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Abstract.This paper describes principles of implementation of basic entities on system level of self-diagnosis 

(especially self-checking) in Python programming languages. The first part discusses usability of Python for represen-

tation and simulation of complex systems (comparing it primarily with the most important competitor in the field of uni-

versal programming languages – Java programming language).The second part depicts main principles of implementa-

tion of basic entities of system level self-diagnosis by real examples including calculating of basics characteristics of a 

system. The proposed representation forms the basis of event-based simulation of more complex systems. 

Keywords: self-diagnosis, complex systems, Python, simulation 

Й. Фишер, канд. техн. наук,  
В. А. Машков, В. И. Литвиненко, доктора техн. наук 

ПРИМЕНЕНИЕ ЯЗЫКА ПРОГРАММИРОВАНИЯ PYTHON 
ДЛЯ РЕШЕНИЯ ЗАДАЧ САМОДИАГНОСТИКИ НА СИСТЕМНОМ УРОВНЕ 

Аннотация. Описаны принципы реализации базовые принципы организации решения задачи самодиагно-

стики с применением языка программирования Python. В первой части рассмотрены преимущества примене-

ния  языка Python для представления и моделирования сложных систем по сравнении с языком программирова-

ния Java. Во второй части статьи рассмотрены основные принципы реализации базовых субъектов на си-

стемном уровне самодиагностики с использованием  реальных примеров, включая расчет основных характери-

стик системы. Предложенный подход лежит в основе моделирования на основе событий применительно к 

более сложным системам. 
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ЗАСТОСУВАННЯ МОВИ ПРОГРАМУВАННЯ PYTHON 
ДЛЯ ВИРІШЕННЯ ЗАВДАНЬ САМОДІАГНОСТИКИ НА СИСТЕМНОМУ РІВНІ 

Анотація. Описано принципи реалізації базові принципи організації вирішення задачі самод-гностики із 

застосуванням мови програмування Python. У першій частині розглянуті переваги застосування мови Python 

для представлення та моделювання складних систем по порівнянні з мовою программирования Java. У другій 

частині статті розглянуті основні принципи реалізації базових суб'єктів на системному рівні самодіагности-

ки з використанням реальних прикладів, включаючи розрахунок основних характеристик системи. Запропоно-

ваний підхід лежить в основі моделювання на основі подію-тий стосовно до більш складним системам. 

Ключові слова: самодіагностика, складна система, Python, моделювання 
 

1. System level self-diagnosis 

Research in the field of system level diag-
nosis was introduced in 1960 s by Franco 
Preparata P. [1]. System diagnosis aims at diag-
nosing systems composed of modules (units) 
with the requirement that they are able to test 
each other by exchanging information through 
available links [2]. At system level, each partic-
ular exchanging is considered as atomic test, 
which return value 0 or 1. The sets of test results 
is called syndrome. 

In the most elementary case, the self-
diagnosis system is defined only by three struc-
tures: 
 
© Fiser J., Mashkov V., Lytvynenko V., 2015 

• set of permanent states of modules; 
• directed graph of atomic tests (test are 

processed only once); 
• syndrome (= results of all atomic tests as-

suming that fault free unit detects faults in all 
tested, units i.e. 100 % fault coverage). 

This type of system can be represented by 
weighted graph (nodes representing modules are 
marked by state and edges are marked by results 
of atomic tests), see Fig. 1 on the following page. 

The more complex systems relax some lim-
itation, e.g. permanent character of faults, abso-
lute fault coverage etc. Moreover, the advanced 
systems have to provide internal processing of 
syndrome, online diagnosis of global state of 
system and elimination of global failures. 
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Fig. 1. Diagnostic graph with syndrome 

2. Programming language for simulation 

ofsystem level self-diagnosis 

Essential requirements for programming 
languages, which might be useful for a simula-
tion of system level self-diagnosis: 

1) simple data representation of complex 
models of modules and networks of atomic 
checks (simulation are often data-oriented or 
data-centric); 

2) effective representation of n-

dimensional data spaces (typical representa-
tion of working data); 

3) support of task-oriented parallelism 
(simulations problems have time complexity 
O(n2) or even worse); 

4) customizable graphical output for di-

rected graphs and 2D or 3D graphs of func-

tions; 
5) embedded support of event-based simu-

lations or a high level simulation library; 
6) support of symbolic evaluations. 
Other criteria are more subjective, but they 

have influenced our choice: 
Long-term sustainability – the language 

(including supporting libraries) must be stable 
with a long term support. Prediction of future 
support is difficult, but it should take into ac-
count at least history of product and activity of 
its supporters. 

Support of classical imperative paradigm 

with an simple and ordinary syntax – our stu-
dents and especially staff have limited experi-
ence with more exotic paradigmatic and syntac-
tic approaches (e.g. pure functional languages). 
However, support of others paradigmatic is ap-
preciated. 

Multiplatform support – our students and 
staff use both Linux and MS Windows 

Open-sourceness – low cost and the oppor-
tunity to study library sources 

No programming language meets these crite-
ria completely. The best match provides Java and 
Python. Both languages are mature, multiplat-
form, based on imperative paradigm and open-
source (including necessary auxiliary libraries). 

Python programming language natively 
support functional idioms which make some al-
gorithms more compact and self-descriptive 
(e.g. summation). Java supports some basic 
functional headstones in the newest version (Ja-
va 8) but this support is limited (list comprehen-
sions are the main missed feature). 

Both languages are primarily based on the 
object oriented paradigm. Therefore, the represen-
tation of complex data structures are straightfor-
ward and flexible (all entities of self-diagnosis 
system are representable as objects). The OOP 
semantic and syntax of Python is simpler and eas-
ier to understand for non-OOP programmers. On 
the other hand it is more modifiable and flexible 
by mean of meta-object protocol. 

The support of parallelism in Java and Py-
thon is comparable. The threading in Java, and 
multiprocessing in Python makes possible 
coarse-grained parallelism by mean of high-
level constructs and entities (e.g. futures or 
queued tasks). The Python standard multipro-
cessing library additionally supports a light-
weight distributed computing over TCP/IP. 

Java is popular language for event-based 
simulation from its beginnings. There are a lot of 
Java simulation frameworks. We have tested 
DESMO-J framework [3] (this framework is di-
rectly linked with classical Simula 68). In Python, 
only one extensive framework exists – SimPy 

(simpy.readthedocs.org). On the other hand, Py-
thon supports cooperative coroutines directly in 
language (via generators). The representation of 
process-based simulation by coroutine is more 
effective than representation by expansive natural 
threads (natural threads use a lot of system re-
sources e.g. kernel memory). 

The support is not so balanced in the field of 
graphical output. Java provides several plotting 
libraries which are focused on plotting of 2D func-
tion graphs e.g. JFreeChart. In Python world, the 
matplotlib library is de facto standard for 2D plot-
ting [4] (matplotlib products more journal-friendly 
diagram than JFreeChart). Support of 3-D 
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graphics in Java and Python is more limited (as 
compared with specialized proprietary software 
packages as Matlab or Mathematica). 

The most problematic and distinctive fea-
ture is rendering of directed-graph. Both lan-
guages are used in many digraph supporting li-
braries, but these libraries are often only school 
exercises or unstable and unsupported alpha 
versions. The output is commonly provided by 
external tools (e.g. graphic) or it use simple 
force-directed (spring) algorithm. 

However, Pythonworld offers NetworkX 
framework (networkx.github.io) which provide 
a rich set of graph representations and algo-
rithms and relatively customizable drawing pro-
cedures (all basic drawing algorithms are sup-
ported including force based, eigenvector spec-
trum, concentric shells, &c.). 

The crucial difference between Python and 
Java (for our point of view) is embedded sup-
port of compact numeric multidimensional ar-
rays on the one hand and a symbolic computing 
on the other one. 

The Java support of multidimensional ar-
rays is only on the basic level. Vector (one or 
multidimensional) must be represented by mul-
tilevel referenced structures (noncompact with 
slow access) and vector based operation are not 
supported in language syntax (i.e. arrays are not 
first class objects). 

The Python support of multidimensional ar-
rays on basic language level is similar. Pythonic 
lists have analogous representation and limitations 
(including a rudimentary support of vector opera-
tions). However, the NumPy framework [5] ex-
tends this support considerably. NumPymakes 
possible compact representation of vector data, 
vector operations (with natural infix operators), 
extended indexing, importing and exporting 
from/to standard format (CSV, HDF5). The vec-
torized operations are implemented by C (via 
Cython) and supports MIMD multiprocessing (via 
OpenMPI) and SIMD units (SSE3). 

Symbolic computing (manipulation with 
symbolic expression) in Java is restricted by 
strict static typing of the language and by lim-
ited support of operator overloading (i.e. sym-
bolic computing is possible but uncomfortable). 

The Python is language with dynamic typ-
ing together with perfect operation overloading 
allows almost natural representation of symbolic 

computations (unfortunately, Python do not 
support plain i.e. unbound symbols). The basic 
support of symbolic expressions provides 
SymPy(www.sympy.org) framework. More ad-
vanced support is offered by Sage framework 
[6]. This framework use slightly modified ver-
sion of older Python (version 2.7) but there is a 
possibility of interoperability with pure Python 
3 (our preferred version). Sage is project which 
combines under one roof several Python ma-
thoriented frameworks (including aforemen-
tioned NetworkX, Matplotlib, SimPy and many 
others) with unified interface and graphical shell 
(notebook) and it is trying to compete with es-
tablished proprietary numerical computing envi-
ronments (as Matlab, Mathematica or Maple). 

3. Main building of implementation 

The central entity of our OOP representa-
tion of a system level self-diagnosis is the class 
of modules which performs elementary checks 
(self-checking) and self-diagnosis based on syn-
drome. The concrete implementation has to ex-
tends abstract class Module. 

Class MState(Enum): 
    ’’’enumeration of module states’’’ 
    OK = 0 
    FAULTY = 1 
class Module: 
def __init__(self, ident, initial-

State=MState.OK): 
self.state = initialState 
   self.id = ident 
   @property 
def faulty(self): 
        ’’’abbreviated notation (property ac-

cessor) for test of faulty state’’’ 
returnself.state == MState.FAULTY 
defatomicControlOn(self, otherModule): 
       ’’’atomic control (elementary check) 

provided by ’self’ module on ’otherModule’ ’’’ 
raiseNotImplementedError("abstract method") 
defprobabilityOfResult(self, otherModule, 

result, 
selfState=None, otherState=None): 
       ’’’ 
returnprobbality of ’result’ (0 or 1) that is 

provided by ’self’ module 
on ’otherModule’ assuming states ’self-

State’ and ’otherState’ of modules. 
      ’’’ 
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raiseNotImplementedError("abstract meth-
od") 

def __rshift__(self, otherModule): 
      ’’’ 
syntactic sugar, in_x (operatorPlike) nota-

tion of elementary checks 
           a >> b in place of 

m.atomicControlOn(b). 
      ’’’ 
returnself.atomicControlOn(otherModule) 
def __str__(self): 
       ’’’ only for debugging purposes ’’’ 
return self.id + "(" + str(self.state) + ")" 

Modules – instances of concrete classes are 
identified by internal identifiers (internal identi-
fier is independent on containing systems), they 
have initial state, perform atomic checks and 
compute conditional probabilities of results. 

System modules are implemented as con-
tainer of modules with an added functionality. 

class System: 
def __init__(self, modules, dgraph): 
       ’’’ 
     ’modules’ is iterator over modules 
     ’dgraph’ (diagnostic graph) is list of 

pairs of indices 
     ’’’ 
self.moduleList = list(modules) # ordering 

of modules 
self.modules = {m.id: m for m in 

self.moduleList} # dictionary of modulse 
self.size = len(self.modules) 
        # representationod diagnostic graph       

- - - set of instances of class ’AtomicCheck’ 
self.dg = {Atomic-

Check(m_i=self.moduleList[i], 
m_j=self.moduleList[j]) for i, j in graph} 
defgetSyndrome(self): 
     ’’’ 
return syndrome after preforming of all 

atomic checks 
     ’’’ 
     s = Syndrome(self) 
for (m_i, m_j) in self.dg: 
s.addResult((m_i, m_j), m_i>>m_j) 
return s 
deftoAdjacencyMatrix(self): 
    ’’’ 
return system and its diagnostics graph as ad-

jacency matrix (represented by NumPy array). 

    Adjacency matrix is input for some graph 
algorithm and transitional representation for 

external tools (e.g. plotting) 
    ’’’ 
matrix = np.matrix(np.zeros((self.size, 

self.size), dtype=np.int8), copy=False) 
for (m_i, m_j) in self.dg: 
matrix[self.mpos(m_i), self.mpos(m_j)] = 1 
return matrix 
# access to modules 
def__iter__(self): 
     """return iterator over all modules""" 
returniter(self.moduleList) 
defmpos(self, module): 
    ’’’return index of module in the system 

(external identi_er)’’’ 
returnself.moduleList.index(module) 
def __getitem__(self, index): 
     ’’’indexation (return module for given 

index)’’’ 
returnself.moduleList[index] 
@staticmethod 
defgenerateModules(size, moduleClass, 

faultyModules): 
      ’’’ 

Factory method which generates iterator 
over modules (usable in constructor). 

The concrete class of modules is transfered 
via ’moduleClass’ argument. Modules 

from ’faultyModules’ has initial state 
’faulty’. 

          ’’’ 
return (moduleClass(str(i), 

MState.FAULTY if i in faultyModules else 
MState.OK) 

foriin range(1, size+1)) 
# property returning basic characteristic of 

systems 
defATCount(self): 
    ’’’number of elementary checks’’’ 
return 

sum(np.nditer(self.toAdjacencyMatrix())) 
def T(self): 
    ’’’number of faulty modules’’’ 
return sum(1 if module.faulty else 0 for 

module in self.moduleList) 
defTmax(self): 
    ’’’maximal number of faulty modules’’’ 
return (self.size - 1) // 2. 
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Modules in the systems are identified both 
by their internal identifiers and by indices in or-
dered list of modules. This allows implementa-
tion of algorithms with prevalent module-centric 
point of view (e.g. local based diagnosis) or al-
gorithms on whole system, which prefer simple 
indexing. The dual representation is used also 
for graph of atomic checks. Primary representa-
tion is a linked structure (modules are inter-
linked by atomic checks objects), which are 
more flexible (atomic checks can carry addi-
tional attributes). Derived (computed) represen-
tation by adjacency matrix is more compact and 
portable. 

4. Characteristics of diagnostics graph 

The computations of characteristics of a di-
agnostics graph inside the class System are trivial. 
However, the design of basic classes makes easier 
calculation of more complex characteristics. 

As example, we present calculation of apos-
teriory probability of hypothesis about global 
state of system considering obtained syndrome 
R  [7]. The hypothesis is defined by sequence of 
states of modules 

n
SSSS ,,,, 210 K  where 1,0∈S  

(1 represent faulty module). 
The aposteriory probability is calculated by 

this Bayesian equation: 
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Fig. 2. UML class diagram 
of basic classes 

The implementation is based on new class 
Hypothesis that encapsulate given states of 

modules in one integer number (Python uses 
integers with arbitrary-precision arithmetic; 
therefore integer number is able to represent bit 
vectors with arbitrary length). 

This class provides basic initializes, accus-
ers and iterators over all possible hypotheses. 
This iterator is represented by the generator (= 
coroutine producing iterator [8]) which makes 
next object of hypothesis only in the moment of 
a request (lazy evaluation). This approach 
makes iteration memory very effective (the ar-
ray of n

2 2n integer items is never created). 
defproduct(iterator): 
    ’’’product of iterator over numbers’’’ 
return reduce(operator.mul, iterator) 
class Hypothesis: 
def __init__(self, size, value): 
self.size = size 
self.max = 2**size 
self.value = value 
def __getitem__(self, i): 
     ’’’ return hypothetical state of module ’i’ 

for ’self’ hypothesis)’’’ 
return(self.value>>i) & 1 
@staticmethod 
defh0(size): 
     ’’’ 
factory method for hypothesis H_0 (all 

modules are faulty free) 
     ’’’ 
return Hypothesis(size, 0) 
defnextHypothesis(self): 
     ’’’ 
return object of hypothesis H_n+1 
     ’’’ 
return Hypothesis(self.size, (self.value + 1) 

% self.max) 
def__eq__(self, other): 
  ’’’equality for hypotheses’’’ 
returnself.value == other.valueand 

self.size == other.size 
def__ne__(self, other): 
     ’’’inequality for hypotheses’’’ 
returnself.value != other.value or self.size 

!= other.size 
defgenAllHypotheses(self): 
     ’’’ 
generator producing iterator over all hy-

potheses (beginning from ’self’ hypothesis). 
    ’’’ 
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yield self 

nh = self.nextHypothesis() 
whilenh != self: 
yieldnh 
nh = nh.nextHypothesis() 
defapost_probability(self, syndrome): 
    ’’’ 

aposteriory probability of ’self’ hypothesis 
depending on obtained syndrome 

input: 
         1) hypothesis (self) 
         2) syndrome as result of self-checking 

in a system 
         3) apriory probabilities of module fail-

ures (including in module object in the system) 
    ’’’ 
    # basic precondition of compatibility of 

hypothesis and syndrome 
assertself.size == syndrome.system.size 
    s = syndrome.system # system of syn-

drome 
suma = 0.0 
nom = None 
    # loop over all hypotheses (beginning 

from H_0) 
for h in Hypothesis.h0(self.size).genAll-

Hypotheses(): 
       # apriori probability of hypothesis ’h’ 
ph = product(s[i].P_m if h[i] == 0 else 1-

s[i].P_m 
foriin range(self.size)) 
       # probability P(R/H) of syndrome for 

hypothesis ’h’ 
prh = prod-

uct(m_i.probabilityOfResult(m_j, r, 
selfState=MState(h[s.mpos(m_i)]), 
otherState=MState(h[s.mpos(m_j)])) 
for (m_i, m_j, r) in syndrome) 
       # sumation of denominator 
suma += ph * prh 
if h == self: 
       # nominator (probability for ’self’ hy-

pothesis) 
nom = ph * prh 
return nom/suma 

The most striking feature of this Python 
code is utilization of generator expressions [9], 
which together with function product mimics 
mathematical product operator (generator ex-
pression are argument of this function). More-

over, the generator expression used over itera-
tor products lazy iterator again (i.e. the 
memory efficiency is preserved). 

The loop over all hypotheses is relatively 
easily transformable to parallel version by mul-
tiprocessing library. The loop has to be replaced 
by generator expression as argument of method 
imap of task pool that in parallel map evaluation 
of  ( ) ( )ji HRPHP /⋅  over hypotheses. Resulting 

iterator could be (persisting laziness) summed 
by standard function sum. Unfortunately, speed-
up achievable by mean of parallelization ( ni < -
times, where n is the number of computing 
cores) is insignificant for the task with exponen-

tial time complexity ( )nO 2 . For system with 
more than 25 modules computing time is in unit 
of days (single-threaded implementation). 

5. Conclusions 

The pythonic representation of self-
diagnosis entities which are briefly described in 
this article is headstone for more complex simu-
lations, which make possible research in the 
field of systems with intermittent failures and 
especially in most challenging area of self-
diagnosis (i.e. diagnosis without external de-
vice). 

These simulations requires framework for 
event/process-based simulations with support of 
process coroutines, shared resources and inter-
process signaling. We use SimPy as low-level 
foundation for more complex and flexible 
framework ETOS. This framework provides 
mechanism for creation of simulation processes 
from instances of relatively simply classes (de-
noted as activities). The high-level description 
of process flow is represented by XML. 

The interconnection of ETOS activities and 
classes of our library of self-checking primitives 
is possible by mechanism of mixins class [10] 
which is based on (secure) multiple inheritance. 
The representations of object behavior combine 
functionality of abstract simulations activities 
(ETOS) with abilities of self-diagnosis classes 
(extended versions of aforementioned classes). 
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