
Herwig V., Published in the Journal Electrotechnic and Computer Systems № 13 (89), 2014 240 – 246
Protection of an Information in Computer Systems

240

UDC 004.01

V. Herwig, DSc.

DOCUMENTATION OF SOFTWARE SYSTEMS
Abstract. With software being all around us, it is surprising how little the documentation of it has developed

during the last decades. Software system documentation is however most critical during maintenance tasks, where
tremendous amounts of time are spend understanding the software and its documentation, before the actual
maintenance work can start. This paper gives a status of current documentation practices as well as a view on its
quality. The purpose of this paper is to create a discussion about those practices to foster ideas for the future.

Keywords: information technology documentation, Source code documentation, In-line documentation, System knowledge

Ф. Хервиг, д-р техн. наук

ДОКУМЕНТАЦИЯ СИСТЕМНОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ
Аннотация. В статье рассмотрена проблематика и пути решения недостаточного количества

документации, создающейся для программного обеспечения в течение последних десятилетий. Документация
для систем программного обеспечения является важным фактором при техническом обслуживании, когда
огромное количество времени тратится в попытках понять программное обеспечение и его документацию до
фактического старта работы. В статье рассмотрен статус существующей практики документирования, а
также произведён обзор качества документации. Целью данной работы является создание обсуждения
существующих практик документирования для содействия развёрнутой дискуссии в будущем.

Ключевые слова: информационные технологии, документация, документация исходного кода,
эксплуатационная документация

Ф. Хервіг, д-р техн. наук

ДОКУМЕНТАЦІЯ СИСТЕМНОГО ПРОГРАММНОГО ЗАБЕЗПЕЧЕННЯ
Анотація. У статті розглянуто проблематику та шляхи вирішення проблеми недостатньої кількості

документації, що створюється для програмного забезпечення протягом останніх десятиліть. Документація
для систем програмного забезпечення є важливим фактором при технічному обслуговуванні, коли величезна
кількість часу витрачається в спробах зрозуміти програмне забезпечення і його документацію до фактичного
старту роботи. У статті розглянуто статус існуючої практики документування, а також проведений огляд
якості документації. Метою даної роботи є створення обговорення існуючих практик документування для
сприяння розгорнутої дискусії в майбутньому.

Ключові слова: інформаційні технології, документація, документація вихідного коду, експлуатаційна
документація

Introduction
When the United States government decided

to change the health care system for their people,
they realized that out of efficiency reasons, the
citizens have to self-manage their data and in
times of the internet it became clear, a website has
to be developed for this purpose. It turned out to
become one of the big software projects of the
United States government (healthcare. gov) and
unfortunately one of the biggest failures.
Estimates are that only 1 % of people managed to
successfully enroll with the site in its first week of
operation [4].The negative publicity for President
Barack Obama was so high, that the change of the
health care system itself came into question. This
is only one example that shows the importance of
software systems in today’s society and
everyone’s life.
© Herwig V., 2014

As software systems are created, a
development methodology is used and the
system knowledge is documented in form of
source code comments, design documentation,
manuals, tutorials, test documents and other
artifacts. One of the core challenges during
creation and especially later during maintenance
is to keep these artifacts up-to-date. Research
has shown, that a lack of up-to-date
documentation artifacts is one of the largest
root. causes of defects in software systems [17].
It is also the primary reason for quick software
system quality degradation and aging [9],
[19].This paper intends to give a status of the
current practices and their quality. The focus is
on the technical documentation. The end user
documentation, which describes the software
system and its intended use, is not focus of this
paper.

Herwig V., Published in the Journal Electrotechnic and Computer Systems № 13 (89), 2014 240 – 246
Protection of an Information in Computer Systems

241

Stakeholders
Software system documentation has

different stakeholders, which specific interests.
Different authors [2; 5] have performed a
stakeholder analysis on this topic. The following
table provides a combined view on the
stakeholders with their concerns.

The initial creation as a project mainly
concerns:

customer;
developing Organization Management;
architect;
developer.
Nearly all development and project

management methodologies e.g. Rational
Unified Process (RUP) or Project Management
Institute (PMI) addresses software system
documentation well, an endless seeming number
of artifacts are defined and their content gets
revised multiple times during the initial system
development. Where it is overall agreed that

system documentation is very important, one of
the reasons agile methods became so popular
has been their focus on the software product
itself. Working software is explicitly seen as
more important than comprehensive
documentation [1].Participants of software
system development efforts became frustrated in
the past of the amount of documents created in a
project and their redundancy. Studies by
Weskits [20] have shown a redundancy of
nearly 50 % of content in documentation
artifacts.

The ongoing operation and work with the
software system and its maintenance concerns:

 user;
 maintainer.
User training and specific documentation in

respect to the systems usage is a deliverable of
the project and given to the users normally
before the end of the project.

1. Stakeholder analysis based on studies [2; 5]

Stakeholder Concerns
Customer Schedule estimation

 Budgeting
 Feasibility and risk management
 Requirements traceability
 Progress tracking

Developing
Organization
Management

 Schedule estimation
 Budgeting (low costs, keeping people employed)
 Feasibility and risk assessment
 Requirements traceability
 Progress tracking

User Consistency with requirements and usage scenarios
 Non-functional requirements (performance, reliability etc.)
 Accommodate future requirements

Architect Support of trade-off analysis
 Requirements traceability
 Completeness, consistency of architecture

Developer Sufficient detail for design
 Reference for selecting/assembling components
 Maintaining compatibility with existing systems

Maintainer Maintain compatibility with existing systems
 Guidance on software modifications
 Guidance on architecture evolution

Herwig V., Published in the Journal Electrotechnic and Computer Systems № 13 (89), 2014 240 – 246
Protection of an Information in Computer Systems

242

Most development and project
management methodologies address the early
involvement of the maintainer as well. The
reality in most companies however is that the
maintainer is only involved in the late hand-
over phase, if even. Explanations based on
own experiences are organizational
boundaries between development team and
maintenance team and ignorance of the
development teams about the importance of an
early involvement of the maintainer. Studies
by Kajko-Mattsson [8] have shown that the
status of software system documentation
already during the time of the handover
between developments to maintenance is
unsatisfactory.

Scope of system documentation
The IEEE defines software maintenance

as the “process of modifying a software
system or component after delivery to correct
faults, improve performance or other
attributes, or adapt to a changed environment”
[6]. Kajko-Mattsson presented requirements
for software system maintenance docu-
mentation [8]:

 The system documentation is correct,
complete and consistent, when the system is
transferred from development to maintenance.

 The software system is documented at all
granularity levels of system documentation
during corrective maintenance.

 User manual is consistent with the state
of the software system.

 Regression test case specification is
revised and modified, if required.

 Traceability between all levels of system
documentation is ensured.

 Traceability of change is ensured.
 Guidelines of documenting a software

system are defined.
 Guidelines for internal documentation are

defined.
 An organization has a checklist of all

document types required for executing and
supporting the corrective maintenance process.

 Corrective maintenance process
explicitly states where in the process each type
of documentation should be updated /checked.

 The corrective maintenance task is not
approved as accomplished until the quality of

all levels of system documentation for this task
is inspected.

 The quality of the documentation is
periodically checked by some documentation
process manager.

 If not satisfactory or missing, the
documentation of the existing software is
updated as soon as it is possible.

 System development documentation and
system development journal (experience docu-
mented) are available to the maintenance
organization.

 All system changes are recorded during
corrective maintenance.

 History of the reported software problem
is recorded for each product/product
component.

 System Maintenance Journal is kept for
monitoring the corrective maintenance process.

 An organization arranges educa-
tion/training in written proficiency for
maintenance engineers.

As Kajko-Mattsson and earlier studies
[17] have shown, those requirements are far
away form being fulfilled. The main issue of
software system documentation arises during
ongoing operation and work with the software
system. Studies by Secord [13] have shown
that 90 % of the total cost of typical software
systems accumulates during maintenance. A
software system that is used will undergo
changes or it will loose its usefulness over
time. During those changes and regular
maintenance tasks, the system documentation
is besides the source code the only source of
information for maintainers. Because of the
lack of up-to-date information maintainers
often have to work from the source code [8].
Studies [10; 11] have shown that 40 – 60 % of
maintenance activities are spend on studying
the software source code to understand how
the planned modification may be
implemented. A situation that companies are
well aware of. This seems highly ineffective
and has its reasons mainly in the state of the
system documentation.

A study performed by Souza [14] asked
maintainers, what artifacts they actually found
important during their work.

Herwig V., Published in the Journal Electrotechnic and Computer Systems № 13 (89), 2014 240 – 246
Protection of an Information in Computer Systems

243

2. Importance of documentation artifacts based on studies [14]

Artifact Structured analysis
Object-oriented

analysis

Source code 92 % 94 %
Comments 78 % 75 %
Logical data model 74 % 71 %
Physical data model 62 % 60 %
Class diagram – 62 %
Requirements description 59 % –
Use case diagram – 58 %
Use case specification – 50 %
Acceptance test plan 53 % 50 %
Requirements list 52 % –
Data dictionary 46 % 46 %
Conceptual data model 44 % 43 %
Implementation plan 41 % 44 %
Unitary test plan 39 % 38 %
Data migration plan 35 % 38 %
Data flow diagram 35 % –
System test plan – 38 %
Sequence diagram – 33 %
Functional prototype 32 % 26 %
Activity diagram – 28 %
Component specification 29 % 16 %
Architectural model 28 % –
Vision document – 27 %
Context diagram 25 % –
Hierarchical function diagram 23 % –
Glossary 22 % 21 %
Non-functional prototype 19 % 22 %
Functions derived from requirements 22 % –
State diagram – 14 %
General transaction diagram 20 % –

While the study shows some variation
between structured analysis and object-
oriented analysis, the overall picture and
tendency is very similar.

The most important documentation
artifact is the source codes itself and its
documentation followed by the data model
documentation. Surprisingly the study has
shown, that architectural models and other
generalized views of the software system,
which are pushed by the literature as being
highly important are not seen as important by
maintainers. Other studies confirm those
findings [16].

As it got shown that a lot of
documentation is not up-to-date [9; 18] and
therefore does not reflect the current state of
the software system, this could be one
explanation. Another reason could be trust,
because it’s hard for a maintainer to verify,
that the documentation artifacts are actually
up-to-date. So as the study has shown
maintainers go back to the working source
code and documentation elements that are
tightly related to it, like the source code
comments. The same is true for the data
models, which can even be generated
automatically out of the database system.

Herwig V., Published in the Journal Electrotechnic and Computer Systems № 13 (89), 2014 240 – 246
Protection of an Information in Computer Systems

244

However there is a small difference
between structured analysis and object-
oriented analysis. As studies have shown [3]
there is a slightly higher duration in using
Unified Modeling Language (UML) for
documentation for the purpose of software
maintenance. Unified Modeling Language
benefits slightly in terms of functional
correctness (understanding and changes
implemented on this base) and traceability of
use cases to code.

Measurement
The maxim “What can’t be measured, is

hard to prove” by the quality guru Demin is
also true in respect to software system
documentation.

There is a variety of measurement
approaches for software system
documentation artifacts. Well in use are
measurement approaches on a source
code/comment level. Scheck [12] gives a good
picture on those measures based on Java. Also
in the industry those measures are used to
verify source code documentation quality,
code style/conventions and to assess the
source code itself using source code metrics.

Much harder is the measurement of the
quality of architectural models or other
generalized views of the software system.
Only the pure existence can be verified, their
quality has to be assessed by a qualified
reviewer, which involves time and effort. So
based on own experience its seldom done in
companies. But where is no control the overall
quality degenerates.

Viscount [18] proposes with the
Documentation Process Maturity Model
(DPMM) a much broader concept following
the idea of the Capability Maturity Model to
measure quality. The model recognizes the
challenge of tangible deliverables, however
can’t provide a solution. After working with
90 companies and evolutionary developing
four versions of the model, Viscount
concludes that the maturity level draw
attention away from the key practices. Those
key practices that Viscount identified for the
fourth version are

Creation of basic software documents.
Management recognition of importance

of documentation.

Existence of documentation policy and
standards.

Monitor implementation of policy and
standards.

Existence of a defined process for
creation of documents

Methods to assure quality of
documentation.

Assessment of usability of
documentation.

Definition of software documentation
quality and usability measures.

Collection and analysis of
documentation quality measures.

Collection and analysis of
documentation usability measures.

Process improvement feedback loop.
During the usage of the model with 90

companies over five years, Viscount
concludes with the fourth version that
“…there is a considerable gap between the
intentions and the actions…”. The
management is well aware of the importance
of software system documentation and put
policies and standards in place. However their
usage is low, there is limited measurement,
assessment and improvement.

Conclusion
Software system documentation is

especially crucial during maintenance. This
paper has shown, that current documentation
practices are as Viscount puts it “…not getting
a passing grade in the software industry…”.
The amount of documentation artifacts is too
high, their content highly repetitive and even
at the time of handover between developments
to maintenance they are largely not accurate.
Only a small portion of those artifacts is
actually used during maintenance, mainly the
source code itself, its comments as well as the
data models. Those artifacts can also be
measured well.

While the problem of poor software
system documentation is known for some
time, there seems no general answer and the
research of the last decades has shown to be
rather ineffective.

It might be time to re-discuss and go back
to basics, looking at what maintainers actually
use and are willing to keep up-to-date. This

Herwig V., Published in the Journal Electrotechnic and Computer Systems № 13 (89), 2014 240 – 246
Protection of an Information in Computer Systems

245

seems a lot like the agile story for software
development and project management,
focusing on source code and the people who
create the software system. We have seen that
this became very effective also in reshaping
established methodologies. What could be the
learning’s of the agile idea to documentation?

Keep it active (alive).
Keep it with the source code (automate).
 It’s about the people (communication).
Maintainers have to be involved early

enough during the development of the
software systems. To break barriers between
development team and maintainers
(communication), we could also foster
communication between developers and
maintainers working or which have worked on
the same software system. In addition we have
seen that maintainers are only willing to work
with and update a very limited number of
artifacts. Those artifacts have to be close to
the source code (as the single truth) (e.g.
inline source code comments (automate)) and
should wherever possible be able to kept
current using automation (automate, alive).
That source code related artifacts can be
measured well, which lead to higher quality
and trust. Maintainers are willing to use and
would trust those artifacts rather than written
static documents. The same is true for
architectural models and other generalized
views, if their creation is automated and their
quality can be measured well.

We as researches have to focus on those
facts to come up with standards and tools to
provide better approaches and ensure that the
result can be measured and assessed.

References

1. Beedle M., Bennekum A.V., Cockburn
A., and others, (2001). The Agile Manifesto,
http://http://agilemanifesto.org/ (accessed:
01.03.2014).

2. Dolan T, Weterings R., and Wortmann
J.C. (1998), Stakeholders in Software-System
Family Architectures, in: Proceedings of the
2nd International Esprit ARES Workshop, Las
Palmas de Gran Canaria, Spain, (27.02.1998).

3. Dzidek J.W., Arisholm E., and Briand
L.C. (2008). A realistic Empirical Evaluation

of the cost and Benefits of UML in Software
Maintenance, in: IEEE Transactions on
Software Engineering, Vol. 34, No. 3.

4. Ford P. The Obamacare Website Didn't
Have to Fail. How to Do Better Next Time.
Bloomberg Businessweek, (accessed:
16.10.2013).

5. Gacek C., Abd-Allah A., Bradford C.,
and Boehm B. (1995), On the Definition of
Software System Architecture, in: ICSE 17th

Software Architecture Workshop, April 1995.
6. IEEE Standard 610.12:1990, Glossary

of Software Engineering Terminology.
7. ISO/IEC/IEEE. Defining Architecture,

http://www.iso-architecture.org/ieee-
1471/defining-architecture (accessed:
28.02.2014).

8. Kajko-Mattsson M. (2005). A Survey
of Documentation Practice within Corrective
Maintenance, in: Empirical Software
Engineering, 10, pp. 31– 55.

9. Parnas D.L.. (1994). Software aging,
in: Proceedings of the 16th International
Conference of Software Engineering. pp. 279
– 287.

10. Pfleegwe S.L. (2001), Software
Engineering – Theory and Practice.

11. Pigoski T.M. (1996). Practical
Software Maintenance – Best Practices for
Software Investments.

12. Schreck D., Dallmeier V.,
Zimmermann T. (2007). How Documentation
Evolves Over Time, in: Proceedings of the
ACM IWPSE 2007.

13. Seacord R.C., Plakosh D., and Lewis
G.A. (2003). Modernizing Legacy Systems –
Software Ttechnologies, Engineering
Processes and Business Practices.

14. Wojciech D.J., Arisholm E., and
Briand L.C. A Realistic Empirical Evaluation
of the costs and Benefits of UML in Software
Maintenance.

15. Souza S.C.B., Anquetil N., and
Oliveira K.M. (2005). A Study of the Docu-
mentation Essential to Software Maintenance,
in: Proceedings to ACM SIGDOC 2005.

16. Stettina C.J., and Kroon E. (2013). Is
there an agile Handover? Findings from an
Empirical Study on Documentation and
Handover Practices Across Agile Project
Teams, in: Proceeding of 2013 IEEE

Herwig V., Published in the Journal Electrotechnic and Computer Systems № 13 (89), 2014 240 – 246
Protection of an Information in Computer Systems

246

International Technology Management
Conference & 19th ICE Conference 2013.

17. Tilley S.R., Müller H.A., and Orgun
M.A. Documenting Software Systems with
views, in: Proceedings of the 10th annual
International Conference on System
Documentation (SIGDOC), Ottawa, ON,
Canada, 1992, pp. 211 – 219.

18. Visconti M., and Cook C.R. (1993). A
Software System Documentation Process
Maturity Approach to Software Quality, in:
Proceedings of the 11th Pacific Northwest
Software Quality Conference, 1993, pp. 257 –
271.

19. Visconti M., and Cook C.R.. (2002).
An Overview of Industrial Software
Documentation Practices, in Proceedings of
the 12th IEEE International Conference of
Chilean Computer Science Society, 179 – 186.

20. Wingkvist A., Ericson M., Lincke R.,
and Löwe W. (2010), A Metrics-based
Approach to Technical Documentation
Quality, in: Proceedings of the 7th

International Conference of Information and
Communication Technology.

Received 28.02.2014

Volker Herwig,
Prof. Dr.-Ing. of Faculty of
Building Technologies and
Applied Informatics at
University of Applied Sciences
Erfurt,
AltonaerStrasse 25, 99085 Erfurt,
E-mail:
Germanyvolker.herwig@
fh-erfurt.de

