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Abstract. Generic hardware/software system architecture for professional Internet of Things applications has been 

designed and implemented. The system architecture is based on a multi-agent system approach and uses event-based 

data stream management technologies for data fusion. The described approach has been validated in two real-world 

settings: A cyber-physical production systems (CPPS) and a smart building closed-loop control system with simulation 

support (CyPhREE). Acquired event-based data is integrated and used to control and optimise system processes using 

data science approaches. Finally, technologies and concepts from data science, big data analysis and data mining of 

the gathered data are described and their integration is proposed.  
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ПОДХОД НА ОСНОВЕ КИБЕР-ФИЗИЧЕСКИХ СИСТЕМ 
И НАУКИ О ДАННЫХ ДЛЯ АВТОМАТИЗАЦИИ УМНЫХ ЗАВОДОВ И ЗДАНИЙ 

Аннотация. Спроектирована и разработана общая аппаратная и программная архитектура системы 

для профессиональных приложений Интернета вещей. Архитектура системы основана на подходе 

мультиагентных систем и использует технологию основанного на событиях потока данных для слияния 

данных. Описанный подход был проверен для двух практических приложений: кибер-физической 

производственной системы и системы управления умным зданием с обратной связью и поддержкой симуляции. 

Полученные, основанные на событиях, данные интегрированы и использованы для управления и оптимизации 

системных процессов, используя подходы на основе науки о данных. Наконец, описаны технологии и концепты 

из науки о данных, анализа больших данных и data  mining собранных данных и предложена их интеграция. 

Ключевые слова: кибер-физическая система, системы программных агентов, производственные 

системы, управление зданиями, события, CEP, наука о данных, большие данные 
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ПІДХІД НА ОСНОВІ КІБЕРФІЗИЧНИХ СИСТЕМ 
І НАУКИ ПРО ДАНІ ДЛЯ АВТОМАТИЗАЦІЇ РОЗУМНИХ ЗАВОДІВ І БУДІВЕЛЬ 

Анотація. Спроектована і розроблена загальна апаратна і програмна архітектура системи для 

професійних застосовань Інтернету речей. Архітектура системи заснована на підході мультиагентних систем 

і використовує технологію заснованого на подіях потоку даних для злиття даних. Описаний підхід був 

перевірений для двох практичних застосовань: кібер-фізичної виробничої системи і системи управління 

розумним будинком зі зворотним зв’язком і підтримкою симуляції. Отримані засновані на подіях даних 

інтегровані і використані для управління і оптимізації системних процесів використовуючи підходи на основі 

науки про дані. Нарешті, описані технології та концепти з науки про дані, аналізу великих даних і data mining 

зібраних даних і запропонована їх інтеграція. 

Ключові слова: кібер-фізична система, системи програмних агентів, виробничі системи, управління 

будівлями, події, CEP, наука про дані, великі дані 
 

INTRODUCTION  
The Internet of Things (IoT) brings objects 

from the physical world together with their 

counterparts in the cyber world. Complex, 

autonomous and intelligent distributed systems 

are no longer just monitoring physical objects or  

 Thorsten Schöler, Lucas Kögel, 

     Sebastian Pröll, 2016   

processes. More and more of these systems are 

controlling objects and processes. These 

complex, autonomous systems are called cyber-

physical systems (CPS) (Schöler et al., 2013). 

Among the technologies used to implement CPS 

are machine-to-machine communication 

technologies, such as MQTT (Message Queue 

Telemetry Transport), distributed software 

architectures (like software agent systems), and 
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data science approaches for managing vast 

amounts of event-based data (Complex Event 

Processing,  Big Data and Deep Learning). 

Our approach combines those technologies 

into versatile software architecture for IoT 

applications. In the following, our system 

approach will be introduced and validated in 

two selected use-cases. 

AGENT-BASED SYSTEM 
ARCHITECTURE 

Based on the concepts of SEPIA (Schöler, 

2014), the heart of our system is a multi-agent 

system (Jadex
1
) which ties together all 

necessary functionalities and services. It 

provides e. g. agent-based services for data 

integration, data analytics and visualisation. 

Agents and other subsystems communicate 

either via agent-based protocols or via MQTT. 

Fig. 1 show how our approach is used to 

implement a cyber-physical production system 

(CPPS). 

The myJoghurt CPPS demonstrator system 

is a test-bed for distributed manufacturing of 

highly customised yoghurt products (Vogel-

Heuser et al., 2015). Additionally to the already 

described technologies, our CPPS uses an OWL 

DL
2
 knowledge base as semantic world model 

as well as an agent-based coordination 

mechanism (i. e. Contract Net). 

As one of the production locations in Fig. 1, 

our system is able to accept orders to 

manufacture parts of yoghurt products or whole 

product orders. The orders, addressed to the 

production location in Augsburg, are fetched 

from the myJoghurt application, parsed into a 

standard JSON format and forwarded into the 

production system via MQTT. 

In order to coordinate multiple orders, a 

dedicated Contact Agent is implemented. When 

a new order is detected on a specified MQTT 

channel the software agent system forwards the 

orders to a representative Order Agent, which is 

responsible to initiate all working processes 

needed for this particular order, including the 

initialisation of a new Workpiece with a 

Workpiece Agent as a representative. Each 

Workpiece Agent has knowledge about all 

process steps which have to be processed to 

finish this Workpiece. In order to do that 

autonomously each Workpiece Agent 

communicates with the Machine Agents via the 

Contract Net protocol mechanism. For each step 

which has to be processed, the Workpiece Agent 

calls for proposals from the Machine Agents. 

Each Machine Agent represents a specific part 

of the industry lane and is capable of processing 

different types of steps, which may can alternate 

after a short changeover time. According to e. g. 

changeover times and other metrics the 

Workpiece Agent is able to evaluate the 

proposals and returns an acknowledgement to 

the best fitting one. 

 

Fig. 1. System architecture my Joghurt CPPS demonstrator 

  
1
   More about Jadex can be found under 

https://www.activecomponents.org/ (Last accessed 2016-04-14). 
2 
  Web Ontology Language Description Logic 



Thorsten Schöler  Published in the Journal   Electromechanic and Computer Systems  No. 23  (99),   2016 46 – 52 

Computer Systems, Networks and their Components 

48 

To locate and transport each workpiece to 

its righteous destination the Routing and RFID 

Agents are responsible. These agents are 

modelled similar to the approach already 

described in (Seitz et al., 2009). Additionally, 

the RFID Agent writes and reads all process 

steps needed to be accomplished on a RFID-tag 

placed on each Workpiece. This helps to track 

the production status of each Workpiece, even 

beyond different production locations or 

possible error states. 

Our production system model, as shown in 

Fig. 2 is able to emulate a typical production 

setting as known from real production plants, 

down to its 24 volts industrial-grade sensors and 

actors. Every industry lane in the model is 

operated by five Gnublin embedded micro-

controllers, supported by three RaspberryPi 

controllers for applications which need more 

resources. The Multi Agent System (MAS) 

Jadex is executed on a Siemens Industry PC to 

provide a platform where several software 

agents can be launched and work together. 
 

 

Fig. 2. Production system model 

In order to face the challenges of these 

upcoming revolutionary forms of highly distributed 

industrial systems the German Ministry for 

Research and Technology founded the project 

Industry 4.0 (I4.0), which is also introduced the 

fourth industrial revolution. In cooperation with 

industries across Germany this research 

programme tries to push the integration of 

Information Technologies in the classic industry. 

New forms of systems like the CPS and the 

Internet of Things drive these developments 

even further and are also used as fundamental 

sources for new innovative visions of future 

industry production scenarios. I4.0 aims for 

intelligent and fully automated systems which 

are able to make decisions on their own, 

depending on available resources and occurring 

events and provide vast new possibilities of 

organizing and executing production processes. 

This new form of industry makes 

implementation of individual, customer oriented 

processes more convenient (Industry 4.0 

working group, 2013). 

Systems implementing Industry 4.0 are 

often described as intelligent systems. Hereby, 

“intelligent” means, that the very products and 

decisions relating to the processes can be 

manipulated in real-time. These tasks are mostly 

accomplished self-organized utilizing 

technologies like software agents and Complex 

Event Processing (CEP). 

Software Agent implementations can 

organize, plan, schedule and execute processes 

in industrial systems, without direct 

manipulation by or interaction with users. 

Implementing such software agents is a 

common way to build large autonomous 

systems, for example E-commerce or industrial 

systems. 

CEP allows gathering and analysing 

important information in large, mass data 

producing systems. CEP engine rules can be 

defined, to filter the data stream and aggregate 

events accordingly. These events are used to 

trigger actions or receive information about the 

system’s status. 

An additional characteristic of Intelligent 

Systems is the usage of “Intelligent Products”. 

These have the advantage that they can be 

identified and located at all times. They also 

give information about their current state and if 

there are possible, alternative ways to reach 

their strived, final state. These requirements can 

be implemented by using RFID
3
-technology for 

instance. Small RFID tags are attached to all 

products and resources in order to store 

information about these on a chip. 

Machines and products gain intelligence by 

the use of sensors, the ability to be programmed 

and to be able to communicate with each other. 

That allows machine-to- machine 

communication   within   infrastructures.   Here  

     
3
   Radio Frequency Identification 



Thorsten Schöler  Published in the Journal   Electromechanic and Computer Systems  No. 23  (99),   2016 46 – 52 

Computer Systems, Networks and their Components 

49 

machines are able to trigger other machine’s 

actions, which render a new way of intelligent 

and autonomous production possible. 

Our second test-bed CyPhREE (Cyber 

Physical [Objects for] Renewable Energies and 

Environment) is shown in Fig. 3. 

CyPhREE provides simulation-based 

closed-loop control for smart buildings. Our 

CPS framework is used as foundation for the 

data acquisition, decision making and 

visualisation. 

Smart buildings can use CPS with distributed 

sensors and actuators to interact with the physical 

world and get smart in this way. The sensors of a 

smart building are producing large amounts of data 

i. e. temperature or humidity readings, which have 

to be processed. This data integration can again be 

carried out with a combination of CEP and 

intelligent software agents. The CPS technology 

can be used to analyse events and coherences 

between them to suitably react on detected 

situations. The different software agents are used to 

fulfil the various jobs of the system and to 

encapsulate responsibilities. An example for a 

distinct job is the communication with the sensors 

and actuators of the smart building. The sensor of a 

photovoltaic power plant could indicate a high 

performance and the CPS could use this energy to 

activate the heating via an actuator. 

The system architecture as described in 

“Concept and Design of a Cyber-Physical 

System for Smart Buildings” (Kögel, 2015) and 

“Cyber-Physical Systems for Smart Buildings” 

(Kögel, 2016) is shown in Fig. 4. Different 

sensors are sending their data via MQTT to the 

MQTT message broker (Fig. 4, step 1). The 

protocol is used for machine-to-machine (M2M) 

communication and represent a lightweight 

implementation of the publish/subscribe pattern. 

The MQTT software agent gets the sensor data 

from the MQTT server (Fig. 4, step 2) and 

interacts (Fig. 4, step 3) with the complex event 

processing software agent (CEP agent), which 

processes the incoming messages and analyses 

them. It can detect coherences of events and 

react on recognized situations. 

Therefore it gives the operator software 

agent (Operator agent) a goal, which it will try 

to fulfil (Fig. 4, step 4). Each job is a separate 

goal, for example to save relevant data in the 

historical database (Fig. 4, step C1). On its way 

to the goal, it can interact (Fig. 4, step 5) with 

other agents like the building information model 

(BIM) software agent (BIM agent) to address 

the right actuators. The BIM agent knows all 

available sensors and actuators of the building 

and how to communicate with them (see 

(Kögel, 2015)). The operator agent will interact 

with the MQTT software agent to notify an 

actuator via MQTT (Fig. 4, step 6). It publishes 

the message on the MQTT server and the 

actuator, for example the HVAC system 

(heating, ventilation, air conditioning), will 

complete the goal (Fig. 4, step 7 and 8). 

The BIM agent, introduced in (Kögel, 

2016), also communicates with a RESTful web 

server (Fig. 4, step X and Y), which allows to 

receive metadata of sensors from a BIM 

(Fig, 4, step B). For example, a sensor could use 

the web service (Fig. 4, step Z and W) to get 

its MQTT topic on the broker to know where 

it  has  to  publish  the   measured   sensor   data. 

This enables the ability to configure the 

distributed system in one place: the BIM. 

Further information on how to design BIM-

based web services can be found in 

(Isikdag, 2015). 

 
 

 

Fig. 3. CyPhREE system architecture 
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Furthermore, a simulation of the building 

is used to calculate the heat capacity of the 

building walls. For the simulation the surface 

temperature of a wall on both sides is 

measured and aggregated by the software 

agents. These mean values get published on 

the MQTT server and are used by the 

simulation. Afterwards, the calculated heat 

capacity of the wall is published back to the 

software agents. There it can be used for the 

heating of the building. In this way, excess 

energy could be dissipated, to activate the 

walls of the building and use them as a 

thermal storage system. To complete this, the 

floor plan should be analysed, to heat 

occupied rooms with available heat capacity 

predictive. (Bauer et al., 2016). 

 

 

Fig. 4. CyPhREE software agents (Kögel, 2016) 

DATA SCIENCE AND THE INTERNET OF 
THINGS 

The term data science has been coined 

some 40 years ago. It was synonym for today 

understands of computer science. Today data 

science describes means of managing and 

scientific processing vast amounts of data. For 

some time now, the term is also known as big 

data. In big data, there are three dimensions of 

data: (1) data volume, (2) data velocity, and 

(3) data variety. 

Data volume (1) describes the property that 

is mostly connected with big data: Vast amounts 

of data, not only megabytes but petabytes of 

data. Data velocity (2) describes the rate where 

data needs to be processed. Big data is not only 

concerned with batch processing but also with 

real-time data acquisition and processing. 

Finally, data variety (3) describes the fact, that 

data is no longer only provided in a strongly 

structured way (e. g. data tables in RDBMs) but 

more in more in unstructured data streams like 

log files, twitter feeds, etc. In our application 

examples we are currently facing small data 

volumes (some kilo- or megabytes of data) with 

high velocity (event-based data streams) and 

medium data variety (semi-structured events). 

From a data-flow point of view, our 

approach is structured according to the JDL 

model for data fusion (see Fig. 5 for details). 

DATA FUSION 
The integrated model for data fusion 

describes to data flows, one for data fusion and 

another one for data mining. The data fusion 

flow describes on level 0 the acquisition of 

sensor data into object information. On level 1, 

the object information is further refined into 

information about the situation the system is 

currently in. On level 2 this situation 

information is processed and visualised. Finally, 

on level 3, impacts of the current situation are 

derived, from which actions can be taken, either 

manually or automatically. 

DATA MINING 
Additionally the JDL model for data fusion 

describes a data flow for data mining. Acquired 

data is persistently stored in a data warehouse. 

After data cleansing and necessary transformations 

the data can be fed into data mining frameworks to 

gather new knowledge from it. The new knowledge 

is stored in some sort of model (e. g. explicit 

knowledge model (ontology) or statistic weights 

(e. g. neural networks)). 

From the knowledge model, gathered from 

data, one can generate new patterns for object or 

situation detection in the data fusion flow (level 

4, resource refinement). 
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Fig. 5. Integrated model for data fusion and data mining (Waltz, 1998) 

 

EXAMPLE DATA FUSION 
APPLICATIONS 

In our factory automation example, sensor 
data is generated from various industrial sensors 
as well as from RFID sensors. An example 
pattern for object detection can be the presence 
detection of a Workpiece via a digital input 
sensor in combination with the read-out of the 
RFID tag on the Workpiece. Both sensor events 
together enable the detection of a Workpiece 
object. Two adjacent digital sensors on a 
conveyor may signal the exit of a Workpiece 
from one conveyor position segment, as well as 
the entry into another conveyor position 
segment in the factory. Both sensor events 
together (following each other in a short time 
frame) may indicate the movement of a 
Workpiece on the conveyor (situation 
detection). Knowing all Workpiece movements 
in the factory, one is able to predict expectable 
Workpiece stalls on particular conveyors 
(impacts). In our example applications, the 
object/situation/impact detection is carried out 
using Complex Event 

Processing (CEP), a method for processing 
large amounts of sensor events via declarative 
patterns in an Event Processing Language (EPL) 
(Seel et al., 2010). 

In case of the building automation system, 
object/situation/impact detection is also carried 
out using CEP. For example, from temperature 
and humidity sensor readings, an intelligent 
CEP agent is able to establish a controlled “feel-
good climate” for a particular lecture theatre at 

the university. Currently, simple hystereses as 
well as PID closed-loop control algorithms are 
implemented in EPL statements. 

DATA MINING APPLICATIONS 
For both application scenarios (factory and 

building automation) raw event and derived 
event data is stored in a time series database 
system (i. e. data warehouse). The data can be 
fed to various data mining or deep learning 
frameworks to classify particular situations from 
provided data. In the factory automation use-
case, the data and neural networks will be used 
to optimise the sequence of the production of 
Workpieces in order to minimise setup times. 

Furthermore, the gathered sensor and RFID 
data will be used for predictive maintenance. 
From variations in event flows, we will learn 
certain factory conditions (e. g. OK, 
maintenance needed, stalled, etc.) which in turn 
can be used to predict failures in production 
processes. 

In the building automation use-case, we are 
currently investigating, whether the time series 
data (temperature, humidity, etc.) can be used to 
learn situations such as changes in ventilation 
(window open/closed) or patterns of room usage 
(lecture, workshops, etc.) from the gathered 
data. 

In both scenarios, the learned patterns will 
be fed back to the data fusion data flow to 
improve object/situation/impact detection. 

Table gives an overview on used software 
and frameworks for both data fusion and data 
mining. 
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Table. Software stacks for data mining and data fusion 
 

Data mining Data fusion 

Jupiter notebook Cross-platform/web user interface 
Deep Learning (e. g. PyBrain, Blocks, Lasagne, 

Neuroph, etc.) 
Artificial Neural Networks, CEP, Haddon, Spark, 

etc. 
TensorFlow, Theano, Spark, Hadoop, etc. Multi agent system 

Ducker Java/Python runtime 
Linux  Embedded Linux 

CONCLUSIONS 
We have shown, that applications in the are 

of the Internet of Things, particular smart 

factory and building automation via cyber-

physical systems is a sound foundation for data 

science applications. We have described our 

concepts and frameworks used in productive 

set-ups for both use-cases. Currently we are 

investigating the application of concepts and 

methods from deep learning in our scenarios. 
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