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Abstrakt. The mathematical model of steady-state visual evoked potential as a linear stochastic
process is judtified, which includes biophysical peculiarities of the potential generation. The
mechanism of visual evoked potential creation by separate neurons of the main human brain is
described. The expression of characteristic function of proposed mathematical model is presented.
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Introduction. Taking into consideration the present ecologicatdiions and significant
harmful influence of computer work, the problemgofalitative estimation of visual analyzer state
is particularly substantial. At present time, inder to solve the above specified problem
ophthalmologists use the latest methods of diagnhosamely electroretinography, electro-
oculography, the registration of visual evoked pbtds (VEPS). The last one allows us estimate
not only the work of the central or peripheral aitcbut also the visual system in total. VEPsare
particular case of the electroencephalogram si@#@&(Gs), namely the reaction of the visual cortex
of the brain to external stimuli (photic stimulispatially structured stimuli). Depending on the
frequency of stimulation VEPs are divided into semt (1 — 4 Hz) and steady-state VEP
(5 - 30 Hz).

Figure 1 illustrates examples of transient and dstestate VEPS realizations, which are
recorded from surface of human scalp over visudkg@rojections.
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Fig. 1. Realization of transierd,(stimulation frequency 2 Hz) and steady-state V@Pstimulation
frequency 10 Hz)
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Modern information-measuring systems (DX-NT, OKYLRA Neuron-Spectr, Sierra,
Neurofax) mainly record transient VEPs and use dogds of its positive and negative
components, time of its occurrence (latency). Havesteady-state VEPs can allow us to estimate
not only the state of visual analyzer, but alsodhgity of visual departments to long-term action,
possibility for respond to high-frequency stimulj.[

Taking into account the above-mentioned considamatiactual scientific-technical problem
is construction of information-measuring systemdphthalmic diagnostics by steady-state VEP. It
leads to solve the following tasks: the creatiomeiv software modules for recording steady-state
VEPSs, the determination of the signal processinghous for this class of signals, finding
correlation between visual pathology and informaitilagnostic parameters, the construction of the
decision rules. However, the first and fundamestep is adequate mathematical model validation.
On the one hand, this model must be based on tipdysical nature of VEP’s generating process;
on the other hand, informative features for meagutasks will be defined by this mathematical
model.

Analysis of the last publications and resear ch. Additive model is often used to describe the
VEP signal. It includes deterministic function repenting the VEP, and noise is represented by the
second component — centered weakly stationary ranutocess (background EEG). This model is
used to perform averaging on the set of post-sttmai signal realizations [2 — 4]. Additive model
allows us to define the first moment function atiagnostic characteristics, but it is insufficiéort
a detailed description of the signal needs in modégnostics.

In paper [5] researchers use GARCH model (genechlautoregressive conditional hetero-
scedasticity), which is a suitable tool for modglistochastic processes with rapid changes in
spectral properties. It should be also noted thiatrhodel does not take into consideration cyglicit
of stimuli, and therefore it is inappropriate tedsr steady-state VEPs modeling.

The resulting VEP signal can also be presenteddmyrgponent model [6]. Its components are
the processes generated by individual sourcesanh l@lectrical activity. Independent component
analysis (ICA) and principal component analysis Ap@re used for the analysis and separation of
constituent individual components. When the comdbiseurce signals can be assumed to be
independent from each other, this concept playsuaia role in separation and denoising the
signals [6]. One of the conditions to use the IGAistatistical independence of components, unlike
PCA which requires absence of nonlinear correlabieiveen them. Component model allows us to
retrace operation of the resulting signal formimgl a0 distinguish different sources of generating
components. However, correct usage of separate muengs needs different models and
corresponding methods in diagnostics. Taking intcoant the aforesaid, component model
requires significant expenditure of time, and cotapanal complexity will be increase.

In paper [7] the artificial neural network modelised for the analysis and classification tasks
to VEP signal. In spite of all its advantages,istelgards the stochastic nature of the VEP sigmél a
generating mechanism of the human brain electactvity by individual neurons; the learning
process can be very long to find the optimal weg€fficient; the distribution of the input data is
not known.

Whereas, taking into account some cyclical (rhyt)nproperties of the steady-state visual
evokes potential realization, the author [8] uses ihvestigated signal describing stochastic
periodic random process, the probabilistic chareties of that are periodic functions of the time.
Such property accounts the cyclicity of photo station, but it has not biophysical background
(not taking into accounts the resulting signal gatien process by means of individual neurons).

The linear random process (LRP) is also used toribesthe VEP signal. In paper [4] the
registered signal from the surface of the humartpssarepresented as the summation of a linear
piecewise stationary random stochastic processn{apeous EEGs) and deterministic function
(VEPs). The authors [4] investigate the receiveghal realization only on stationary EEG’s
intervals that are equal to the time of registratidEP signal (250 ms). The process of electrical
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activity generating is not stationary, and therefeovithin the considered model, the stationary
intervals (its magnitude depends on the conditminte experiment and the physical state of the
person) of the received signal will also be justfand experimentally determined.

Problem statement. Actual and primary goal of this paper is creatamd justification an
adequate mathematical model of steady VEP sigriathawill allow us:

— to describe the mechanism of signal generatiomnbividual cortical neurons and their
spreading in the extracellular environment;

— to reflect the stochastic nature of the VEP digna

— to determine the informative and diagnostic patans that will be based on the biophysical
nature of the investigated process by appropriathoas and procedures;

— to take into account the cyclical properties bé tVEPs due rhythmicity of photic
stimulation;

— to be suitable for use in medical diagnosticeymater simulation modeling.

Analysis of the generation mechanism of the VEPs. Every neuron consists of dendrites,
soma and axon. Within the membrane theory [7] neeleis presented as a separate biological
environment which contains the ions,kCI, Ca™ in the cytoplasm, and Naexternally. If inside
the cell the ions Nacome up to certain concentration value and impids@btained from
neighboring neurons, the membrane will be depaddridoecomes more positive) and generate
some short answer-pulse that called the actionngiate(AP). Electrical activity of the central
nervous system (CNS) is produced by synapses &wougrt inhibitory) between dendrites of
neighboring cells or dendrites and axons [7; 9)e AP is transmitted from the initiation point to
the synapse along nerve fibers by changing thenpatef the neighboring areas. Depending on the
type of synapses in dendrites there are excitatonmyhibitory postsynaptic potentials (EPSP, IPSP).
These potentials have a considerable longer duarata lower amplitude than the AP (fig. 2) and
also are the reason for the continuous oscillatadnatracellular potential. If the last one comgs
to certain threshold value the neuron will genetiagenext new potential.

The afferent The muclei
Aneve neuron The synapses of the brain A cortex
The postsynaptic The postsynaptic
A stimulus AP potentials AP potentials AP VEP
(EPSP, IPSP) (EPSP, IPSP)

Fig. 2.Scheme of the VEPs generation mechanism by mameeits of the CNS [2]

The generation mechanism of VEP signal is presemsigtematically in fig. 2. After
stimulation the afferent neurons produce the actpmtential that is transmitting into the
neighboring neurons and activates IPSP, EPSP [&.VIEP’s origin is the visual parts of the brain
that are constructed by large number of neurortsréeaive stimulation from each other. Based on
aforesaid sentences, registered VEP signal caeresented as the summation of a large number
of random impulses that happen at random momerasedwer, the impulse characteristics depend
on the time. For example, immediately after thengtus passing the action potential appears with a
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small amplitude and there will be EPSP, IPSP watlgér amplitude and duration, etc. That is,
based on the analysis of biophysical generatinghar@sm of the VEP signal, we can conclude that
the signal recorded from the scalp surface is taiomary.

Mathematical model justification. After stimulation neurons generate and transmit AP,
EPP, IPP that had appeared in random sequential e timpoints

(o T T T T T, T, = {1, n0Z} . Experimentally investigated and presented distidin
histogram in papers [10; 11] demonstrates that tifiesn of time intervaI{ATO:To,...,ATn =

:Tn—'[n_l,..} between impulse appearances are independent ramdoables and exponentially

distributed with paramet@lt), 1[0 (-o,). ParameterA(t) — is deterministic function that
characterizes the intensity of pulses appearaoce &ctive neurons.

Based on the above-mentioned considerations weccaolude that the sequence of time
momentst,, n[JZ is non-uniform Poisson flow with parameg(t) .

The results of experimental research confirm thatisdical correlation between different
neurons is insignificant. Especially, presentedadat paper [9] asserts that the correlation
coefficient between the potentials of different res is 0,006-0,01. Taking into account the above-
mentioned considerations and modern electro-gettesigies of EEGs and VEPs we assumed that
impulses are statistically independent (the weaketation between them will be rejected in the
developed model).

Random function that describes the electrical g@kohanging of separate neuron is labeled

by symbol V., (t,,t), wheret, — is the random activation moment timensth neuront — is the

moment of observation. Whereas, recorded signalt®al response for potential changing of all
active neurons during the observation timéhen the resulting VEP signal can be writtenha t
form of a random process:

()= 3 V(1,0 (0,0, ®

For function concretizatioWV, (t,,,t) we used papers [7; 9] where interested us poterdia

presented by decaying impulse with oscillating abter. Based on these papers, impul4gs, ,t)
can be expressed in the next form:

V, (t,.1)=a,0(T,.t), (2)
where ¢(1,t)— is nonrandom function, which can be presented as:
o(t,1) =PV sin@)t -1V t-1), (3)

a,, n0Z — sequence of independent similarly distributeddeen variables with distribution

s=0
function F, (x; 1), xOR and finite variance{J (s) :{l — is the Heaviside functiofg(t) >0 —

0,s<0
is nonrandom function that describes the coefficadnmpulse dampingw(t) >0 — is nhonrandom
function that describes the impulse frequency.
Figure 3 shows an example of functig(t,,t).

It should be also emphasized tHat(x; 1), B(t), w(t) (characteristics of impulses) are depend
on 1, because for everyrth impulse V,(t,,t)=a,e?™ ™ sin@w@, )t-1,)J ¢-1,) the
distribution function of its amplitudé, (x;T,), the coefficient of impulse dampirf§(t,) and the
impulse frequencyy(t, ) are dependent on the moment time of impulse occcere
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Fig. 3. Graphic representation of changing thetatepotential of a neuron

Consequently, random process (1) can be writténamext form:

gt =Y a,e W sino, )t -1, ) ¢ -1,). )

n=-o

Let us introducery (1), T0(-o0,), P{1(0) = 3 = 1- is nonhomogeneous generalized Poisson
process, jumps of which happen at the same timeentsm , » JZ and the value of each jump is
equal to the random variabte,, n[1Z.

In this case the proceg§t) can be written as the stochastic integral

&0 =] drndm ()= [ " Vsin@)t -V ¢ -T)dm (). (5)

According to the definitions given in the paper&;[13], random process (5) is a linear random
process (shortly LRP) with the kerng(t,t) and the generating process(t) . Processt(t) is a

Hilbert process, that is for kernel (5) the ener'bsbz(T,t)dT <oo,[Jt for each fixedt and variance

of increments of generating proc&&d (1)) < co,[]t are finite.
Characteristic function for process (5) is presdriy expression [12; 13]:

i) U,

fe(Uy,Uy .. Upityts e )= M 7 =exp/ i) u, J' b @, da@)+
L nal e
0 o ixiunq)(ntn) ) m dXdTK(X;T)
+J'I e = ~1-ix> U d(t.t,) == | (6)
—00 —00 n=1

u,,t O(-00,0), n=1,m,i=+/-1,
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where a(t) =M 1 (1); K(X 1), X0 (—0,0)— is Poisson spectrum of jumps in the Kolmogorov's
form such thatK (—;T) =0, K (0;1) = _[ d K (x;t1)=D 1 (1) =b(1), O1.

Based on the expression (6) we can find cumulanttfon of linear random process.
Particularly the mathematical expectatieh¥ (t) and the correlation functioR (t,,t,) of process

(5) will be presented in the next forms, respedtyiyg2; 13]:
MED = [ ot t)da@), Rt.L)=[EL)wL,)do(). (7

Thereby based on the analysis of the generatiochamesm of electrical activity by brain
neurons and taking into consideration the requiregmthe mathematical model was constructed in
form of the linear random process. Application dRR-is often used for construction of new
mathematical model because the properties of theslemnallow computing the moment and
cumulant functions of any order, using probabtistinalysis of the investigated signal by
characteristic functions method. One of the biggestantages of LRP is peculiarity that this model
takes into account the physical mechanisms of mtomluor the generation of the analyzed process.

Conclusion. Taking into account the stimulation of human visammalyzer, the analysis of
the generating mechanism of the brain electricéiviae by individual neurons was done. The
finding results were used for further constructidran adequate model.

Based on the above-described objectives and reneits the mathematical model of steady-
state visual evoked potential in a form of a lineaxdom process is justified. This model allows not
only identifying information and diagnostic paraerst of the investigated process, but also gives
them a biophysical explanation.

The expression of proposed mathematical modeleafdststate VEPs characteristic function
is presented. It allows us to compute moment amtuéant functions of any order. The expressions
of mathematical expectation and correlation funcioe presented too.

Taking into account the cyclic photo stimulationtieé visual analyzer, periodic properties of
the constructed model will be justified, the prdjgsr of linear periodic random process will be
explore a too and the adequacy of the constructetehwill be experimentally verified in the next
papers.
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M. €. ®pu3z, M. A. CtagHuk

OOrpyHTyBaHHSI MATeMaTH4HOI MOJeJi YCTAJEHMX 30POBHX BHKJIHKAHUX NOTEHUIaJdiB Yy
BHIJISIII JIIHITHOT0 BUIIAIKOBOI0 MPoIecy

OOrpyHTOBaHO MaTeMaTHYHY MOJIENb YCTaJCHOTO 30POBOTO BHUKIMKAHOTO TMOTEHIIATY Y BHIJISII
JHIMHOTO BUIIAKOBOTO MPOIIECY, IO BpaxoBye 010¢131u4HI 0COOIMBOCTI (OPMYBaHHS MOTCHITIATY.
Omnucano MexaHi3M HOro reHepariii OKpeMUMH HEWpOHAMH T'OJIOBHOTO MO3KY JroauHu. HaBeneHo
BHpa3 XapaKTepUCTUUHOT PYHKITIT 3aITPOIMTOHOBAHOT MAaTEMATUIHOT MOJIENI.

M. E. ®pus, M. A. Cragnuk

O0ocHOBaHMEe MaTeMaTH4YeCKOM MOAeJIHM  3PHUTEJbHBIX  BBI3BAHHBIX IOTEHUHAJIOB
YCTOHYHUBOI0 COCTOSIHUS B BH/Ie JIMHEHHOI0 CJIy4aHOI0 Ipouecca

OO60CHOBaHO MAaTEMaTHYECKYI0 MOJIelb 3PUTENBHOTO BbBI3BAHHOTO MOTEHLMAla YCTOMYMBOIO
COCTOSIHMSI B BHJE JHUHEHHOrO CIIydalHOTO TMIpolecca, 4YTO YYUTHIBaeT OuWOpU3HUECKUE
0COOCHHOCTH (opMUPOBaHUs MOTeHIIMATa. OMUCAHO TAK)KE €ro MEXaHU3M T'eHepaIy OTACTbHBIMU
HEHpoHaMU TJIaBHOTO Mo3ra 4yejoBeka. [IpuBeneHO BbIpakeHHE XapaKTePUCTHUECKON (PYHKIIMH
MPEJI0KEHHON MaTeMaTHYECKON MOJIEIIH.



