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Application of approximating — operational method of S-transform based on the local and
global versions of Legendre polynomials for estimation of average values of signals, average
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method’s application in programming environment of system “Mathematica®”” are given.
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Introduction. When researching nonstationary processes in dynamic systems of different
purposes the wide circulation was received by the operational methods allowing to algebraize
integro-differential models of such systems. To these methods Laplace transform, Fourier
transform, Z-transform, various integral and differential transforms belong [3; 6]. However, use of
the specified methods in case of nonlinear dynamic systems encounters considerable difficulties.
Development of the theory of fractal dynamics and fractional calculus [2; 4; 5] has led to creation of
the numerically-analytical and approximate methods of research of nonstationary processes, to
which belong Pukhov’s differential transforms [3] and S-transform [1; 2]. The last is based on use
polynomial approximations of signals with various systems of the basis functions forming an
approximating polynomial. It is possible to interpret the expressions making a basis of
approximating methods, as an operational calculus, and various basis systems of functions generate
various variants of operational calculuses. Use of orthogonal polynomials as systems of basis
functions allows us to solve variety of problems of digital signal processing with algebraization of
mathematical models of dynamic systems. The given work is devoted to reviewing of some
problems of digital processing of continuous signals.

Approximating methods of processing of continuous signals allow us to fulfil effective
compression of the information of a signal, signal digitization, ensure a low-frequency filtration and
allocation of useful signal against noises, identification of parametres of dynamic systems, an
estimation of a signal and its derivative of various integer and fractional orders. In the given work
reviewing is limited to programs and solution examples of problems of specified parametres of
signals estimation and is organised as follows. The second section contains retrospective reviewing
of a polynomial approximation, as operational method. The concept is introduced and expressions
for operational matrices of differentiation of various integer orders are received. It has allowed to
receive expressions for operational analogues of operators of Riemann-Liouville and Caputo
fractional differentiation [2; 4; 5]. In the third section programs and examples of methods
realization of digital signals processing, basically using systems of basis functions on the base of
local and global versions of Legendre polynomials are given. In the final section there are the
analysis of the results received during computing experiments, and recommendations about their
further use.
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Polynomial approximation of signals as an operational calculus. Under polynomial
approximation of x(t) signal it’s implied expression:

X, (1) = X5, () = X"-5(), (1)

where X={X,,X,,---, X} — vector of approximating polynomial factors; S(t)={s,(t),s,(t),--,s, ()} —
vector of basis functions system; (*) — a symbol of vectors and matrices transposition.

It is supposed that the signal and system of basis functions are defined on the same interval of
argument 0<t<T, and the functions organising basis system, are linearly independent. The best
approximation is reached, if the vector of factors of an approximating polynomial is chosen from a
condition of a minimum of integral of approximation error function square e(t) = x(t)—x,(t) at

approximation interval

n(X) :T[az(t)dt — min. (2)

The condition (2) leads to system of the linear algebraic equations
W-X=0Q. ©))

Matrix elements Wdepend only on system of basis functions
T = = *
W = [S(t)-S(t)"dt. 4)
0
And the vector Q is defined by expression

Q= [Sx®d. ©)

In formulas (4), (5) and further in the given work integration of vector and matrix functions is
fulfilled element by element. The solution of equations system (3) looks like:
X=w'.q. (6)

It is possible to interpret given above formulas of polynomial signals approximation (1), (4) — (6)
as an operational calculus of the approximating type which basic relations look like:

X = (}é(t).S(t)*dt] .Ué(t)x(t)dtj, (7)
X, ()= > X,5,0) = X -5() = $t)" - X. ©)

Direct transform (7) compares to a signal x(t) its operational analogue or the image in the

form of a vector of factors X of the approximating polynomial, and inverse transform (8) realises
reconstruction of a signal in the form of its approximation:

X(t) = X = x,(t). 9)

The chain of transforms given here has received a name of S-transform [2]. For S-transform as
an operational method, there are rules of mathematical operations performed on images of signals in
domain of the images that are equivalent to set operations on signals in domain of originals. We will
consider some of these rules in more detail.
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— Linear combination of signals. To a linear combination of signals corresponds the same
combination of their images:
ax(t) +by(t) = aX +bY . (10)

— Integration of a signal with a variable upper limit. To this operation corresponds
multiplication of the image of intergrand function to an operational matrix of integration:

y(t) = jx(r)dr =Y=P:-X. (11)
The operational matrix of integration is defined by expression
T t
Pt =w! -[jé(t) -[Ié(t)”dr}dt} . (12)
0 0

— Riemann-Liouville integration with fractional order b. To fractional integration of a
signal corresponds also multiplication of its image to an operational matrix of integration:

y(O) = — [(t=1) " x()dt= ¥ = PP X. (13)
r'(p) o( ) ’
The operational matrix of integration of a fractional order is defined by expression:

P =W (jsa) ( (B);( —r)ﬁ_lé(r)*drjdt]. (14)

— Differentiation of a signal with the integer order n. To the taking of n — th derivative of a
signal there corresponds multiplication of its image to operational matrix of differentiation:

y(t) = X0

—Y=Ldn-X. (15)

The operational matrix of differentiation is defined by expression:

Ldn =W (jS(t) d'S(ty dtJ (16)

For existence of a differentiation operational matrix the basis system functions should
suppose differentiation with corresponding order.

— Riemann-Liouville fractional derivative of order b determination. To Riemann—
Liouville signal differentiation with order (n-1< < n) corresponds the expression:

d" t
y(t) = ( ! [(t-7)""" X(r)dr] — Y =Ldn-P]".X. (17)
I'(n-p)o
The operational matrix of differentiation is defined by expression:
*Ld® =Ldn-P{™". (18)

— Caputo fractional derivative of order bdetermination. To Caputo signal differentiation
with order (n—1< B < n) corresponds expression:

e d'X() o g e s
y(t) = LF( —B)g( T) N er:>Y_PS Ldn-X. (19)
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(20)

The operational matrix of differentiation is defined by expression:
°Ld®=pP{*-Ldn.

Programs and examples of digital processing of continuous signals within the limits of
S-transform with basis systems of Legendre polynomials.
The program 1. Forming the systems of basis functions on the base of Legendre polynomials.
— The setting of a digitization step, amount of digitization intervals, order of polynomials and

range of an argument modification:
h=1/25: m=25;r=10;:T =1;
— Shaping of the displaced Legendre polynomials, orthogonal on a digitization step or a

range of a signal argument modification:

s[7 ,3i , & , b ]:=
If[{i-1)»h =t <iwh, legendreP[7 -1, 1-23+2+£/5h], 0];

— Shaping of a subsystem of basis functions on the base of local Legendre polynomials of a
zero order:
V¥l = Table[s[1, i, t, h], {i, m}]:
— Shaping of a subsystem of basis functions on the base of local Legendre polynomials of the

first order:
V2 = Table[s[2, i, t, h], {i, m}];
— Shaping of a subsystem of basis functions on the base of local Legendre polynomials of the
second order:

¥3 = Table[s[3, i, t, h], {i, m}];

— Shaping of system of basis functions on the base of the displaced Legendre polynomials,
orthogonal on a modification interval 0 <t <T of argument t:

Vv =Table[s[j, 1, t, T], {i.x}];:
— Visualisation of some functions of local basis subsystems (fig. 1):

po =Plot[{¥1[[1]], ¥2[[3]]., ¥3[[5]], ¥1[[7]]., ¥w2[[7]]., ¥1[[2]].

V2[[2]]. ¥3[[2]]}, {t, 0, 0.41}]
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Fig. 1. Some functions of local basis subsystems
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— Visualisation of system of the global version of Legendre polynomials of the 10-th order
(fig. 2):

LOF

ol

Fig. 2. System of Legendre polynomials of 10-th order, that are orthogonal on interval T =1

The program 2. Approximation of a test signal, digitization and estimation of average values
of a signal and its derivatives of the first and second orders. (It is supposed that results of the
program 1 are kept working and active).

— Determination of a test signal and its derivatives of the first and second orders:

= Sin[Zx*tzl;

x1 =D[=x, t]

QHtCDs[ERtZ]

x2 =D[=x1, t]

QRCDS[ZRtZ] -l =" £5 Sin[ERtZ]

— Determination of elements of reciprocal matrices of local subsystems and matrix W (see the
formula (3)):

] 1|—1
ml = s[1, 1, £, h]?dc| ;

A0 ¥,

f Th v -1
m2 = =[2, 1, t, h]¥dt| :

v....l] F |

{ h y -1
m3 = s[3, 1, £, h]?dc| ;

A0 ¥,

W= Diagnnalt-[atrix[Tahle[Jq{s[j B L Tllz dt, {j. r}]];
0

— Determination of fragments of factors vectors of the polynomials approximating a signal,
for local basis subsystems:
X1 = ml*H[Tahle[JrTx*‘Ul[ [i]]dt, {i, m}]]
{0.002325101, 0.02;4542, 0.06236198, 0.123645, 0.202923, 0.300086,
0.412556&, 0.536025, 0.663952, 0.787154, 0.8932676, 0.9649071, 0.99737,
0.962855, 0.852771, 0.660828, 0.2391118, 0.0616387, -0.293737,
-0.626264, -0.877618, -0.990168, -0.921564, -0.661076, -0.242975]

X2 = nQ*H[Tahle[rx*vz[ [i]]dt, {i, m}]]
0
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{0.00502642, 0,0150742, 0.02507%1, 0.0343085, 0.044281%8,
0.0527138, 0.0524728, 0.0635637, 0.0637523, 0.0586524,
0.0468552, 0.0274181, -0.00018214, -0.0352038, -0.0753315,
-0.116368, -0.15214, -0.17305&, -0.17703, -0.151526&,
-0.0%58666, -0.0137245, 0.08315%77, 0.175088, 0.23736%]

- ma*H[Tahle[rx*ﬂ[ [i]]dt, {i. m}]]
0

{0.00167547, 0.001673217, 0.0016584%2, 0.00141103, 0.00150121,
0.001250%2z, 0.000236745, 0.0003535314, -0.000368123, -0.00136722,
-0.00257204, -0.003%2578, -0.00525%965, -0.00635464, -0.00621467,
-0.00&6s0674, -0.00512643, -0.0022924657, 0.00121183, 0.00876444,
0.011%7007%, 0.0153281%9, 0.01s4041, 0.0135%94&, 0.00654038)

— Determination of a factors vector of the polynomial approximating a signal for global basis
system:

¥ = Inverse[W].H[Tahle[rst[j, 1, £, T]dt, {7, r}]]
0
{0.171708, -0.515124, -0.945975, 0.288801, 0.202188,
0.350798, -0.095126, -0.130934, -0.0400863, 0.004413127
— Visualisation a signal and its average values on a grid with a step h (fig. 3):

pl2 =ListPlot[Table[{{i -0.5) /fm, X1[[i]]1}. {i, m}].
Filling + Axis, FillingStyle < Red]

P13 =Plot[x, {t, 0, 1}1]

pld = Show|[pl2, pl3]
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Fig. 3. A test signal and results of its digitization (estimation)

— Visualisation of the first derivative of a signal and its average values (estimation) on a grid
with a step h (fig. 4):
pl5 = Plot[x1, {t, 0, 1}]

ListPlut[Tahle[{{i ~0.5) /m, E wX2[[i] ]}, (i, m}] ,

pl7?

Filling - Awie, FillingStyle > Red]
P19 = Show|[plh, pl7]
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Fig. 4. The first derivative of a a test signal and its digitization (estimation)
with a step h (fig. 5):

— Visualisation of a second derivative of a signal and its average values (estimation) on a grid
plé = Plot[x2, {t, 0, T}]

pl8 - ListPlnt[Tahle[{{i ~0.5) /m, 13 *X3[[i] ]}, i m}] "

Filling » Mcle; FillingStyle Red]
P20 = Show|[pla, pl8]
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Fig. 5. The second derivative of a test signal and its digitization (estimation)
base of Legendre polynomials.

The program 3. Definition of operational matrices of various integer and fractional orders in

r=10; T=1;

— The representation of an order of basis system and range of argument modification:
— Determination of basis system functions on the basis of the global version of Legendre
polynomials:

so[t , T ,3i]:=LegendreP[i-1, -1+2£5T];
S0 = Table[so[t, T, i], {fi, r}]:
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— Determination of operational matrix W:
W= Diagunamatrix[Tahle[f{su[t, T, 313 dt, {3, r}]]:

— The setting of numerical value of a fractional order integral (differential) operators:
f=1152;

— Determination of an operational matrix of integration of a fractional order:
PE =

1
H[Inverse[ﬂ].'rahle[fsu[t, T, il+ [— wf{t -2y wso[z, T, 31 mz] at,
amma [ 5]
i, r}, 4, ]

— Determination of vectors of derivatives of the first and second orders from basis system of
functions:
S1=D[So, t]; 52 =D[So, {t, 2}1;

— Determination of a vector of derivatives of order n from basis system of functions So of
order r (n <r):

sn ! =D[So, {t, n}]:

— Determination of differentiation operational matrix of n-th order in basis of Legendre
polynomials system of order r:

Ldn : = Inverse[W] .Tahle[fsu[t, 1, i-1]#sn[[3]]1dt, {i, x}, {3, r}];
1}
— Determination of operational matrices of differentiation of the first and second orders (fig. 6, 7):
Ldl = Inverse[ﬂ].Tahle[-[Tsu[t, 1, il #S1[[3]1]1 dt, {i, r}, {3, r}]:
ILdl ff MatrixForm

Ld? = Inverse[W].Tahle[-[Tsu[t, 1, i]1+S2[[111dt, §i, r}, {1, r}]:

Ld? ff MatrixForm

o zo z o0 2 0 2 0 v 00 12 0 40 o 24 o 144 IS |
oos 0 & 0 & 0O & O oo o0 &0 0 18 0O 224 O 528
o000 10 0 10 0O 10 0O 10 oo 0o 0 140 0O  3Ie0 0O  &a&ld 1]
ooo o0 14 0 14 0 14 O oo 0o 0 o 25z 0 61e 0 1092
ocoo o o0 18 0 18 0 18 oo 0o 0 0 0O 3% 0 236 0
ooo o o o 22 0 ZE O oo 0o 0 0 0 o 572 0 13220
ooo o o 0o 0 Ze 0 24 oo o o 1] o o o 7a0 1]
ocoo o o o o0 o 30 0 oo 0o 0 0 0 0 0 0 10Z0
ocoo o o o o o0 o0 324 oo 0o 0 0 o 0 0 0 0
coo o o o o o oo o) too oo oa 0 0 0 0 0 o )

Fig. 6. An operational matrix of differentiation Fig. 7. An operational matrix of differentiation of 2-nd
of 1-st order order

— Determination of Riemann-Liuville and Caputo operational matrices of differentiation of a
fractional order (B n—1<B < n) (in this case it is chosen n = 2):

DRL = Ld2.P§;
DC = PS.LA2;
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Example 1. To define the image of the first and a second derivatives of a test signal
y =sin(nt) in base of Legendre polynomials of 10-th order, having using expressions of
operational matrices of differentiation, and to compare them to the images received by
approximation of corresponding derivatives of a test signal.
The representation of a test signal and its two derivatives:
¥ =5in[m«t]
¥1=D[y, t]
¥2=D[¥, {t, 2}]

— Determination of images of a test signal and its derivatives:
g Inverse[‘if].H[Tahle[J;Tsu[t; 1, i]»ydt, {i, r}]]

(0.63662, 0., -0.687085, 0., 0.051779, 0., -0.00133046, 0., 0.0000171322, 0.}
s Inverse[‘ﬂ’].H[Tahle[fsu[t, 1, i]+yldt, {i, r}]]

[0., -3.81972, 0., 0.706517, 0., -0.028896, 0., 0.000510015, 0., -5, 00604x 107
¥2 - Inverse[‘ﬂ’].H[Tahle[fsu[t, 1, i]ry2dt, {i, r}]]

{-6.28319, 0., 6.78126, 0., -0.511038, 0., 0.0131311, 0., -0.000169088, 0.}

— Determination of images of the first and second derivatives of a test signal in operational
domain with the use of operational matrices of differentiation:
Yia = Ldl.¥

(0., -3.81972, 0., 0.706519, 0., -0.0288931, 0., 0.000513967, 0., 0.1
Y2a = Ld2.Y

{-6.28316, 0., 6.7814, 0., -0.510825, 0., 0.0L33631, 0., 0., 0.}

The analysis of the received results shows satisfactory accuracy of images estimation of the
first and second derivatives: Y1~ Yla, Y2~ Y2a.

Example 2. To define images of Riemann-Liuville and Caputo fractional derivatives of a
test signal z(t)=e't> of order 1.5 in basis of Legendre polynomials of 10-th order, having used

expressions of operational matrices of differentiation, and to compare them to the images

received by approximation of corresponding derivatives of a test signal. A range of argument
modification T=1.

The representation of a test signal and its derivative of the second order:
z[t ] := tﬁwt't: 22[E ] :=D[z[]. {E: 2}]:
— Determination of images of a test signal and its derivative of the second order:

7 - Inverse[ﬂ].n[Tahle[fsu[t, 1, ilwz[t]dt, {i, r}]]
{0.0713022, 0.145635, 0.108181, 0.0391033,

0.00456341, —0.000892997, -0.0000991821, 0., 0., 0.}
72 = Inverse[ﬂ].ﬂ[Tahle[fsu[t, 1, i]w+z2[t]dt, {i, r}]]
{1.47152, 2.20728, 0.599336, -0.203916,

-0.044%434, 0.019655, —0.00314903, 0., 0., 0.}

— Determination of the image of Caputo derivative of order 1.5 of the test signal by
approximation:
1

2C = ——
Gamma[1/ 2]

J?{t ~ 32 L 2orz] dz
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1

EDnditiDnalExpressiDn[ (_-...-'_t (45 + At (1542 (342 (=T+£) £))) +

16+ =

1
z1lc =

16 4/ 7t

[—ﬁ(45+4t{15+2t(9+2(-1+t}t}}}+

(45 + 2L (45 + 4L {15+ 28 {15+ {-15+ 2£}}I)) DamsunF[*JT]]

ZC = Inverse[W] .H[Tahle[fsu[t, 1, i]lwrzlcdt, {i, r}]]

{0.76356, 1.292, 0.570328, -0, 0007686606,
-0.0403096, 0.00383376, 0.00094223, 0., 0., -9.5}

— Determination of the image of a Caputo derivative of order 1.5 of the test signals by use of
an operational matrix of differentiation:

%01 = DC.%
{0.765956, 1. 28889, 0.571318, —0.00369742, —0.041201,

0.00229511, -0.00192962, 0.00119086, -0.000803159, 0.000581764}

— Determination of the image of a Riemann-Liuville derivative of order 1.5 of the test signals
on the basis of approximation of a derivative signal:

1
zrl = D[— wf{t 3% wz[r]de, t, 2}]
Gamma[0. 5]

10.3166 £*°® HypergeometriclFL[6, 6.5, —-t] -
4.23246 t4° HypergeometriclFl[7, 7.5, -t] +
0.359117 £** HypergeometriclFl[8, 5.5, —t]

FRLL : = Inverse[W].H[Tahle[-[Tsu[t, 1, i]wrzrl dt, {i, r}]]

(0.76356, 1,292, 0.570328, -0.000786606, —0. 0403096,
0.00383359, 0.000918912, -0.000389609, 0.000106094, -0.0000317606)

— Rimann-Liuville derivative determination of order 1.5 of the test signals by use of an
operational matrix of differentiation:

ZRL = Ld2. (PS.Z)
(076356, 1,292, 0.570328, -0. 000786606, —0. 0403096,
0.00383359, 0.000918912, - 0.000389609, 0.000106094, -0. 0000317606}

The analysis of the received results shows satisfactory estimation accuracy of images of
Riemann-Liuville and Caputo fractional derivatives: ZC ~ ZC1, ZRL ~ ZRL1.

Conclusion. Use of basis systems on the basis of the local and global version of Legendre
polynomials has allowed to generate expressions for operational matrices of differentiation of the
integer orders. Expressions for operational matrices of Riemann—Liuville and Caputo fractional
differentiation are deduced. On a series of test examples the application of the S-transforms for
estimation of average signal values and its derivatives of the first and second orders, and also the
estimation of Riemann-Liuville and Caputo derivatives of fractional orders is shown. The programs
written in language of the system Mathematica®, despite of the particular character of the presented
illustrative examples, suppose a modification of a basis systems sort, key parametres and type of
signals and, in our opinion, can be useful when using the methods of S-transform in digital
processing of continuous signals and modeling of fractional dynamics systems problems.
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O. B. Bacunbes, B. B. Bacusnbes, J1. O. Cimak

S-nepeTBOPEHHS B LMGPOBOI 06p0o6Li curHanis 4po6oBol AuHaMiKM 6e3rnepepBHUX CUCTEM
PO3rNISHYTO 3aCTOCYBaHHA anmnpoKciMauiiHo-orepauiiHoro metofy S-nepeTBOPEHHS Ha OCHOBI
NoOKanbHOI Ta rnobanbHOT Bepcin noniHoMiB JlexkaHapa Ans OLiHIOBaHHS CUrHaniB: CepeaHix
3HayeHb, CepefHiX 3HayeHb MOXIAHMX MEepLUOro i ApPyroro MopsAkiB, a TakoX OLiHIOBaHHA
[Apo60BUX MOXigHWUX PI3HUX NopsAaKiB 3a PimaHom—JliyBinnem Ta Kanyto. HaBeaeHo intocTpaTuBHi
NPUKNaay 3aCToCyBaHHA METOLY B NPOrpamMHOMY cepefoBuLLi cuctemn «Mathematica ®».

A. B. Bacunbes, B. B. Bacunbes, /1. A. Cumak

S-npeobpas3oBaHne B LUKDPOBOA 00paboTKe CUrHaNOB APOOGHOM AMHAMUKW HEMpPEPbIBHbIX
cuUcTeM

PacCMOTPEHO MPUMEHEHME annpPoKCUMaLMOHHO-0NePaLMoOHHOro mMetofda S-npeobpa3oBaHUs Ha
OCHOBE /NIOKa/bHON M rnobanbHOW BEpCUMii MONMHOMOB JleXaHApa AN OUeHWMBaHWA CUrHasoB:
CPeAHUX 3HaYeHW, CPefHUX 3HAYEHWI NPOU3BOAHbLIX MEPBOr0 M BTOPOro MOPSAKOB, a TaKXke
OLEHMBaHUA APO6HBLIX MPOM3BOAHBLIX PasHbIX NOPAAKOB No PumaHy-/lmysunno u  Kanyrto.
MpuBedeHbl UANKOCTPATMBHbIE MPUMEPbI MPUMEHEHMS METoAa B MPOrpamMMHON cpede CUCTEMbI
«Mathematica ®».



