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Abstrakt. Operational analogues of integral-differential operators of variable fractional order
in the S-transform are proposed. The examples of application of operational matrices of
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Introduction. It is known that the mathematical models of complex dynamical systems in
fractal media are integral-differential equations with derivatives and integrals of fractional order
[2 — 4]. The development of fractional calculus and its applications to the solution of problems of
mathematical physics have led to the development of multi — physical approach, in which the
functions characterizing the intensity of one physical field affect the parameters of other physical
fields in the given region of space. Therefore the order of integro-differential operator, as one of the
parameters, may also be varied as a function of time, spatial variables and functions of the intensity
of fields of different physical nature. An example is a dynamic system, which describes the process
of anomalous diffusion in porous media, taking into account the changing temperature or aging
processes. A similar approach naturally generates mathematical models of the dynamics of the
fractional systems in the form of integral-differential equations with fractional orders, varying
according to certain laws [5 — 9]. Methods for solving differential equations with derivatives and
integrals of variable fractional order are currently being intensively developed.

This paper deals with the formation of operational matrices of integration of variable
fractional order in the approximation-operational method of S-transform [1]. The paper is organized
as follows. The second section discusses the operations of fractional differentiation by Caputo and
Riemann—Liouville and fractional integration of Riemann—Liouville [2; 4], whose orders are given
as functions of time determined by the time interval of the process of development, and the
expressions for the operational matrix of integration and differentiation with variable fractional
order.

In the third section examples are provided of such matrices for the S-transform based on local
Legendre polynomials and their applications to integrate different functions and solutions of
differential equations of fractional order. Computational experiments have been performed in the
software environment of Mathematica® [10]. The conclusion includes the analysis of the results
and recommendations for their use.

S-transform and operational analogues of integral-differential operators of variable
fractional order. S-transform [1], is based on polynomial approximation of the signals, basic
expressions of approximation make up the operational calculus of a special type:

X = (TS(r)S(t)*dz]_ -(}smx(r)dr] , (1)
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x, (1) =X'S(z). (2)

Direct S-transform (1) generates an operational image of a signal x(¢) as a vector
approximating polynomial coefficients X, whereas the inverse S-transform (2) restores the signal in
the form of approximation x,(¢). Signal and the system of basis functions S(¢) are defined on the
same interval of the argument 7e[0,7). In applying the S-transform to solving systems of
fractional dynamics, mathematical models which are the integral-differential equations of fractional
order, the task of system dynamics is reduced to the solution of algebraic equations in the
operational space, and the transition to the original space is made by constructing a polynomial of
the form (2).

The most important relations for the S-transform as an operational method are operating
analogues of mathematical operations of integration and differentiation of fractional order[2 — 4].
The most frequently used operations include the integration of fractional order of Riemann—
Liouville (3) and differentiation of fractional order of Riemann—Liouville and Caputo (4), (5):

y()—ﬁ) j (-0 x(v)dr, 3)
y(t)= n(ﬁ{[(r T)”‘“x(r)drj, n-l<a<n, ()]
y(t)—r( - j( "“l%dnn—l<a<n. (5)

When building operational analogs of fractional differentiation and integration, which are
known to be the matrices whose elements depend only on the system of basis functions, on the
argument interval and order of the operator, it should be noted that the columns of the matrices are
the vectors of coefficients of the approximating polynomials for integrals and (or) derivatives of the
functions of the base system. This allows us to create the following expression for the operational
matrix of integration and differentiation:

— operational matrix of integration of p-order in Riemann—Liouville:

_we T -1
P =W ( | (r ® £ (t—1)" S(r)dt] S(?) dt] (6)
— operational matrix of differentiation of o -order in Caputo:

Cp = prep’, 7)
— operational matrix of differentiation of a -order in Riemann—Liouville:

Rp o= Drpre. (8)

In (6) — (8) the following designations are introduced:

T
W= J'S(I)S(t)*dt — operational matrix approximation,  (9)
0

D! =W~ (I ddS(t) S(¢) dt] operational matrix of the n-th order of differentiation.  (10)
0 t"
Differentiation and integration of matrix-vector operands are performed element by element,

* — the symbol of transposition of vector quantities. It is also assumed that the basic functions of the
system allow the differentiation up to »n-th order.
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A distinctive feature of the S-transform is that the expression of operational matrices of
differentiation and integration of fractional order given above can be generalized to the case of
fractional order of integro-differential operators which are the functions of time or the other
argument, which depends on the time. Therefore we can write the following expressions for the
operational analogues of the corresponding operators with variable order:

T 1 t

PO =W ( (- r)ﬁ““S(r)dT]S(t)*drj, (D
7w

‘p*® = prep”, (12)

RL D;x(t) — D:’P_:_a(t). (13)

Examples of implementation and application of operational matrices of variable
fractional order integration.

Example 1. Generate the operational matrices of integration by Riemann-Liouville with
variable fractional order for the S-transform on the basis of the shifted Legendre polynomials of
order zero (block-pulse of system functions) for the following parameters of S-transform:

T =mh; m=100; h=0,01; Bl=2—¢/T; B2 =2—sin(nt/T); P3=2e"'"; B4 =1+sin(nt/ T);

Program 1.

— Set numerical values of the parameters.
m:=100; h:=0.01; T=mwvh; F1=2-{i-0.5)Ffm;

F2 =2 _Sin[m«{i-0.9)/m];
F3 -2 @ 050mM. py 3 Sin[re {i-0.5)/m];

— Forming the operating matrix of integration:

H[ﬁ_.r h_.r .i'i'l_] .=
BT
Tahle[— #Which[i <3, 0,i=-3,1,1x7,
Gammmal # + 2]
-3+ D72 @ -7 (-3, 1, m), G, s

— Definition of operational matrices of fractional integration with the various laws changing
the order of the operator:
Pol = N[H[F1, h, m]11; Po? = H[H[E2, h, m]1]1; Po3 = H[H[E3, h, m]11: Pod = N[H[H4, h, m]11:

Example 2. Determine an approximation of the Riemann—Liouville variable order (a4 =34 )
integral for the signal x2(¢) = sin(27z) ,(Using S-parameters mentioned in Example 1).

Program 2.
— Definition of the basic system of functions S-transform:

S =Table[If[{i-1)vh=t <ixh, 1, 0], {i, m}];

— Setting the signal image:
F = Table[Sin[2 7t « (i - 0.5) »h], {i, m}];

— Finding the image of the integral and its approximation:
Y2 - Po4.F; ya? = ¥2.5S;

— Finding the exact value of the Riemann—Liouville integral (reference for comparison with
the approximation):

(t -z}l ySin[2mnz]
¥2 = J? dz
Grarmma [ad ]
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— The result of integration:
. 3 1 1
yo? = [2 g g2eRanTe] HmergemtricPFl][{l}, {— += Sin[rt], 2 + - Sin[nt]}, - tz]]/
2 2 2
(Gamma[1 +Sin[rrt]] (2 + 3Sin[rt] + Sin[r t]%))
— Visualization of integral and its approximation (fig. 1):

Plot[{yo2, ya?}, {t, 0, 1}, PlotPoints — 250]

015
0.10

005 -

0.z 04 06 os 10

Fig. 1. The integral of signal: x2(¢) =sin(2n¢) of order: f4 =1+sin(n¢/ T); and its approximation

— Visualization of the error function of approximation (fig. 2):
Plot [yo? - ya2, {t, 0, 1}, PlotPoints — 250]
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Fig. 2. The error function of approximation of an integral with a variable order of integration

Example 3. Determine an approximation of integral of Riemann—Liouville of variable order
for the signal (Use S-transform’s parameters specified in Examples 1 and 2). The code fragments
are presented without comments (fig. 3, 4).

Program 3.
a3 =2e";
(t-)C-LySin[2rrw 1]
¥3 = f dz
Gamma[a3]
A L HmergemretricPFl][{l},, {1+ e, z + e‘t}; - t2]
yoi =
(2+¢")Gamma[2 e
¥3 =Fo3i.F;
¥3a = ¥3.5;

Plot[{yo3, ¥3a}, {t, 0, 1}, PlotPoints — 250]
Plot [yo3 - y¥3a, {t, 0, 1}, PlotPoints — 250]
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Fig. 3. The integral of the signal: x2(¢) =sin(2nt) of order p3 =2¢"'"; and its approximation
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Fig. 4. The error function of approximation of an integral with a variable order of integration

Example 4. Find the approximate solution of fractional order differential equation with
Caputo derivative: tho’S(x(t))+2x(t)=sin(2rct), x(0)=x0=5. It is necessary to get an
approximation of solution of the equation in the basis of Legendre polynomials of 10™ order, using
the method of S-transform based on block-pulse functions (the local version of the Legendre

polynomials of order zero, m = 100), the interval of the argument 7' = 2.
Let’s transform the given equation to a form suitable the operational method for the

o . . dx(t
application. We denote the first derivative of the desired solution as %:u(t). Then

t
x(t):j'u(r)dr+x0. Using the definition of a derivative of fractional order by Caputo and
0

implemented function u(¢), we obtain the following integral equation of fractional order, equivalent
t

to a given differential equation: J*(u(t))+2[u(t)dt= f(t)—2x0. Here ,J*° — fractional
0

integral ~ operator by  Riemann-Liouville.  S-transform  of  this  equation  is:
P’ .U+2P'-U=(F-2x0-1). The solution in operational space is defined by following
expressions: U= (PO’5 +2P! )_1 -(F-2x0-1), X=P'-U+xo-1. Transition to original space is

dx, (1)
t

performed in accordance with the formulas: x (1)=X"-V, =U"-V, where V — vector of

basis functions of S-transform.
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Program 4.

—Setting of S-transform’s parameters and the input data:

1
h=—m=100; n=10; T=2; 1 =0.5; xo =53; £[Ef ] :=5in[2n« £];
50 -

— Forming of basic systems based on local and global versions of the shifted Legendre

polynomials:

s[t ,k ,i,7 1:=If[{i-1ynk=t=ink, LegendreP[i-1, 1-23+2 £fk], 0];

¥ = Table[s[t, h, i, 1], {i, m}]:

S = Table[LegendreP[j -1, -1+ 2t /T], {71, n}]l:
— Forming of operational matrices of integration:

PG = Table[p[fl, 1 -3], {1, 0, m-1}, {3, 0, m-1}];
P1=Table[p[1l, 1-3], {i, 0, m-1}, {3, 0, m-1}]:

— Imaging the right part of the equation and the constant 1:
F = Table[£[{i - 0.5) »h], {i, m}]; One = Table[1, {i, m}];

— Forming the approximate matrix for signals defined in the table form:

tt = Table[{j - 0.5) «h, {7, m}]:
w=Table[S[[i]] /. £t = tt[[71], {3, m}, {1, n}]:
— Problem solution in operational space:

U = Inverse[PS+ 2P1]. {F - 2 x0 »0ne)
X=P1L. U+ x0»0ne
XL = PseuwdoInverse[w]. X

— Transition into original space:
xal =X.V;
xa? = XL.5;

— Visualization of solutions (fig. 5 — 8):
figl = Plot[xal, {t, 0, m+h}, PlotPoints — 400]
fig? = Plot[xa2, {t, 0, T}]
fig3 = ListPlot [Table [{tt[[i]1], X[[i11}, {i, m}]1]
Figh = Show[fig?, fig3]
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Fig. 5. Approximation of solution of the equation in the basis of the local version of the Legendre

polynomials, m=100



20

ISSN 1990-5548 Electronics and Control Systems 2013. Nel(35)

4.0

3.5

30

2.5

a0

1.5

1.0

0.5 10 20

Fig. 6. Approximation of solution of the equation in the basis of the global version of the Legendre

polynomials, n=10
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Fig. 7. Solution in the operational space (m=100)
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Fig. 8. Combined graph of the solutions in operational space and approximate solution in global version of

are limited to the following limits: 1<a, <2, 0<a, <1,

the Legendre polynomials (n=10)

Example 5. Let us use the following differential equation involving derivatives of fractional
variable order by Caputo: D y(¢)+a- D y(t)+by(t) = f(¢). Orders of the differential operators

the range of variation of the argument ¢
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and the initial conditions are defined by expressions: 0 <z <7, y(0) = y,, ¥'(0) = y,,. It is necessary
to find the approximate solution of differential equation for the following orders of differential
operators: o, =1.5, o, (t) =e™"'".

Let us use S-transform after elementary transformations of the equation.

VO = u(t), y'(0) = [u@d T4y, ¥(0)= [u(@dT+yg, y(0) =] [u(t )t dTryet+y, |

J7u(t) + aJ "2 u(t) +b”u(r])dr]dr =f(t)=b(y, +y,t)— aJ]_‘“y,O )
00

Turning to the operational space, we get
(P +a-P™ P +b-P) - U=F+®, ®=—(by, +ay,,J *)-1-by,, t,
U=P ™ +a-P™.P'+b-P)"  (F+®), Y, =P - U+y,-1, Y=P> .U+ y,-1+y,-t.

The transition to the original space is made by the usual formula for the inverse S-transform:
v, =Y S, y' (=Y, -S@), y",()=U"-S(r).
Program S.
— Definition of the parameters of S-transform and the initial data of problem to be solved.:
Mmi=200; h:=0.025 T=5 n=10; al=1.5; a2 =1- &>y, - 1,25;

rl':l = —l].5:

a = 2: h = 1.1:

s[t ,h,i,7 1:=If[{i-1)wh=t<isxh, LegendreP[j-1, 1-2i+2t/R], 0];
¥ = Table[s[t, h, i, 1], {i, m}];

S = Table[LegendreP[j -1, -1+ 2t /T], {71, n}]l:

tt = Table[{i -0.9) «h, {j, m}];

w=Table[S[[i]] . £t = tt[[31], {3, m}, {i, n}]:

H[ﬁ_.r h_.r m_] =

.3
Tahle[— #Which[i <3, 0,i=-3,1,i»7,
Gammal & + 2]
G-3+ D726 -7 G -3 -7, (L ), (G, ms
— Development of operational matrices of integration of necessary orders, images of constant I,
the argument t and external influences:
Pa? = N[H[1- a2, h, m]1; P1=H[H[1, h, m]];

Pa2 ff MatrixForm; P11 ;f MatrixForm;
P2 = H[H[2, h, m]]:

P2 /f HatrixForm;

One = Table[1, {i, m}]; Tim = Table[(i - 0.5)/m, {i, m}];
F = ':['ﬂh].ﬂ[llf_2 (1_0_5),-‘:7..; {i.r ]TI.}]F

F=-Fyggr0ne - 2y vPa2.0ne - 1.1 ¥y »Tim;
— The solution of equation in the operational space:

U = Chop [Inverse[Pal+ 2 Pa2.P1+1.1P2].(F + )]
Y1 =P1.U+ vy 'n'l]l'I.E; Y=P2.U+ vy »rO0ne + ¥1n ﬂ'Ti'ITI.;

— Finding solutions of the equation in the operational space of global version of Legendre
polynomials:

YL = PseuwdoInverse[w].Y

— Transition to the original space of solutions:
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yar =Y.V yaw = YL.5;

— Visualization of solutions and the phase portrait in the operational area.

pll = ListPlot[Y, FlotRBange — Al1] pl? = ListPlot[Y1, PlotRange — All]
pd = ListPlot[YL, Filling — fxdis]

ListPlot[Table[{Y[[i]]1, ¥1[[i]11}, {i, m}], PlotRange — A1l]
— Visualization of the approximation of solutions in the space of originals:

ple = Plot[{yavr, yaw}, {t, 0, h~m}, PlotRange — A1l , PlotPoints — 400]
Visualization of results is shown in fig. 9 — 12.
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Fig. 9. Solution in operational space Fig. 10. The first derivative of solution
in operational space
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Fig. 11. The phase portrait of the solution of the equation in operational space
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Fig. 12. Approximation of solution of the equation
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Conclusions. Approach, proposed to the implementation of operational analogues of integral-
differential operators of fractional order which is changed during the solution, extends the scope of
the S-transform on fractional differential equations involving derivatives and integrals of non-
integer variable orders. The experimental results and numerical experiments confirm the efficiency
of the method. Programs listed in the paper can be adapted to changing the parameters of the
operators, the coefficients of equations, initial conditions, as well as variations in the types and
parameters of basic systems, and can be useful for researchers and engineers involved in modeling
problems of fractal dynamics of systems, including also multiphysics problems.
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O. B. Bacminses, B. B. Bacuinbes, JI. O. Cimak

AnpoxcuMmanisa pimeHb JApo6oBuUX AudepeHUiaTbHUX PiBHAHb 3MIHHOTO TOPSAAKY 3
BUKOPHCTAHHAM S-TlepeTBOPEeHHs

3anponoHOBAaHO ONEpaliifiHI aHAJIOTH IHTErpo-audepeHIialbHUX OlepaTopiB 3MIHHOTO APOOOBOTO
MOPSIIKY B paMKax S-repeTBOpeHHs. PO3risiHyTO MpHUKIaay 3aCTOCYBaHHS OINEpalifiHUX MaTpULb
IHTErpyBaHHS 31 3MIHHUM JpOOOBUM HOPSAJIKOM JO IHTEIPYBAaHHS PI3HUX CUTHAIB 1 PO3B’SI3aHHS
nudepeHLiaIbHUX PIBHAHb JIpOOOBOro 1 3MIHHOTO HOpsAAKIB. OOUMCITIOBAIBHI EKCIEPUMEHTH
BHUKOHaHI B IPOrpaMHOMY cepeioBullli cuctemMu Mathematica®.

N

A. B. Bacunnes, B. B. Bacunwes, JI. A. Cumak

ANNpoKCUMANUsl pelleHUi JpoOHBIX IH(P(PepeHUHATbHbIX YPaBHEeHHMII IepeMeHHOro
NOPS/IKA C MCIOJIb30BaHNEM S-peodpa3oBaHuA

[IpennoxeHbl onepalMOHHbIE AHAJIOIM HMHTErpo-Au¢GepeHlnaIbHbIX OMNEepaTOPOB MEPEMEHHOTO
OpoOHOrO TMopsjka B pamkax S-mpeoOpazoBaHusi. PaccMOTpeHbl nIpUMeEpbl PUMEHEHUS
ONEPALMOHHBIX MaTPULl UHTETPUPOBAHUS C IEPEMEHHBIM JIPOOHBIM MOPSAIKOM K HHTEIPUPOBAHUIO
Pa3IMYHBIX CUTHAJIOB U pElIeHUI0 AudQepeHlnaIbHbIX ypaBHEHHH APOOHOTO U NEPEMEHHOTO
MOPSAAKOB. BBIYMCIUTENBHBIE HKCIIEPUMEHTHl BBINOJHEHBl B IPOrPaMMHOM Cpelle CUCTEMBI
Mathematica®.



