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Abstract. This work investigates problems that occur in modeling of the nonlinear processes and num-
ber sequence generation. Dependences of iterative fixed points of nonlinear maps on the function properties
and number properties from the functions domain are investigated. This work also analyze prime and se-

quences obtained using these numbers.
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Introduction

Modeling of random and pseudorandom
processes is of fundamental importance in mathe-
matics and can be applied in various ranges of ma-
thematical branches, such as dynamic system model-
ing, functional analysis, theory of functions, crypto-
graphy and others. In this regard one of the most
important and fundamental problem is number se-
quence generation. The obtained sequences can be
applied for solving different spectrum of tasks, for
instance Quasi-Monte Carlo method uses pseudo-
random sequences for numerical integration [1], in
machine learning theory for obtaining training and
test samples [2] and others. Various methods for
number generation are based on chaotic processes
that raise a question: "What processes can be called
chaotic?" Up to now, there is no answer to the ques-
tion — how to define the concept of randomness ac-
curately and constructively, i.e. axiomatically. Dif-
ferent generators simulate randomness with certain
degree of approximation to a given distribution law.
Construction of random number generator enable to
construct the concept of a formal and constructive
definition of randomness, which is essential and
necessary for modern probability theory, mathemati-
cal statistics, random processes and others. Since an
truly random sequence is a mathematical model that
is absolutely unpredictable and, therefore, nonpe-
riodical infinite sequence the problem of pseudoran-
dom sequence generation that approximates ran-
domness is formulated [3].

An independent research direction, which is
commonly called as deterministic dynamic systems,
has been formed apart from previously mentioned
research areas. It is based on the study of the dynam-
ics of iterative fixed points via recursive functions. .
Iterative cycles or orbits are considered as determi-
nistic chaos [7], since they depend on initial condi-
tions and demonstrate no regularity [4]. Dynamic
systems that belong to deterministic class of systems
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appear as a consequence of an approximation of
complex processes in the physical and mental world
and can be used as generators of pseudorandom se-
quences.

It should be noted that in case of PRS genera-
tors and in case of dynamic systems it is necessary
to take into account properties of iterated function.
Main characteristic of these generators is the length
of the iteration process period. Meanwhile, proper-
ties of the set of numbers, on which given generators
are determined, are not taken into account. In this
regard direct connection with number theory is ob-
served. Prime numbers are of considerable interest
when iterative processes are examined, because they
are indecomposable into simple factors and usage of
big compound numbers cannot guarantee required
length of period. However, some prime numbers
also do not provide the longest cycle length; this
circumstance refers to those numbers that belong to
certain number classes. Such numbers include Fer-
mat, Mersenne, Wagstaff prime numbers and their
various generalizations [1]. For an arbitrary choice
of prime number it is transpired, that there is a set of
large prime numbers on which generators provide
sequences where the cycle length is insignificant and
clearly not chaotic. Although on adjacent prime
numbers the cycle length is commensurable with
dimension of the prime number. If these properties
of prime numbers are not taken into account, the
choice of such an exceptional prime number can
lead to very significant errors and incorrect conclu-
sions.

1. Computer analysis of iterative processes in
nonlinear maps

In this paper we investigate processes occurring
in maps that are presented as examples of simple
nonlinear dynamic systems for analyzing previously
stated problem. As process we consider a function
F, that maps finite sequence (word) into sequences

so that if for word x value of F(x) is determined and

yC X, then F(y) is also determined and
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F@)c F(x). Let’s ® - some sequence. Process

F will be applied as long as it’s possible. As a result
we obtain parts of some new sequence S — result of
application F to, thatis S = F(w). More precise-

ly deterministic maps of the following four classes
are analyzed: "Tent", "Asymmetric Tent", "Saw-
tooth" and the map that generates intermediate steps
of multiplicative order of a number modulo p calcu-
lation. It is important to remark that maps (1, 2, 3)
are continuous functions, whereas map (4) is deter-
mined only on set of integers. Analyzed in this paper
maps allow to investigate chaotic processes that
emerge in complex dynamic systems.

2x,, X, <%
1(X,) = Xy = (1
1-2x,, x,2 ]4

2x,, X, <%

tZ(xn)zxn 1= (2)
: I-x,, x, 2%
2x,, X, <%
13(x,) =%, = )

2x, -1, x, 2%

It is worth to note that computer systems use
numbers in binary form and of limited length in its
calculations, while mathematics operates with infi-
nite length numbers and this circumstance leads to
errors in calculations with fractional numbers that
ultimately leads to problem of validity and incorrect
conclusions about dynamic processes. That circums-
tance manifests itself due to the fact that any dynam-
ic system has sensitive dependence on initial condi-
tions [4]. To minimize the errors in rounding, a tran-
sition to the family of integer maps has performed.
The maps are represented as follows:

2x,, 4x,<p
xn+1 = (1)
p—2x,, 4x,=2p
2x,, 2x,<p
X, ;= 2
n+l {p_x”, an Zp ( )
2x,, 2x,<p
Xppg ={ ! (3)
2x,—-p, 2x,2p
X4 =4x,(mod p), 4)

where p — prime number. Graphs, that demonstrate
maps (1, 2) and its second iterates on [0,1] and map
(3) on [0,1) are shown on Fig. 1, 2, 3 respectively
and Fig. 4 shows map (4) on the set of integers. On
the graphs projection FPN show fixed points of the
maps. Diagonal y = x crosses graphs of the maps at

some points in their intervals and so there is a peri-
odic points in any such interval. Since the lengths of

these intervals are //2", where n is a number of

iteration, it follows that periodic points are dense on
[0,1]. It is worth to mention, that map (1) algebrai-
cally congruent to map (4) on set of integers, this
means that their cycle length are the same for any
prime numbers. But, the map (2) does not satisfy the
Fermat’s little theorem since for any prime number p
the value of Euler function is not divisible by the
cycle length. Despite the simplicity of these maps
their iterative cycles, based on prime numbers, have
properties that support the above stated hypothesis.
According to them, not only properties of maps de-
termine the structure of iteration cycles, but also the
properties of numbers from their domain of defini-
tion can have a decisive influence on the structure
and radically change it. Presented nonlinear maps
allow dividing set of prime numbers p into the class
system, which is based on the length of the iteration
cycles as a function of given prime numbers [5].

Map 1 - t,"(x,) Map 1 - t,(x,)
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Fig. 1 — 1" and 2™ iteration of the map 1
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Fig. 2 — 1" and 2™ iteration of the map 2
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Fig. 3 - 1" and 2™ iteration of the map 3
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Map 4 - t;(x,) Map 4 - ;P(x,)
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Fig. 4 — 1" and 2™ iteration of the map 4

It should be noted that there is an infinite set of
prime numbers for which the length of the period is
significantly smaller than the dimension of the num-
ber. Table 1 shows the behavior of the triples of
some consecutive prime numbers, where the first
and third numbers belong to the class that provide
large cycle length of sequence, while for the second
number the length of the period is incommensurably
smaller than the number dimension itself, and the
PRS obtained for a given number forms a simple
structure.

Table 1
Length of the period for generated sequences

position prime number m(l) m(2) m(3) m(4)
1 148587941 74293970 111440955 148587940 74293970
2 148587949 142 193 284 142
3 148587953 37146988 55717993 74293976 37146988
1 164511349 82255674 123383511 164511348 82255674
2 164511353 41 49 41 41
3 164511371 82255685 123383528 164511370 82255685
1 168410987 84205493 126308240 168410986 84205493
2 168410989 162 227 324 162
3 168411029 84205514 126308271 168411028 84205514

In this table columns m(n) show the period
length for the corresponding map »n, where n — num-
ber of the corresponding map.

Considering the behavior of individual prime num-
bers, Fig. 5 represents the internal structure of the
iterative process in the maps for the number
160465489, which has a short period length. Filled
sectors show repetitive regions in initial sequences

Map 1 Map 2
1 £
o 4 }
L
’ j
-
- ¢ - »
0 10 20 30 40 0 60 70 0 20 40 60 80 100
number of iteration number of iteration
Map 3 Map 4
4 M ) 4 o
0 20 40 60 80 100 120 0 10 20 30 40 s

number of iteration

number of iteration

Fig. 5 — The PRS structure for the maps
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The thing to note here is that the choice of a large
prime number does not allow escaping of the se-
quences with simple structure and repeated exponen-
tial components that are highlighted by filled region
on the Fig. 6. In concurrence with this, the preceding
prime number and the next prime number form se-
quences with the length of the period that commen-

surate with the value of these numbers. This may
indicate randomness of the iterative process.
However, these sequences also have periodic com-
ponents that are observed and highlighted with filled
region at compression region on the Fig. 6 for map
1, but it is constant for other maps as well [6].

Map 1

kit o i

T EION

2iMr 400 Gl

300 104000 1200 1400

number of iteration

Fig. 6 — Dynamics of number 160465519 for map (1)

Examining prime numbers, particular attention
is attracted to prime numbers of a special kind, such
as generalized Gaussian-Mersenne prime numbers of

the form p* =27 —] for some rational prime p,
where p'=(({+i)? —I)((I-i)? —1I)is also prime
number. There are sequences that have a simple
structure with exponential components that repeat

with a certain frequency and are slightly different in
Map 1

Xy

0 10 20 30 40 50 o0
number of iteration

Map 3

Xn

0 20 40 60 S0 100 120
number of iteration

amplitude. These numbers completely violate the
randomness conditions imposed on PRS. It is proved
that such an internal regular structure is characteris-
tic of Mersenne, Wagstaff numbers and their various
generalizations. Fig. 7 shows the structure of PRS
for the generalized Gaussian-Mersenne prime num-
ber.

Map 2

X

0 10 20 30 40 50 60 70
number of iteration

Map 4

Xy

0 10 20 30 40 50 60
number of iteration

Fig. 7 — PRS, based on Gaussian-Mersenne prime

2. Randomness estimation methods for the
iterative processes

There are several approaches and methods for
analyzing the “quality” of the generated PRS by
estimating some property of a sequence that helps to

determine sequences which satisfy requirements that
are set for pseudorandomness. Since the maps con-
sidered in this paper generate integer sequences for
further analysis all the elements of the sequences are
converted to binary form. According to Von Mises
definition of randomness all sequences are devided
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into two groups: random and non-random. From the
mathematical point of view random sequences forms
set of full measure and satisfy all laws of probability
theory without exception. According to this ap-
proach a sequence is considered as stochastic i.e.
random if frequency stability of zeros and ones in
the sequence is observed and not only in whole se-
quence but also in any arbitrary and “right” chosen
part of it. Respectively to Von Mises the admissible

selection rule is that include a member x, in the

subsequence cannot depend on the value. It is worth
noting that the class of "admissible" frequency-
stable sequences for which the basic laws of proba-
bility theory have been fulfilled is still not defined. It
has also been proved that there are sequences that
satisfy the Von Mises requirements, but do not satis-
fy the law of repeat logarithm.

Based on Kolmogorov's ideas, a second
approach to the definition of random sequences was
formed, based on the fact that the description of a
random sequence can not be less than the sequence
itself, that is, the algorithmic complexity is
approximate to the length of the sequence. The
complexity of a sequence y for a given map f is

the number R,(y)=min{|x|:x ¢ [ -describes y},

where | x | - the length of the sequence. With this
approach, "non-random" are those sequences in
which there are quite a lot of regularities. By law,
any property of the checked sequence is inherent in a
narrow class only. If we measure the "number of
regularities" according to the traditional Shannon
scale, the last phrase is specified as follows: the
measure of the set of those sequences in which more
than m bits of regularities can be detected must not
be surpassed 27". In this case, the tests for
checking the sequences can be very diverse.

The third approach is called “quantitative” and
is proposed by Martin-Lof. The approach is based on
the fact that the sequence is considered to be random
if it passes a certain set of statistical tests. The
essence of testing is to verify the "zero hypothesis"
in relation to the sequence being studied. The
statistical test 7" for binary sequences of length / can
be considered as a boolean function T : V; — {1,0},

that divides the set of sequences ¥, into a set of
"non-random" sequences V;, (usually small) and a
set of random sequences V; ;. The probability pr
that a randomly chosen sequence of length [ is re-
jected by the test is equal to pr=[V;, .27 As a
rule, in tests pr is small. Since the maps considered

in this paper generate integer sequences, to further
testing them on a statistical test, all the elements of

the sequences are converted to binary form. Testing
methods for obtained sequences are divided into 2
groups.

The first group is connected with the search for
regularities, which make it possible to reproduce the
sequence over its segment. In this case, the basic
requirements for the sequence are reduced to the
absence of relatively simple interelement dependen-
cies in it. For example, it is necessary to check the
correlation between the elements of the sequence.
This task is to conduct an autocorrelation analysis
i.e. to construct a correlogram, which shows the
value of the correlation coefficient at different shifts
of the initial sequence. The data obtained for the
number with small cycle length and shown in Fig. 8,
9, 10, 11 show that the correlation for a given num-
ber fluctuates at the level of 0.5 and, consequently,
this number absolutely does not satisfy the require-
ments imposed to the PRS.

Map 1, p = 148587949
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Fig. 8 — Correlation values for map (1)
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Fig. 9 — Correlation values for map (2)
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Fig. 10 — Correlation values for map (3)
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Fig. 11 — Correlation values for map (4)
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Whereas, for prime number with commensurate
cycle length the autocorrelation values calculated for
a part of the sequence containing 10,000 numbers
and are shown in Fig. 12, 13, 14, 15 and closer to 0.
Thus, this sequence shows a large degree of ran-
domness, but still does not satisfy the requirements

of randomness.
Map 1, p = 148587941

0.04}

Lag

Fig. 12 — Correlation values for map (1)

Map 2, p = 148587941

Lag
Fig. 13 — Correlation values for map (2)
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Fig. 14 — Correlation Vélues for map (3)

Map 4, p = 148587941

Autoc

Lag
Fig. 15 — Correlation values for map (4)

The obtained data for correlation make it possi-
ble to assume that a more acceptable result is
achieved by using numbers which period length is
commensurable with the dimension of the number
itself. Since, analytical proof of some of the neces-
sary properties is possible only for certain classes of
sequences to justify the properties of sequences there
are a wide range of different statistical tests that
allow us to reveal regularities.

As a method for evaluating generated binary se-
quences, the following tests are considered:

- Frequency Test. This test is aimed to esti-
mate the ratio of zeros and ones in the stu-
died sequence. To accept the sequence as
random ratio should be equal, as it could be

assumed in the case of a sequence that satis-
fy the conditions of randomness.

- Non-overlapping Template Matching Test.
This test is aimed to determine the number
of predefined templates in the initial se-
quence.

- Approximate Entropy Test. The test is
aimed to estimate the frequency of possible
overlapping blocks in the entire initial se-
quence. The test compares the frequencies
of blocks of successive length n and n+/
overlapping with the frequency of similar
blocks of random sequence.

- Spectral Test. The test is aimed to find the
peak heights in the Discrete Fourier Trans-
form of the sequence. This test is trying to
detect periodic features i.e. repetitive subse-
quences that are located close to each other
in the tested sequence that would indicate a
deviation from the assumption of random-
ness. The intention is to detect whether the
number of peaks exceeding the 95 % thre-
shold is significantly different than 5 %. If
the computed pr-value is > 0.01, then con-
clude that the sequence is random.

Table 1 shows the results of statistical tests for se-
quence fragments containing 10,000 elements and
obtained on the basis of p = 148587941 (length of
period equals 74293970 ).

Table 2
Results of the tests
Test Map p = 148587941
1 1.1373200 x 10-2%7
Frequency 2 2.1654170 x 1072%°
Test 3 0.4353908
4 0.8571525
Non- 1 0.0105489
overlapping 2 0.0105489
Template 3 0.9198479
Matching Test 4 0.0336110
1 2.7360300 x 10468
Approximate 2 2.0647959 x 10~46°
Entropy Test 3 0.0058075
4 2.0665877 x 10~17
1 7.4135928 x 10~°
2 1.4693925 x 1016
Spectral Test 3 0.7830866
4 0.1988873

The results of these statistical tests show that maps
(3) and (4) generate sequences that have better fit to
randomness conditions on some test, however, this is
not satisfied for the whole group of tests, and it does
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not allow considering the maps as generators of
pseudorandom numbers, since the necessary condi-
tion for randomness is not provided.

In practice, the acceptance or rejection of the
null hypothesis is based on the results of the applica-
tion of battery of tests. The generator is considered
as appropriate if the admission of the sequences that
are recognized as non-random is comparable to the
similar characteristic of the truly random generator.
Also, the design of the generator should ensure that
deliberately weak sequences do not appear at the
output, which also requires analyzing the properties
of the numbers on which the generator is built. Since
the PRS generating methods used in this paper are
simple iterative processes, the sequences obtained on
the basis of any arbitrary numbers will not satisfy
the conditions of randomness. However, the value of
pr will lead to a conclusion about which numbers
possess better statistical properties

Passing from the consideration of separate
primes to the analysis of the set of numbers and
presenting the number as p* = kn+ 1, where n is the

length of the period for this number, we can distin-
guish classes of & primes. Then during the process of
generating pseudorandom sequences it is worth to
consider numbers with the smallest value of the
class. The set of all primes p on the basis of nonli-
near maps is divided into the same system of classes
that is based on the length of the iterative cycle as a
function of the value of a prime number.

To improve the sequence properties and to
achieve a longer period, it is possible to use multiple
generators for which the output sequences are
"blended" with each other to obtain a new sequence.
The simplest method for combining sequences is to
use the bitwise exclusive disjunction operation that

*
for sequences Sand S generates a new se-

quence R=S @® S". Thus, the use of simple maps
can provide the generation of sequences with a given
degree of approximation to randomness.

Conclusion

The results obtained in this paper show that best
possible fit to randomness conditions for generating
PRS by nonlinear dynamic maps require to take into
account the properties of the set of numbers on
which the pseudorandom number generator is built.
The best possible fit to randomness conditions for
generating PRS can be obtained using prime num-
bers for which the length of the period is commen-
surable with the value of the number itself. And to
improve the statistical properties of sequences that
are generated with simple maps, it is necessary to
combine and mix those maps.
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IICEBJIOBUITAIKOBI ITIPOLIECH ITPU TEHEPAIIIl YACJIOBUX OCJIJTOBHOCTEM

I'. M. Boctpos, A. O. XpiHeHko

Ooecvkuii HayioHaAbHULL NOTIMEXHIYHUL YHIGepCUmem

Anomauia. B oaniii pobomi nposooumuvcsi 00cniodicents npooiemu, Wo UHUKAE NPU MOOEIO8AHHI He-
JIHIUHUX npoyecie ma 2enepayii nOCcai0o8HoCmell Yucesl, OCKiIbKU CIMBOPEHHS 2eHepamopy UNAOKOBUX Y-
cen 0036015€ N06YOy8amu KOHYenyilo popmanrbHo20 ma KOHCMPYKMUBHO20 USHAYEHHS GUNAOKOBOCMI, SIKe
€ HapidCHUM Y cydacnii meopii umoegipnocmi ma inwux. Jocniodxicena 3anedicHicms imepamusHux Hepyxo-
MUX MOYOK HeNiHIUHUX 8i000padiceHb 6i0 enacmugocmelt QyHKyil ma eracmugocmert yucen 3 ooaacmi eu-
BHAueHHs yux Qyuryil. Bionogiono 00 006xCun po32IAHYMUX imepayiiHux npoyecie, sik 0OHIEl 3 OCHOBHUX
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XApaxKmepucmuk nceso0osUnaoKo8Ux NOCIi008HOCIEN PO32IIHYMO NPOCMI YUCIA, 5KI BIOHOCAMbCS 00 Nnes-
HUX K1acie, makux ax uucia Mepcenna, Baecmagpa ma @epma. Ilpu doginbromy eubopi npocmoeo uucia
ICHYE MHOMMCUHA 8ENIUKUX YUCE OISl AKUX GUKOPUCMAHT 2eHepamopu (hopmyoms HOCII008HOCHI, o He 8i0-
nogidarms ymosam eunaokogocmi. s 0ocrioxcents 0anoi npobiemu GUKOPUCIAHO 2pyny 8i000padiceHy,
wo npedcmasisioms cooorw npocmi imepayitini npoyecu, 0OHAK 00380ALIOMb 3P0OUMU BUCHOBKU, UWOOO
PO32IAHYMUX NUMAHb. BionogioHo 00 HuX, 6HymMpiwHa CIMPYKmMypa NOCiio08HOCHeEN, a MAaKoX4C iX 8i0nosio-
HICTb YMOBAM 8UNAOKOBOCTI 3AN€IHCATHD He MINbKU 6I0 61ACMUBOCHEl BUKOPUCAHUX 8I000padicelb, a ma-
KOoiC 8i0 enacmusocmell uucen 3 ixuboi obaacmi gusnauenHs. /s ananizy i oYiHIOBAHHA OMPUMAHUX NOCTLi-
dogHocmell po32na0aEmvCsl 0eKilbKa nioxo0ie ma eUNnosHeHo nepexio 00 086ilikosozo npedcmasnenns. Ilep-
wull 3 nioxodis ucysac 00 NOCIIO0BHOCMEN MA IXHIX, O0BIILHO BUOPAHUX, NIONOCAIO0BHOCMEN YMOBY HAC-
MOmMHOI cMabiIbHOCMI HA OCHOBI AKOI NOCTIO08HOCMI PO3JLIAIOMbCA HA KAACU SUNAOKOBUX MA HEGURAOKO-
8ux nocaioogHocmei. Jlpyeuti nioxio 6asyemvca Ha MoMy, Wo ONUC BUNAOKOBOI NOCIIO0BHOCMI He NOBUHEH
OYMu MEeHWUM 30 CaMy NOCTIO0BHICb MA BU3HAYAE NOHAMMSL ANCOPUMMIYHOL ckiaonocmi. Ocmanuil nio-
Xi0 3ACHOBAHUL HA THOMY, WO NOCIIO0BHICIb B8AINCAEMBCI BUNAOKOBOI0, SKUO 80HA NPOXOOUMb NEGHULL
Habip cMamucmuyHux mecmis, NPUKIAOU ma pe3yibmamu 8UKOPUCMAHHSA AKUX HagedeHo 8 pobomi. Taxkum
YUHOM, NOKA3AHO, WO HAUKpauje HAOIUNCEHHS 00 YMO8 8UNAOKOBOCHI OeMOHCMPYIOMb NOCAI008HOCHI OISl
SAKUX 008ACUHA TMEPAYTUHO20 NPOYecy CRIBMIPHA 3 POMIPHICHIIO BUKOPUCMAHO20 NPOCMO20 YUCIA.
Knrouoei cnosa: xaoc, ncegdosunaokogi nociioo8HOCmi, HeiHIlHI 6I000padcen s, NPOCMi YUCdA.
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