Samoilenko D. N. / Electrotechnic and computer systems Ne 04(80), 2011

209 -212

UDC 004.051 : 004.451.35 : 519.683.4
D. N. Samoilenko, PhD

MEMORY TRACING INFLUENCE ON ALGORITHM COMPLEXITY

Experimental measurements are carried out for the working time of programs that make different steps in the op-
erational memory. Essential increase (up tol0 times) of working time was found out for certain steps. It was shown that
usage of static memory allocation may cause the 26 % advantage in the time for reading and writing operations.

Keywords: memory tracing, algorithm complexity.

J. H. CamoiiieHKo0, KaH]. TEXH. HAYK

BJIMSTHUE ONEPAIIMI C TAMSTBIO HA CJIO)KHOCTbD AJITOPUTMOB

IIpogedennvl axKCnepumermsl no UsMePeHUro 8peMeH pabonvl NPOSPAMM, PEATU3VIOWUX WA PA3TULHOU 6eTUtU-
Hbl 8 onepamusHoli namamu. ObHapysceHvl cyuwjecmeennsvie ygeauuenus (0o 10 pas) epemeru pabomul npoepamm 0is
HEeKOMOPbIX 8eIUYUH Wided. YCmano81eHo, 4mo UCnoIb308aHe CIMAMUYecKy 6bl0eAeMOl NAMAMU RPUSOOUM K 6blue-
puiuty 00 26 % 60 6pemenu GbINOAHEH U ONEPAYULl YMeHUs U 3anUCU.

Kniouesvle cnosa: onepayuu c namamuio, COHCHOCIb AN2OPUMMOS.

J. M. CamoiijieHKo0, KaH]. TEXH. HAYK

BILIMB OIEPAIIIA 3 MAM’SITTIO HA CKJIAJHICTH AJITOPUTMIB

Ilpogeoeni excnepumenmu w000 UMIPIOBAHHA YACy POOOMU NPOSPAM, KL Peanizyiomb KPOKU PI3HOT GeTUYUHU Y
onepamusHiti nam ami. Ilomiveni cymmesi 3pocmanna (0o 10 pasis) uacy pobomu npoepam 01s oKpemux po3mipie Kpo-
Kie. Bcmanogneno, wo UKOpUCmantsa Cmamuino pe3epeosanoi nam ami Haoae nepeeazy 00 26 % y uaci 6UKOHAHHA

onepayiti YumanHs ma 3anucy.

Knrouosi cnosa: onepayii 3 nam ’ssmmio, CKIAOHICMb al120PUMMIS.

Introduction

Dynamic usage of memory is the most
popular method for volumetric data processing
and long arrays allocation. With long arrays dy-
namic databases, experimental data in real time
mode, matrixes and vectors in multidimensional
spaces could be computed. Memory sizes grow
together with the society evolution so researches
of long arrays remain topical.

Term long means that array greater than
maximum possible in DOS mode. Tracing of
such memory is possible only in processor safe
mode. In this mode granularity of memory and
page principle could involve time variations for
array samplings.

Experiment

To discover time aspects of arrays sampling
lets form a goal to measure the time of every N-
th element processing in a given array. Studied
processes were reading and writing operations.

Arrays were created static as well as
dynamic for time comparison in dependence
from creation methods.

For programming C++ 5,02 by Borland In-
ternational was used. Time was measured with
help of the recommended (in Borland documen-
tation) method:

© Samoilenko D. N, 2011

clock t start, end;
start = clock();

Fragment being measured

end = clock();
printf("The time was: %f\n", (end - start) /
CLK TCK);

The object of research was a linear array
with 1000 000 elements of double type. The
task was measuring a time of operations with
equidistant array elements - every second, every
third, etc. Similar operations are typical for da-
tabases and frame models of knowledge bases in
which appeal to the next element corresponds to
shift to the next track or frame.

For simplicity of comparison, each opera-
tion was performed a fixed number (1000) of
times. To improve the accuracy of time meas-
urement experiment was repeated. Criteria for
selecting the number of repetitions performed
resulting time for the expected value of which
was elected 0,1-1 sec. For a PC that performed
the experiment (CPU AMD Duron 1.4 GHz,
RAM 512 Mb) the optimal number of repeti-
tions was 10 000 and did not change for differ-
ent fragments being measured.

Common to all experiments the part of
source code looks like:

209

Samoilenko D. N. / Electrotechnic and computer systems Ne 04(80), 2011

209 -212

1. int N,Nmin=1,Nmax=300;

2. double T;

3. double far *px;

4, clock t start, end;

5. int1i, j;

6. for(N=Nmin;N<=Nmax;N+=1)

7. { start=clock();

8. for(i=0;i<10000;i++)

9. {initialization

10. for(j=0; j<1000; j++)

11. {N*j-th element processing}
12. } end=clock();

13. T=(end - start) / CLK TCK;
14. sprintf(str,"%d\t%02.3f",N,T);
15. fprintf(f,"%s\n",str);

16. }

The lines in the program means:

loop variable and its ranges

time variable

array pointer

variables for clock scanning

loop variables

main loop

start time by clock

repetition for accuracy increasing
9. variables restoring

10. the body of experiment — equidistant
11. elements processing

12. finish time by clock

13. working time

14. preparing data for output

15. save data in file, assigned to “f”
16. repeat for other N

PN R

For array creation variable RESERV was
used. In the case of dynamic creation the vari-
able was initialized as

double *RESERV=new double[LENGTH];

in the case of static creation as

double RESERV [LENGTH].

Described in the previous code fragment
pointer px was used to array access. RESERV
variable was used as a constant for array begin-
ning identification (restoring).

Writing operation implemented by saving
zero constant into the given element of array.
For additional comparison of element accessing
mode operations were formed in two configura-
tions: directly through dereferencing of shifted
pointer (*px = 0), and in the static way with a
given displacement (px[n] = 0).

Read operations implemented by using of
the same elements in addition operation
(*px + *px or px[n] + px[n]). The data from the
corresponding array cell should be loaded into
the PC registers, so it would be read. The result
of summation was not preserved for elimination
of additional write operations (assignment).

Time measurement results were saved in an
external file and processed in the Origin pack-
age (by Origin Lab).

Results and discussion

Results of timing for all operations and all
modifications of code had almost the same be-
havior. Fig. 1 shows the results regarding work
time of writing operation with pointer derefer-
encing (*px = 0). Results of other programs tim-
ing differ in absolute time value, but retain the
relative position and intensity of local extreme
and show similarity with Fig. 1.

The dependence presented in Fig. 1, shows
some features. First, there are extremes of work-
ing time for specific values of N. Second, it
could be observed the rising of graph bottom
edge with increasing N.

3.0
time, ¢
25 4

2.0 4

WL

step

bbb

0,0

DI I ZUIEI . 11DID I EDIEI ‘ BDID 1 DIEID
Fig. 1. Memory tracing time (t) dependence
from step dimension (N)

The most obvious reason of extremes is that
service starts in a multitask system. But this rea-
son was simply refuted by program restarts. The
extremes stead on the same places with the
same intensity. The same position and the simi-
lar intensity show extremes for different codes.
So, the nature of extremes could not be ex-
plained by activation of system programs.

It could be calculated that distance between
adjacent extremes is constant and equal AN=32.
As far as variable of double type use 8 bytes of

210

Samoilenko D. N. / Electrotechnic and computer systems Ne 04(80), 2011

209 -212

memory, the distance AN corresponds to
8*32=256 bytes.

In such jumps increasing of time can be ex-
plained by two factors. The first part of time in-
creasing can be associated with the jump to a
new row in memory chips and, consequently,
the necessity of row access signal RAS [5,6],
which duration may be 2-5 times longer than the
CAS signal [7, Fig. 7.4], generated for every
jump.

The second component is related to increas-
ing of frequency of accessing cells with shift of
64 kB (256 * 256 = 64 kB) in the virtual address
space that does not appear in physical memory
to the control system software errors [8, pp.890-
891]. Time for such requests should increase.

The second feature allows us to locate two
parts with different nature of the minimum work
time (bottom of chart) in the dependence shown
on Fig.1. The first part corresponds to interval
from N=1 to N = 512 shows growth of mini-
mal time, the second — from N = 513 to N =999
is related to constant value. This feature can be
explained in terms of "page" addressing princi-
ple in a processor protected mode. Memory
page size is 4 kb [8, p.890], and array access
operations could occur as within a single page,
as in different pages.

The first part of graphics could be associ-
ated with different combinations of operations
with cells that are on the same and on different
pages. With increasing N increases the relative
number of jumps to different pages, so the work
time increases. In the break point N = 512
(512 * 8 = 4 kB) the distance between neighbor-
ing cells in array become greater than a page. In
other words, adjacent accessed cells are in dif-
ferent memory pages. In that case all operations
run in different pages, so the time of such opera-
tions has a maximum value.

The presence of program working time lo-
cal extremes justifies the additional researches
especially for developing applications that use
large amounts of data. At best gains in time of
5-10 times could be achieved by making ad-
justments to the array tracing algorithm or using
arrays with optimal length.

The second problem for the research was a
comparison of operations in different forms and
arrays constructed either statically or dynami-
cally. It should be noted that significant differ-

ences in the time of access operations in differ-
ent forms (means access by * or by []) was not
observed. All differences were in the accuracy
limits.

At the same time, operations with static and
dynamic arrays differ in time much more essen-
tially. Writing time for static array was 0,315 s
while for dynamic — 0,361 s. (for the same
code). Reading time (for the previous code)
was, relatively, 0,238 s. and 0,291 s. We could
see, that difference corresponds to 16 % and 26
% for different operations.

The difference in average time for static
and dynamic arrays contradict to given in [3]
difference in 3 times. It is especially actual be-
cause in [3] exactly experimental time was
compared. The difference may be explained by
using different programming languages or com-
parison operations for the different conditions
(one value of the extremum, otherwise - no). In
any case, these differences justify the necessity
for further studies of similar phenomena for dif-
ferent programming languages, different opera-
tional environments and devices with different
structure of memory chips, including PC com-
puters, mobile devices and microprocessor con-
trol systems.

Conclusions

The runtime of a program that uses long ar-
ray tracing strongly depends on the array tracing
algorithm. In the worst case for specific relative
displacement the runtime increases in 5-10
times. The cause of the time growth is consid-
ered in the principles of memory chips produc-
ing and the structure of virtual address space.

It was shown that using of static organized
arrays in comparison with dynamic, has 16-26
% more efficient running time of the reading
and writing operations.

Prospects for further research are seen in
conducting similar experiments in different pro-
gramming languages, for different operational
environments and devices with different struc-
ture of memory chips.

References

1. 3auecos IO. [IporpammMupoBanue anropu-
TMOB, TPEOYIOIMUX OOTBIINX 00HEMOB OTNIEPATH-
BHOH mamstu / }O. 3auecoB. KommbroreplIpecc,
2000. — Ne 12.

211

Samoilenko D. N. / Electrotechnic and computer systems Ne 04(80), 2011

209 -212

2. Arparun E. I'. MadopmarnmonHoe obec-
TIEYCHHUE II0JIb30BaTENEH. HayuHno-
npaxkTudeckast koHpepenuus "IIpobiemsr 0bpa-
00TKH OONBIINX MAaCHBOB HECTPYKTYPHpPOBAH-
HBIX TeKCTOBHUX NokymeHTOB"/ E. I'. Arpatun
[WWW JOKYMEHT]. URL
http://www.fep.ru/text/dataarrays07.html

3. BonocenkoB B. Maccussl. CtaTnueckue
i quHamudeckue? (n.d./2008) [WWW moky-
ment]. URL
http://www.realcoding.net/article/view/1750

4. Borland C++ User’s Guide // enekTpoHHa
JOKyMEHTallisi, iHTerpoBaHa y maker “Borland
C++ 5.02 by Borland International”. — clock,
clock example.

5. DHUUKIIONEIUs COBPEMEHHON mamsTtu /
C. INaxomos //KommeroTeplIpecc, 2006. — Ne10.

6. VYueOnoe mocoboue AIIITAPATHBIE
CPEIACTBA TIIK. [WWW nokyment]. URL
http://www.msclub.ce.cctpu.edu.ru/bibl/ASVT/a
svt3.htm.

7. lIautman B. IlpuHnumnsl opraHuszanuu
OCHOBHOH TNaMSTH B COBPEMEHHBIX KOMITBIOTE-
pax / B. llInutman // HpOpMAIIMOHHO aHAIIU-
TU-4eckue matepuansl Llentpa Mndopmanmon-
Hbix Texnomoruii. [WWW nokyment]. URL
http://citforum.amursu.ru/hardware/svk/glava 8
_1.shtml

8. CoBpeMEHHbBIE ONEPALMOHHBIE CUCTEMBI.
2-¢ w3n. / O. C. Tanenbaym — CIIG.:ITutep,
2002. - 1040 c.

Received 31.10.2011
References

1. Yuri Zachesov. Programming algorithms
that require large amounts of RAM.
ComputerPress, 2000. — Ne 12 [in Russian].

2. Agratin Ye.G. Information support for
users. Scientific-practical conference "Problems
of handling large ranges cover unstructured text

documents." [WWW document]. @ URL
http://www.fep.ru/text/dataarrays07.html
[in Russian].

3. Vladimir Volosenkov. Arrays. Static or
dynamic? (n.d./2008) [WWW document]. URL
http://www.realcoding.net/article/view/1750
[in Russian].

4. Borland C + + User's Guide // E-
dokumentatsiya, integrovana in package
"Borland C + + 5.02 by Borland International".
— Clock, clock example [in Russian].

5. Sergey Pakhomov. Encyclopedia of
modern memory. ComputerPress, 2006. — Ne 10
[in Russian].

6. Textbook HARDWARE PC. [WWW
document] [in Russian]. URL
http://www.msclub.ce.cctpu.edu.ru/bibl/ASVT/a
svt3.htm.

7. Shnitman B. Principles of organization of
main memory in modern computers. / /
Information-Analytical Center of Information
Technologies of the materials. [WWW
document] [in Russian]. URL
http://citforum.amursu.ru/hardware/svk/glava_8
_L.shtml.

8. Tanenbaum E. S. Modern Operating
Systems. 2nd ed. St. Petersburg: Peter, 2002. —
1040 p. [in Russian].

-

Denis N. Samoilenko,
PhD, vice-director for
educational work
European university
Mykolaiv affiliate.
Morehidna 2A, Mykolaiv,
54010, Ukraine,

e-mail:
DenNikSam@gmail.com
t.:+38 (0512) 44-06-37

J
fl

212

http://www.fep.ru/text/dataarrays07.html

