УДК 621.313.13

А. В. Матющенко

РАСЧЕТ ХАРАКТЕРИСТИК ВЕНТИЛЬНЫХ ДВИГАТЕЛЕЙ С ПОСТОЯННЫМИ МАГНИТАМИ И ИХ СРАВНИТЕЛЬНЫЙ АНАЛИЗ

Аннотация. Проведен сравнительный анализ характеристик вентильного двигателя с постоянными магнитами с шести и двенадцати катушечной сосредоточенной обмоткой статора, рассчитанных при помощи метода конечных элементов в программном пакете JMAG-Designer в двухмерной постановке задачи.

Ключевые слова: постоянный магнит, синхронный двигатель, обмотка, катушка, зубцовый момент, ток, метод конечных элементов, магнитное поле, электрическая цепь, векторное управление, широтно-импульсная модуляция, ЭДС

A. Matyuschenko

CALCULATION OF CHARACTERISTICS OF PERMANENT MAGNET SYNCHRONOUS MOTOR AND THEIR COMPARATIVE ANALYSIS

Abstract. The article exposes a comparative analysis of characteristics of permanent magnet synchronous motor with concentrated winding with 6 and 12 coils, calculated by means of JMAG-Designer in two-dimensional formulation of the problem.

Keywords: permanent magnet, synchronous motor, winding, coil, cogging torque, current, FEM, magnetic field, electric circuit, vector control, pulse width modulation, EMF

О. В. Матющенко

РОЗРАХУНОК ХАРАКТЕРИСТИК ВЕНТИЛЬНИХ ДВИГУНІВ З ПОСТІЙНИМИ МАГНІТАМИ ТА ЇХ ПОРІВНЯЛЬНИЙ АНАЛІЗ

Анотація. Проведено порівняльний аналіз характеристик вентильного двигуна з постійними магнітами з шести і дванадцяти котушковою зосередженою обмоткою статора, розрахованих за допомогою метода скінченних елементів в програмному пакеті JMAG-Designer у двовимірній постановці.

Ключові слова: постійний магніт, синхронний двигун, обмотка, котушка, зубцевий момент, струм, метод скінченних елементів, магнітне поле, електричне коло, векторне керування, широтно-імпульсна модуляція, ЕРС

Введение. На сегодняшний день благодаря своим техническим показателям всё большую популярность приобретают вентильные двигатели с высококоэрцитивными постоянными магнитами (ВДПМ) с сосредоточенной обмоткой статора. И, как следствие, разработано достаточно много конструктивных решений данных ВДПМ со всевозможными вариантами сосредоточенных обмоток статора, которые, в свою очередь, наделяют ВДПМ различными рабочими характеристиками со своими преимуществами и недостатками.

В примере, приведенном в работе [1], рассматриваются ВДПМ в двух исполнениях обмотки статора: с 6-ю и 12-ю катушечной обмоткой при одинаковой геометрии статора и ротора. Такие ВДПМ с сосредоточенной обмоткой, у которых катушки принадлежащие одной фазе, намотаны на соседних полюсах, также называют «модульными» [1 – 9].

Машина с 6-ю катушками по сравнению с 12-ю катушечной машиной (рис. 1) имеет ряд отличий [2].

1. При одинаковой ширине зубца у 6-и катушечной машины обмоточный коэффициент больше чем у 12-и катушечной машины. Например, у 12-и катушечной 12/10 машины $K_{05}=0,933$, а у 6-и катушечной 12/10 машины $K_{--}=0.966$

12/10 машины К_{об}=0,966.

2. У 12-и катушечной машины наведенная фазная ЭДС практически синусоидальная и пульсации квазиустановившегося момента меньше 2 %. В то время как у 6-и катушечной машины наведенная фазная ЭДС трапециевидная большей амплитуды, но пульсации квазиустановившегося момента выше и составляют около 5 %.

3. По сравнению с 12-ю катушечной машиной, 6-и катушечная машина с неравной шириной зубцов имеет единичный коэффициент укорочения шага обмотки. Имеет более длительный период постоянного напряжения в фазной ЭДС и более высокий зубцовый момент.

В общем, можно резюмировать, что модульные машины имеют более высокий обмоточный коэффициент, трапециевидную фазную ЭДС, производственные преимущества, способность высокого вращающего момента и т.д. [2].

Также в работе [1] было показано, что машины, у которых обмотаны только 6 из 12 полюсов могут обеспечить значительно лучшую производительность по сравнению с машинами, у которых обмотаны все 12 полюсов.

а

© Матющенко А.В., 2015

Рис. 1. Схемы обмоток ВДПМ: a – 12 катушек; б – 6 катушек

Цель работы. В данной работе проводится сравнительный анализ характеристик ВДПМ с 6-ю и 12-ю катушечной обмоткой, рассчитанных при помощи метода конечных элементов в программном пакете JMAG-Designer в двухмерной постановке задачи для проверки результатов, полученных в [1].

Объектом исследования служит тяговый двигатель для шахтного электровоза (рис. 2), разработанный в ООО «Электротехника – Новые технологии» (г. Одесса), конструкция которого представлена на рис. 3.

Рис. 2. Комплектный электропривод – двигатель с интегрированной системой управления

Рис. 3. Явнополюсный ВДПМ с сосредоточенной обмоткой статора:

1 – статор; 2 – ротор; 3 – вал; 4 – постоянные магниты; 5 – полюс статора; 6-и катушечная обмотка; 7 – паз статора Магниты располагаются непосредственно внутри ротора. Статор такого двигателя выполняется в виде явнополюсной структуры с прямыми полюсами и открытыми пазами, в которые уложена катушечная обмотка. Такая обмотка статора имеет простую технологию изготовления и минимальные по длине лобовые части.

Методы и этапы исследования. На рис. 4 представлена полевая 2D математическая модель ВДПМ, разработанная в программе JMAG-Designer согласно геометрическим размерам и обмоточным данным, которые приведены в таблице.

1. Геометрические размеры и обмоточные данные двигателя

Наименование	Значение
Внешний диаметр статора, мм	360
Внутренний диаметр статора, мм	217
Число зубцов статора	12
Длина активной части, мм	240
Число полюсов ротора	10
Число витков катушки обмотки ста- тора	10
Размеры магнитов (NdFeB), мм	240×35,5×6,3
Воздушный зазор, мм	2,5

На рис. 6 показаны результаты расчета двухмерного магнитного поля 6-и и 12-и катушечного ВДПМ в виде линий равного векторного магнитного потенциала.

В результате серии расчетов магнитного поля были получены зависимости результирующего $M = f(\Theta)$, зубцового $M_z = f(\Theta)$ (рис. 7) и квазиустановившегося момента (рис. 8).

Рис. 4. Двухмерная конечно-элементная аппроксимация ВДПМ

Число элементов конечно-элементной сетки 2D модели составляет 35000. При таком числе конечных элементов достигается достаточно подробная аппроксимация геометрии ВДПМ. Для экономии ресурсов ЭВМ и уменьшения времени вычислений, была взята половина 2D модели ВДПМ [10]. Для этого при построении 2D модели были применены периодические граничные условия (рис. 5), так как магнитное поле исследуемого ВДПМ имеет периодичность 180 градусов и направление магнитного поля на границе меняет знак на каждом периоде. На границах расчетных областей 2D модели ВДПМ были применены граничные условия Дирихле векторный магнитный потенциал A = 0.

Рис. 5. Периодические граничные условия

Рис. 6. Распределение двухмерного магнитного поля 6-и (а) и 12-и катушечного (б) ВДПМ

Для получения зависимости $M=f(\Theta)$ был задан ток 86,6 А в двух фазах ВДПМ и определен электромагнитный момент при повороте ротора от 0 до 72 механических градусов, что соответствует 360 электрическим градусам.

Для получения зависимости $M_Z = f(\Theta)$ был задан ток в фазах ВДПМ равный нулю и определен момент от действия постоянных магнитов при повороте ротора от 0 до 72 механических градусов.

Зависимости квазиустановившегося момента была получена путем расчета электромагнитного момента при повороте ротора от 0 до 72 механических градусов при синусоидальном токе амплитудой 100 А в трех фазах ВДПМ.

Из зависимостей $M = f(\Theta)$, $M_Z = f(\Theta)$ видно, что амплитуда результирующего момента, полученного для 6-и и 12-и катушечного ВДПМ, приблизительно одинакова и составляет 152 Н·м и 149 Н·м соответственно.

Форма результирующего момента отлична от синусоидальной из-за действия зубцового момента, который возникает из-за действия магнитного поля постоянных магнитов при отсутствии тока в обмотке статора. Амплитуда зубцового момента для 6-и и 12-и катушечного ВДПМ должна быть равна 1,9 Н м.

Из зависимостей квазиустановившегося момента (рис. 8) видно, что среднее значение момента 6-и и 12и катушечного ВДПМ составляет 149 Н·м и 146 Н·м, а амплитуда пульсаций момента составляет 6,5 Н·м и 5,9 Н·м соответственно, что подтверждает описанные в [1] отличия характеристик исследуемых конструкций ВДПМ.

Для получения рабочих характеристик подключим к катушкам полевой модели исследуемого ВДПМ электрическую цепь, реализованную в редакторе цепей JMAG-Designer (рис. 9).

Управление электрической цепью (рис. 9) будет производиться при помощи модели векторного управления с ШИМ, реализованной в *Matlab Simulink* (рис. 10). Обмен данными между *Jmag* и *Simulink* peaлизуется при помощи блока *S-Function Jmag-Simulink*-*Interface* (рис. 10).

Рис. 7. Зависимости: $1 - M = f(\Theta), 2 - M_Z = f(\Theta)$

Рис. 8. Зависимости квазиустановившегося момента

Рис. 9. Редактор цепей JMAG-Designer

Матющенко А.В. Опубликовано в журнале Электротехнические и компьютерные системы № 19 (95), 2015 101-105 Электромашинные и полупроводниковые преобразователи

Рис. 10. Модель векторного управления с ШИМ

В результате серии расчетов было получено семойство характеристик и осциллограмм для 6-и и 12-и катушечного ВДПМ.

На рис. 11 показаны осциллограммы линейных ЭДС 6-и и 12-и катушечного двигателя. Как видно, амплитуда ЭДС 6-и катушечного двигателя больше, чем у 12-и катушечного, что также подтверждает упомянутые ранее отличия исследуемых ВДПМ.

На рис. 12 показано семейство механических характеристик, из которых видно хорошее соответствие расчетной и экспериментальной естественной механической характеристики 12-и катушечного ВДПМ. Из механических характеристик видно, что мощность 6-и катушечного двигателя значительно меньше чем у 12-и.

Ниже показаны осциллограммы скорости и момента (рис. 13), а также токов фазы (рис. 14) для пуска 6-и и 12-и катушечного ВДПМ на скорости 500 об/мин при 100 Н м.

Из рис. 14 видно, что ток в фазе 6-и катушечного ВДПМ меньше чем у 12-и катушечного из-за значительного увеличения индуктивности фазы, что не позволяет сильнее ослабить магнитное поле для обеспечения более высокой мощности как у 12-и катушечного ВДПМ.

Рис. 13. Осциллограммы скорости и момента при пуске ВДПМ на скорости 500 об/мин при 100 Н м

Рис. 14. Осциллограммы токов фаз при пуске ВДПМ на скорости 500 об/мин при 100 Н м

Выводы

1. В ходе работы была разработана цепнополевая математическая модель вентильного электропривода с постоянными магнитами, которая позволяет рассчитать рабочие характеристики и динамические режимы работы ВДПМ.

2. Результаты расчета квазиустановившегося момента показали, что при одинаковом фазном токе средний момент 6-и катушечного ВДПМ на 2 % больше чем у 12-и катушечного, что подтверждают результаты [1].

3. Результаты расчета динамических и механических характеристик показали, что мощность 6-и катушечного ВДПМ меньше чем у 12-и катушечного из-за большего по величине потокосцепления и индуктивности фазы 6-и катушечного двигателя, что не подтверждает, что 6-и катушечный ВДПМ может обеспечить значительно лучшие характеристики по сравнению с 12-ю катушечным ВДПМ [1].

Список использованной литературы References

1. Ishak D., Zhu Z. Q., and Howe D., (2005), Permanent-magnet Brushless Machines with Unequal tooth Widths and Similar Slot and Pole Numbers,

IEEE Transactions on Industry Applications, New Jersey, USA, 41(2), pp. 584 – 590 (In English).

2. Krishnan R., (2010). Permanent-magnet Synchronous and Brushless DC Motor Drives, *CRC Press*, Boca Raton, USA, pp. 46–48 (In English).

3. Wang J.B., Xia Z.P., and Howe D., (2005) Three-Phase Modular Permanent Magnet Brushless Machine for Torque Boosting on a Downsized ICE Vehicle, *IEEE Transactions on Vehicular Technology*, Gainesville, USA, 54(3), pp. 809 – 816. ISSN 0018-9545 (In English).

4. Atallah K., Wang J.B., and Howe D., (2003), Torque-Ripple Minimization in Modular Permanent Magnet Brushless Machines, *IEEE Transactions on Industry Applications*, New Jersey, USA, 39(6), pp. 1689 – 1695. ISSN 0093-9994 (In English).

5. Zhu Z.Q., (2011), Fractional Slot Permanent Magnet Brushless Machines and Drives for Electric and Hybrid Propulsion Systems, *COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering*, Bingley, United Kingdom, Vol. 30, Iss. 1, pp. 9 – 31 (In English).

6. Wrobel R., McNeill N., Staton D.A., Booker J. D., and Mellor P.H., (2006), Torque Dense, External Rotor Hub-drive for a Hybrid Solar Vehicle, *IEEE Veh. Power Propulsion Conf.* (VPPC 2006), Windsor, United Kingdom, pp.1–5 Sep. (In English).

7. Cros J., and Viarouge P., (2002), Synthesis of High Performance PM Motors with Concentrated Windings, *IEEE Trans. Energy Conversion*, New Jersey, USA, 17, pp. 248 – 253 (In English)/

8. Zheng P., Wu F., Lei Y., Sui Y., and Yu B., (2013), Investigation of a Novel 24-Slot/14-Pole Six-Phase Fault-Tolerant Modular Permanent-Magnet In-Wheel Motor for Electric Vehicles, *Energies*, Basel, Switzerland, 6, pp. 4980 – 5002 (In English).

9. Cho G.W., Jang W.S., Jang K.B., and Kim G.T., The Optimal Design of Fractional-slot SPM to Reduce Cogging Torque and Vibration, (2012), *Electrical Engineering & Technology*, Changwon, Korea, 7, 753 (In English).

10. Matyuschenko A.V. Polevye matematicheskie modeli ventil'-nykh dvigatelei s postoyannymi magnitami i ikh sopostavitel'nyi analiz [Mathematical Field Models of Brushless DC Motors with Permanent Magnets and their Comparative Analysis], (2015) *Elektrotekhnika i Elektromekhanika – Electrical Engineering & Electromechanics*, Kharkov, Ukraine, No.1, pp. 25–28 (In Russian).

Получено 28.04.2015

Матющенко Александр Владимирович, аспирант каф. электрических машин Одесского нац. политехнического ун-та. 65044, Одесса, пр. Шевченко, 1, тел. +38(097)3730502. E-mail: sparkam@rambler.ru