MAXL =0.305 H,

0ML =0.24 H. Computed self-excitation boundaries for the
generator with no load, 700Ω, and 500Ω loads based on
equations (1) and (3) with =M MAXL L  are  shown in  Fig.

2. The experimental validation of these boundaries was
performed by determining collapse regions. Specifically,
the generator was spun at a high velocity and an initial
voltage was applied to the capacitor in one of the phases,
triggering self-excitation. Then, the velocity was reduced
until the voltage collapsed. The result defined the
experimental boundary for self-excitation.

The induction motor was tested as a generator by
coupling it to a DC motor/tachometer under closed-loop
velocity control. A DS1104 data acquisition and control
board from dSPACE was used to implement the PID
control law for the DC motor and to collect the data.
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Fig.2. Self-excitation boundaries

Computation gives the following values of the criti-
cal capacitances max opC =49.59 μF, max seC =34,39 μF, fre-
quencies min opf =56.26 Hz, min sef =73.07 Hz, loads

LMAXopY =0.00468 Ω-1, YLMAXopC =12.398 μF,
weYLMAXop =870.338 rad/s, LMAXseY =0.003638 Ω-1,

YLMAXseC =8.598 μF, weYLMAXse =1083.07 rad/s, where the
additional index “op” denotes computation results with

=M MAXL L  and the index “se” denotes computation re-
sults with 0=M ML L . Note that the minimum operating
frequency is lower than the rated frequency of the genera-
tor (this case corresponds to no load).

Fig.  3  shows  a  three-dimensional  plot  of  self-
excitation boundaries based on equation (7) with

=M MAXL L . The parabolic function ( )=LY f C  was
computed for different angular frequencies over the criti-
cal value defined by (10) within the capacitance range
defined by (9). The corresponding velocity values were
taken from (3). All the operating points of the generator
are inside the figure limited by the surfaces ( , )= wLY f C
and 0=LY . Curve 1 shows maximum loads for different
frequencies (velocities) according to (12). Curves 2, 3,
and 4 are the self-excitation boundaries for 500 Ω, 700 Ω
and no load cases respectively computed based on (4).
Point 5 is the point with =L LMAXopY Y . As  can be seen
from the figure, this point is unique. The value of the fre-
quency is twice  the rated value.
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Fig.3. ( , )= wLY f C  computed through the range of an-
gular frequencies

Fig. 4 also shows a three-dimensional plot of the
self-excitation boundaries based on equation (7) with

=M MAXL L . This time, the parabolic functions
( )= wLY f  were computed for capacitances lower than

the critical value defined by (17) within the frequency
range defined by (15). Curve 1 shows the maximum loads
for different capacitances, which were computed by itera-
tions. Curves 2, 3, and 4 are the self-excitation boundaries
for the 500 Ω, 700 Ω and no load cases respectively,
computed based on (1). Point 5 is the point with

=L LMAXopY Y .  As  may  be  expected,  point  5  is  the  same
point on the both figures.
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Fig. 4. ( , )= wLY f C  computed through the range of ca-
pacitances

7. Conclusions
The paper develops simple formulas for the critical

values of maximum capacitance and load, and minimum
angular frequency of SEIG. This allows a quick choice of
necessary equipment to implement a self-excitation sys-
tem of SEIG. The three-dimensional plot of the self-

excitation boundaries can be a basis for the development
of a control strategy of self-excitation to provide the best
loading of the generator.
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