
Serdyuk P.V. Published in the Journal Electrotechnic and Computer Systems No. 19 (95), 2015 248 – 251

Artificial Intellect Systems

248

UDK 004.054

P. Serdyuk, PhD.,
O. Nytrebych

DEVELOPMENT OF SOFTWARE USAGE MODEL FOR DOMAIN-ORIENTED TESTING BASED

ON SYNTAX AND LEXICAL ANALYSIS OF PROGRAM SOURCE

Abstract. The new approach of software usage model development with syntax and lexical analysis are proposed

in this article. Code analysis is used to develop software usage model represented as a graph of possible application

flow and set of domain program variables value that are changing during execution flow.

Keywords: software usage model, domain-oriented testing, lexical analysis, control flow graph

П. В. Сердюк, канд. техн. наук,
О. О. Нитребич

ПОБУДОВА МОДЕЛІ ВИКОРИСТАННЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ ДЛЯ

ДОМЕННОГО ТЕСТУВАННЯ НА ОСНОВІ ЛЕКСИЧНОГО ТА СИНТАКСИЧНОГО

АНАЛІЗУ ПРОГРАМНОГО КОДУ

Анотація. У цій статті розглянуто новий підхід до побудови моделі використання програмного

забезпечення за допомогою синтаксичного та лексичного аналізу коду. Аналіз коду використовується для

побудови графу потоків виконання та змін доменів значень змінних програми у моделі використання

програмного забезпечення.

Ключові слова: модель використання програмного забезпечення, доменне тестування, лексичний аналіз

коду, граф потоку управління

П. В. Сердюк, канд. техн. наук,
О. О. Нытрэбыч

ПОСТРОЕНИЕ МОДЕЛИ ИСПОЛЬЗОВАНИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ДЛЯ

ДОМЕННОГО ТЕСТИРОВАНИЯ НА ОСНОВЕ ЛЕКСИЧЕСКОГО И СИНТАКСИЧЕСКОГО

АНАЛИЗА ПРОГРАММНОГО КОДА

Аннотация. В этой статье рассмотрен новый подход к построению модели использования программного

обеспечения с помощью синтаксического и лексического анализа кода. Анализ кода используется для

построения графа потоков выполнения и изменений доменов значений переменных программы в модели

использования программного обеспечения.

Ключевые слова: модель использования программного обеспечения, доменное тестирования, лексический

анализ кода, граф потока управления

Introduction

The most costly software failures are a consequence
of a fact that such failures are usually caused by
complicated scenarios, and are found at late stages of
software development, such as regression testing, alpha
and beta testing, software deployment, etc. These
scenarios are difficult to cover by the automated or
manual testing due to the fact that each stage of a
complex scenario can have a number of degrees of
freedom, i.e. the possible subsets of the variables values
set it uses [1]. The corresponding number of all scenarios
is the product of all degrees of freedom of each stage,
which can be quite a large number.

For building long complex software testing
scenarios, which contribute significantly to the software
cost, software usage model is used [2 – 3]. State-based
software usage model is represented as a graph of
transitions and a set of variables with respective sets of
equivalence classes [4]. The process of software
execution can be modeled as a transaction through paths
of the graph, each node of which can be presented as a
method or operation that changes the value of the set of
variables values.

© Serdyuk P.V., Nytrebych O.O., 2015

One important issue in usage modeling that helps to
simplify the model and decrease testing cost is domain
testing [5]. The essence of domain testing is stratified
sampling of a few tests from a group of candidate test
cases by identification of a finite number of equivalence
classes of input variable value intervals so that each test
that is representative of a class of test cases, was
equivalent to any other test in this class within given
range of input values. Software failures in a variety of
domains can be caused by combinations of relatively few
conditions, thus all faults in a system can be triggered by
a combination of few parameters [6], but testing all
combination of parameters is technically impossible in
application with large number of variables. To effectively
decrease valuable combination of parameters software
complex behavior should be analyzed.

The verification of highly concurrent systems is a
challenging task, as their state space grows exponentially
with the number of processes. Generating a effective test
suite usually needs a lot of manual work and expert
knowledge. In a model-based process, among other
subtasks, test construction and test execution can also be
partially automated.

Such techniques of solving this problem like partial
order reduction [7] or using binary decision diagrams for

Serdyuk P.V. Published in the Journal Electrotechnic and Computer Systems No. 19 (95), 2015 248 – 251

Artificial Intellect Systems

249

combinatorial test design [8] that automatically construct
tests so that it covers all valid value combinations of
parameters have received a lot of attention recently.

Model-based testing can have different definition; in
classical meaning it is testing that relies on models
specifying the intended behavior of software [9],
automation of the design of black-box tests [10], etc. In
this article we consider a slightly different meaning of the
term in sense grey-box model that is developed
automatically based on the whitebox fuzzing[11].
Whitebox fuzzing is another form of automatic dynamic
test generation, based constraint solving and symbolic
execution. Due to the enormous number of control paths
in early processing stages, whitebox fuzzing effectiveness
is still limited when testing applications with highly-
structured inputs.

Nowadays, this approach needs further investigation
and improvement due to different trends in software
development:

• Multi-threaded applications. Threads
dependencies can involve appearance of new equivalence
classes set. Identification equivalence class should include
cases that another thread can make changes in our test,
accessing and changing important variables, moreover
such impact sometimes could be hardly found as it could
occur occasionally during running tests.

• Graphics. More and more applications are
developed for touch-screens. Naturally, the input field to
be replaced by graphic elements which can easily push,
move, etc. For graphic elements, which are built on
functional equivalence classes is extremely difficult or
expensive to find equivalence classes.

• Third party frameworks and libraries. Nowadays
applications are so actively using frameworks and third-
party libraries, that majority of the internal logic and the
underlying code is used just inside the external libraries
that radically breaks all the plans for the use of
equivalence classes.

Usually domain is also tested at the boundaries and
near-boundary values, to identify that domain are
correctly defined at the boundaries. But it does not give
confidence that error can be passed somewhere inside of
domain when equivalence class is not correctly defined,
because in fact it may be more than one equivalence class
inside of another and errors will not be found in such
cases during testing.

Domain model

Correct definition of domain knowledge plays a very
critical role while testing domain-specific work.
Equivalence class is identified as the basis because of
some criteria, like specifications, code, opinions,
analyzes, etc. This knowledge is based on graph structure
that connects the causes of errors with the expected
responses. During testing all information about errors is
collected and used in assessing the reliability and quality
of the software.

In this article we are constructing domain model
with the following criteria:

DT – domains that are identified by typical testing
value for “black box” model. For example, for string
input values we should check next domains for this value:

null value, empty string value, strings that contain special
symbols “~`!”@’#$;%:^&?*()[]{},.\/+=-_”, string that
exceeds 255 characters and other types of string.

DF – domains that are identified by applications flow,
i.e. by cycle or conditional operators, for example
predicate condition (k>100) result to two classes of

equivalence k ≤ 100 and k>100, or even to three classes of
equivalence k<100, k>100 and k= 100 for boundary
approach;

DE – domains that are identified by possible
exceptions in applications flow, for example, division by
zero or null reference exception or other changes can
impact on failures;

DR – domains that are identified by requirement
specification. DR can also contains limitation for input
values integer, for example value k is within range [0,
200]. That splits domain of value k to three regions:
negative numbers, values between 0 and 200 and values
over 200.

Thus, domains set can be identified by the set D = {
DT, DF, DE , DR }

For example: requirements descriptions allows input
integer value Quantity in range from 1 to 99. Up to
requirement to specification we have 2 domains for value

DR ={ [1, 99] Z∩ , [-∞, 1) ∪ [100,-∞] } }
Thus, we should provide different test cases with

different value for Quantity value
1. Enter value in the middle 50. Positive result

expected according requirements.
2. Enter boundary values 1 and 99, positive result

expected.
3. Enter external boundary values 0 and 100, failure

expected.
4. Enter floating point number 50.5, failure

expected.
5. Enter letter, special symbols, like:

~`!”@’#$;%:^&?*()[]{},.\/+=-_., failure expected.

For domains DF and DE that are diffіcult to evaluate
manually we propose to identify them with usage model
to automatically build it. To build graph structure of usage
model we create lexical and syntax analyzer that could
work in wide ranges of programming languages and
technologies. Model is simplified view of software
application that contains graph structure of application
and possible changes in variable domain values and
possible failures (Fig.1).

Thus lexical syntax for usage model is usually a
regular language, with the grammar rules consisting of
command separators, assignment operator, mathematical
and logical operators, conditional and cycle operators,
functions and classes keywords and variables. Developed
lexical analyzer neglects other features, like database
operations, connection to different service, UI displaying,
etc. and transfer code to the list of tokens that contain
information of changes in variables value and application
flowThe lexical analysis algorithm is optimized according
assumptions mentioned above: based on command-
separator regular expression search it identifies
information tokens, it does not require a lot of
computational resource comparing to compilation.

Serdyuk P.V. Published in the Journal Electrotechnic and Computer Systems No. 19 (95), 2015 248 – 251

Artificial Intellect Systems

250

Fig. 1. Algorithm of building usage model through lexical and syntax analysis

After lexical analysis that converts code to the list of
tokens syntax analysis is performed, that have three main
stages:

• Commands analyzer – this analyzer is core
analyzer that recognizes the flow of application, including
–conditional and cycle operators, assignment of new
value, call of external and internal methods and thread
management. This analyzer is used to make first step of
analysis, that don’t recognize conditions of flow and
expression that are assigned to the variables.

• Predicate analyzer – analyzer of logical
expressions that contains condition in logical and
conditional operators. This analysis will identify the
condition of application flow through different branches
of execution. Domains obtained by description of
predicate can depend on values of few variables, and
cannot be tied to fixed values. For example, in expression
if (quantity*price < discountLimit){…} flow depends on
value of multiplication of two variables: quantity and

price. As a result, these domains are defined by predicate
expression of few variables.

• Expression analyzer – analyzer of mathematical
and other expression that can be assigned to variable. This
type of analyzer is used to distinguish possible faults in
expressions: null reference/not initialized value usage,
mathematical faults like zero division, index out of array,
etc. This analyzer also determines the possible domain of
new value of variables. Unfortunately, it was possible
only for simple expressions, that don’t refer to any
external libraries functions. More complex expressions
were analyzed statistically by collecting possible changes
in the variables values domains.

Developed model is represented in the form of a
directed graph G = { O, T }, where O – set of software
operations, T – set of transitions between the respective
operations. Each operation contains one or more variable

i
V that belongs to the set of variables used in the model

V and is characterized by two or more of equivalence
classes. An example of such a representation is shown in
Fig. 2. It should be noted that there are two types of
equivalence classes: the correct equivalence classes
representing the correct input values for variable and
incorrect equivalence classes corresponding to all other
possible states of the environment (i.e. wrong input
values).

The process of software execution can be modeled
by the passage paths of the graph, which edges will be
responsible for the sequence of method call and each node
of which can be presented as a operator that can:

• Start new execution thread due to user actions
like pressing keys or buttons;

• Exit current thread;

• Other thread operations like pause/resume,
locking on variable, waiting to execution for other
threads, etc;

• Change flow of execution in accordance with
conditional/cycle operators;

• Changes the value of the set of variables values
(method arguments as well as global variables);

• Result to failure in case set of variables is
containing values from failure domain.

Each operation that would fit the node has the
following properties:

Each operation
i

O can contain the following

properties:

1. List of variables used by the method –
i

used
O .

2. List of variables changed by the method
i
changeO , and appropriate change domains.

3. List of variables and corresponding incorrect

equivalence classes
i

err
O that can cause failure in this

operation.

Serdyuk P.V. Published in the Journal Electrotechnic and Computer Systems No. 19 (95), 2015 248 – 251

Artificial Intellect Systems

251

Fig. 2. Sample of part of usage model build by
lexical and syntax analysis

Developed usage model can be used during
automation testing process to build and execute complex
scenario and find failures that depend on many factor and
are difficult to reproduce [5].

Conclusion

With the use of lexical and syntax analysis of source
code we developed usage model of software that contains
description of possible changes in variables, condition of
changing flows execution and failures condition. This
model have some limitations as it does not cover all
possible failures like flow errors (endless cycling, wrong
conditions of recursion end) or UI display errors, but
together with statistical analysis application flows it can
become powerful tool in discovering failures that occurs
in software that contains complex algorithms.

References

1. Mohd Ehmer Khan, (2010), Different Forms of

Software Testing Techniques for Finding Errors, IJCSI,
Volume 7, Issue 3, pp. 11 – 16 (In English).

2. Siegl S., Winfried D., Reinhard G., and Gerhard
K., (2009), Model-Driven Testing based on Markov
Chain Usage Models in Automotive Domain, Proc. of the

12th European Workshop on Dependable Computing (In
English).

3. Trammell C., (1995), Guantifying the reliability
of software: statistical testing based on a usage model,
Software Engineering Standards Symposium, pp. 208 –
218 (In English).

4. Fedasyuk D., Yakovyna V., Serdyuk P., and
Nytrebych О., (2014), Variable State-based Software

usage Model, Econtechmod: an International 19

Quarterly Journal on Economics in Technology, new

Technologies and Modeling Processes, Volume 3, Issue
2, pp. 15 – 20 (In English).

5. Kaner S., Folk D., and Nguen E., (2000),
Software Testing, “DiaSoft”, 544 p. (In English).

6. Kuhn D.R., Wallace D.R., and Gallo A.M.,
(2004), Software Fault Interactions and Implications for
Software Testing, IEEE Transactions on Software

Engineering, Volume 30, Issue 6, pp. 418 – 421 (In
English).

7. Cormac Flanagan, (2005), Patrice Godefroid.
Dynamic Partial-order Reduction for Model Checking
Software, Proceedings of the 32nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming

Languages, Volume 40, Issue 1, January 2005, pp. 110 –
121.

8. Itai Segall, Rachel Tzoref-Brill, and Eitan Farchi,
(2011), Using Binary Decision Diagrams for
Combinatorial Test Design, ISSTA '11 Proceedings of the

2011 International Symposium on Software Testing and

Analysis, pp. 254 – 264.
9. Pretschner. Model-based Testing in Practice. In:

Formal Methods. Lecture Notes in Computer Science,
Vol. 3582, pp. 537–541.

10. Utting M., and Legeard B., (2006): Practical
Model-Based Testing: A Tools Approach. Morgan-
Kaufmann, San Francisco.

11. Patrice Godefroid, and Adam Kiezun. Grammar-
based Whitebox Fuzzing, Proceedings of the 29th ACM

SIGPLAN Conference on Programming Language Design

and Implementation, pp. 206 – 215.

Received 26.05.2015

Serdyuk
Pavlo Vataliyovych,
PhD., Associate professor at
Software department,
National University Lviv
Polytechnic.
Ukraine, Lviv, S. Bandery st. 12,
+380984574543.
E-mail: pavlo.serdyuk@lp.edu.ua

Nytrebych
Oksana Oleksandrivna,
Assistant at Software department,
National University Lviv
Polytechnic.
Ukraine, Lviv, S. Bandery st. 12,

+380969440305.
E-mail:
ksenija.volynj@gmail.com

