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one of the most fundamental elements of a model of a subject domain. Analysis of connections of an arbitrary subject 
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Keywords: subject domain modelling, connection stability, connection inevitability, logical connection, fraternal 

connection, mass problem 

Е. В. Малахов, д-р техн. наук, 

Д. О. Щелконогов 

СТАБИЛЬНОСТЬ И НЕИЗБЕЖНОСТЬ СВЯЗЕЙ ПРЕДМЕТНОЙ ОБЛАСТИ 

Аннотация: В статье рассматривается проблема математического описания связей между объектами, 

как одного из фундаментальных элементов модели предметной области. Представлен анализ связей в произ-

вольной предметной области. Введены понятие стабильности и неизбежности связей и её количественные 

характеристики.  
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СТАБІЛЬНІСТЬ ТА НЕВІДВОРОТНІСТЬ ЗВ’ЯЗКІВ ПРЕДМЕТНОЇ ОБЛАСТІ 

Анотація: У статті розглядається проблема математичного опису зв’язків між об’єктами, як одного з 

фундаментальних елементів моделі предметної області. Представлено аналіз зв’язків у довільній предметній 

області. Введені поняття стабільності та невідворотності зв’язків та її кількісні характеристики. 
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Introduction. The goal of this article is to analyze 
connections between objects inside a subject domain. 

Connections between objects are one of the three 
fundamental parts of the definition of a subject domain 
[1] beside objects and mass problems. Connections allow 
describing a structure of a subject domain, relations be-
tween objects; give a subject domain its own unique qual-
ities. The same set of objects can describe different sub-
ject domains if those subject domains have different sets 
of connections in the same manner as the same set of 
atoms can describe different molecules depending on the 
inner structure of connections. 

Connections between instances allow determining 
the state in which a subject domain exists in the given 
moment of time, and the qualities that it has in the given 
moment of time from the whole set of possible qualities 
defined by the connections between objects. Connections 
between instances of objects apart from connections be-
tween objects of a subject domain can be changed as a 
result of influences on the subject domain, transferring the 
subject domain to the new state. Wise change of such 
connections can result in the qualitative change of a state 
of a subject domain: make it better or worse. For example, 
if we take pupils and teachers as objects, then by connect-
ing pupils to better teachers we can augment quality of the 
education in a subject domain “school” without changing 
any instances of objects of that subject domain. 
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Existing theories on connections. Connections be-
tween different objects have been widely studied in dif-
ferent areas of mathematics and computer sciences. 
Among the most significant results we should mention 
graph theory, theory of relational databases and object- 
oriented modelling. 

Graph theory [2 – 3] as one of the most abstract theo-
ries on connections allows describing different relations 
between vertexes which can correspond to any entities in 
the real world and allow solving the most abstract prob-
lems, such as shortest paths search, and others. Neverthe-
less, given that enormous power, instruments of that theory 
don’t fully support possibility of working with semantics of 
a subject domain and problems that are solved on it. 

The theory of relational databases [4] and data ware-
houses [5] allow describing connections between objects of 
a subject domain (relations) and instances of those objects 
(entities). Although those connections are taken into ac-
count while solving problems, as in the graph theory the 
reason why they are used is solely technical. They are not 
used to improve quality of the tasks being solved; they used 
just to create a model of a subject domain. The classifica-
tion of connections is given here (1-to-1, 1-to-many, many-
to-1, and many-to-many). It needs to be mentioned, that the 
connection many-to-many is implemented by the auxiliary 
(artificial) “associative” object. 

In the object-oriented modelling [6 – 7] further clas-
sification of connections is given in comparison with 
previous theories. An object can be a part of an aggrega-
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tion, a composition, an association or be inherited from 
another object. 

It needs to be mentioned, that in all of the theories 
above connections are used rather technically to search 
for the corresponding elements, elements in the hierarchy, 
possessed and containing elements. The qualitative as-
sessment of connections to optimize solutions of prob-
lems almost isn’t conducted. All connections are treated 
equally. There is no extraction of essential in any way 
connections to optimize tasks being solved. 

The goal of this paper is to create a classification of 
connections that can be further used to increase efficiency 
and effectiveness of control algorithms. 

A typeof function. A subject domain (SD) is a tuple 

( ( ), ( ), ( ))
i j i j i j

E d V d P d , where E  is a set of objects of an 

SD 
j

d  , V  is a set of connections of an SD 
j

d , and P  is 

a set of mass problems of an SD 
j

d .A set of connections 

can be represented as 
1 2

{ } { , }
i i

i v v
V v e e= = , 

where 1

i
v
e , 2

i
v
e  – objects that are in the connection 

i
v . 

A state 
i
s  of an SD d  is a tuple , , Z

i i i
X Y< > , 

where X  is a state of attributes of the SD d , Y  is a state 

of connections of the SD d , 
i

Z  is a set of actions that 

can be performed in the current state 
i
s . 

Let us introduce a notion of an instance of a connec-
tion between instances of objects. An instance of a con-
nection between instances of objects corresponds to the 
connection between corresponding objects. So if two 
objects are connected with a connection, two instances of 
those objects can be correspondingly connected with an 
instance of that connection. The main difference is that 
the connection between objects cannot appear or disap-
pear because that will change the SD itself. On the other 
hand, instances of connections can appear and disappear 
with time. Thus, the set Y  consists of instances of con-
nections: 

1 2
{ } { , }

i i
i

Y
γ γ

γ ε ε= = , 

where 
i

γ  is an instance of a connection 1

i
γ

ε , 2

i
γ

ε  are in-

stances of objects that are in connection. Let us introduce a 

set of instances of objects in the current state 
i
s  of an SD: 

( )
i i

I s I= . 

Instances of objects are considered as different if 
they have at least one attribute with different values. Let 
us denote Ω  a set of all possible states of an SD. Let us 
denote Ψ  a set of all possible sets of instances of objects 
of an SD: 

{ ( ) | }I s sΨ = ∀ ∈Ω . 

Let us denote a set of all possible states of connec-
tions of an SD: 

{ }
i
YΛ = . 

Let us introduce a function 

:typeof I Y E V∪ → ∪ , 

which matches an instance of an object or of a connection 
to a corresponding object or a connection. 

Classification of connections. Connections between 
objects define structure of an SD and define its properties. 
They also define a set of all possible states of connections 
between instances of objects. Let us introduce a classifi-
cation of connections between objects of an SD for its 
further detailed analysis. 

Fraternal connections. There are connections between 
instances of objects which do not appear or disappear during 
functioning of an SD (that includes changes of a state of an 
SD and solution of mass problems). Those connections are 
set with the creation of an SD and define its structure during 
its lifetime. Those connections define main properties of that 
SD. Let us call those connections “fraternal connections”. 
Note, that fraternal connections are not introduced especially 
to solve mass problems of an SD but only to maintain struc-
ture of objects of an SD. Corresponding instances of connec-
tions between instances of objects of an SD never change 
instances of objects on their ends. 

Let us denote a set of fraternal connections as b
V  , 

and a set of instances of fraternal connections as b
Y  . Let 

us denote for each mass problem a set of fraternal connec-
tions that are used in its solution: 

: { | }p b b b

vb i i
f P V V V→ ⊂ . 

Logical connections. During the creation of an SD 
with the purpose of solving mass problems in it connec-
tions between objects of this SD are introduced to allow 
instances of those objects to interact with each other for 
solving mass problems in that SD. Let us call those con-

nections logical and denote the corresponding set l
V . At 

the same time, the same set of objects can describe differ-
ent SDs with different sets of mass problems if those SDs 
have different sets of logical connections between those 
objects. We can describe the relation between fraternal 
and logical connection as following: 

\
l b

V V V= . 

Also, let us define a function that will match each 
mass problem with a set of logical connections that are 
necessary for its solution: 

: { | }p l l l

vl i i
f P V V V→ ⊂ . 

Stability and inevitability of a connection. Let us 
introduce two characteristics of connections of an SD: 
level of stability and a level of inevitability. 

Let us define a level of stability of a connection as a 
probability that the corresponding instance of that connec-
tion at the next step will not disappear: 

: [0;1]stability V → , 

1
( ) ( | )

i i
stability v P y Y y Y

−

= ∈ ∈ , 

where 
1i

Y
−

, 
i
Y  are states of connections at ( 1)i th− −  and 

i th−  states of an SD correspondingly, ( )v typeof y= . 

Therefore, the level of stability for fraternal connections 
is equal to one. 

Let us define a level of inevitability of a connection 
as a probability that at the next step an instance of that 
connection will be created between instances of objects of 
an SD: 

: [0;1]inevitability V → , 

1
( ) ( | )

i i
inevitability v P y Y y Y

−

= ∈ ∉ , 
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where 
1i

Y
−

, 
i
Y  are states of connections at ( 1)i − -th and 

i  -th states of an SD correspondingly, ( )v typeof y= . 

Therefore, the level of inevitability of fraternal connec-
tions is equal to zero, because new fraternal connections 
are not created in an SD. 

Let us note that the higher the level of stability a 
connection is, the more fundamental properties of an SD 
it defines. For example, a connection between a pupil and 
a teacher has a higher level of stability in an SD “school” 
than a connection between a pupil and a library, because 
the pupil can stop using the library, but it is highly unlike-
ly that the pupil will stop speaking with the teacher. It is 
expected that a change in the most stable connections 
between instances of objects of an SD may cause the most 
fundamental and radical changes in the quality of a state 
of that SD. Also, let us notice that the most stable connec-
tions are aimed to solve long-term problems of an SD. 

Connections with high stability and high inevitabil-
ity as well as fraternal connections define fundamental 
properties of an SD for a long term. Nevertheless, apart 
from fraternal connections, their instances may actually 
disappear. Those connections define fundamental princi-
ples of functioning of an SD for solving most of its main 
problems in a long-term perspective. 

Connections with high stability and low inevitability 
on the other hand allow solving long-term but rarely ap-
pearing problems. If we take a country as an example of 
an SD, then the instances of those kind of connections 
will be created when that country will enter a state of war. 
New connections that appear in these cases are stable and 
long-term, but appear rarely due to low frequency of 
necessity of solution of those kind of mass problems. 

Connections with low stability and high inevitability 
appear in an SD to solve short-term frequent mass prob-
lems, for example transporting people with public 
transport (a connection “bus – person”). 

Connections with low stability and low inevitability 
appear in an SD to solve short-term infrequent mass prob-
lems, for example distinguishing of a fire at a factory by 
staff or local elections. 

Connections with normal stability and normal inevi-
tability appear in an SD to solve middle-term periodic 
problems. 

To determine boundaries of low, normal and high 
values we can use mean value and standard deviation. Let 
µ  be the mean value of stability (inevitability), σ  – its 

standard deviation. Then let us consider low all connec-

tions with stability (inevitability) lower than µ δσ− , and 

high – all connections with stability (inevitability) higher 

than µ δσ+ , where δ  is a parameter which can be preset 

or chosen depending on the distribution type of stability 
(inevitability) to achieve the necessary percentage distri-
bution of connections between those three groups. For 

example, for a normal distribution we can take 1δ =  to 

get approximately 68 % of connections in the normal 
group, 16 % of connections in the low group and 16% of 
connections in the high group. 

To calculate stability and inevitability functions let 
us consider a probability of a usage of an influence that 

can destroy or create an instance of that connection, and 
let us consider a probability that the influence will actual-
ly create or destroy an instance of that connection. More 

formally, let us denote ( )P u  – a probability that an influ-

ence u  will be used. Let us introduce two functions: 

1
( , ) ( | , )

i i
createprobability v u P y Y y Y u

−

= ∈ ∉  

– a probability that a new instance y  of a connection v  

will be created directly after usage of an influence u ; 

1( , ) ( | , )
i i

destroyprobability v u P y Y y Y u
−

= ∉ ∈  

–  a probability that an instance y  of a connection 

v  will be created directly after usage of an influence u . 

Having defined that, let us notice the dependencies: 

( ) 1 ( ) ( , )
i

u U

stability v P u destroyprobability v u
∈

= −∑ , 

( ) ( ) ( , )
i

u U

inevitability v P u createprobability v u
∈

= ∑ , 

given that 

( ) 1
i

i

u U

u U P u

∈

∀ ∈ =∑ . 

For our convenience let us introduce a function  

( ) 1 ( )

( ) ( )
i

u U

instability v stability v

P u destroyprobability u
∈

= − =

= ∑ . 

This function corresponds to a probability that an in-
stance of the given connection will be destroyed at the 
next step. 

Thus, calculation of functions stability  and 

inevitability  can be reduced to calculation of functions 

( )P u , ( , )createprobability v u , ( , )destroyprobability v u  

for all possible influences for the current step. For calcu-
lation of those functions let us use a history of functioning 
of an SD. A history of functioning H  of an SD is a se-

quence 
1

{( , )}n
i i i

H s u
=

=  where 
i
s ∈Ω  is a state of the  SD 

at the i -th step, is an influence which was executed at the 

i -th step, which transferred the SD to the new state. 

Functions, mentioned above, are suggested to be calculat-
ed as follows: 

1
( ) 1

i
u u

P u
n

=

= ∑ , 

1 1

1

1
1

( ) ( )

( , )

1 1 1
i i i i

i i

u u y Y y Y u u
v typeof y v typeof y
y Y y Y

createprobability v u

+ +

+

−

−

= ∈ ∈ =

= =

∈ ∧ ∉

=

   
          =          

    
   

∑ ∑ ∑ ∑
 

1

1
1

( ) ( )

( , )

1 1 1
i i i i

i i

u u y Y y Y u u
v typeof y v typeof y
y Y y Y

destroyprobability v u

+

−

−

= ∈ ∈ =

= =

∉ ∧ ∈

=

   
          =          

    
   

∑ ∑ ∑ ∑
. 

Let us note that the same influence in the same state 
can lead both to creation and destruction of instances of 
the same connection. 
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Given functions allow building a Markov’s process 
[8] or a stochastic Petri net [9] to model a process of crea-
tion and destruction of connections in the given SD. 

It is also possible to extract another group of con-
nections which objects belong to the set of defining 
objects [10]. Those connections may define a subject 
domain and give essential information about it as defin-
ing attributes [10]. 

Example. Let us consider a relational database. The 
relations are objects, tuples are instances of objects, and 
stored procedures are influences. It is possible to calculate 
introduced characteristics using the transaction history as 
a history of changes of the state of that subject domain. 
Using that information it is possible to predict and esti-
mate the changes in the connections between tuples of 
objects, find stable and unstable clusters of objects in the 
model. This can be used to split the storage of information 
between a relational database for the unstable part of the 
data model, and a NoSQL database for the stable part of 
the data model to increase performance of the system. 

Conclusion. Introduced results can be used for pre-
dicting creation and destruction of connections between 
instances of objects, probability analysis of transitions 
between states of an SD in perspective of its connections, 
measurement of stability of an SD, and comparison of 
SDs in regard to their stability.  

Further research can be aimed for developing algo-
rithms of efficient classification of connections, and de-
veloping further classification of connections. It will 
permit to develop control algorithms that will use this 
classification to increase effectiveness and efficiency of 
management decisions. 
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