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Introduction. Quantification of nonlinear interactions between two nonstationary signals 
presents a computational challenge in different research fields, especially for assessments of 
physiological systems. Сerebral autoregulation (CA) is an important mechanism responsible for 
controlling cerebral blood flow in responses to fluctuations in systematic blood pressure (BP) 
within a few heart-beats [6]. The multimodal pressure flow (MMPF) analysis decomposes BP and 
blood flow velocity (BFV) signals into multiple empirical modes adaptively so that the fluctuations 
caused by a specific physiologic process can be represented in a corresponding empirical mode. 
Using this technique, we showed that dynamic CA can be characterized by specific phase delays 
between the decomposed BP and BFV oscillations, and that the phase shifts are significantly 
reduced in hypertensive, diabetics and stroke subjects with impaired CA. Additionally, the new 
technique can reliably assess CA using both induced BP/BFV oscillations during clinical tests and 
spontaneous BP/BFV fluctuations during resting conditions [4]. 

Problem. Traditional approaches that are based on theories of stationary signals cannot 
resolve nonstationarity-related issues and, thus, cannot reliably assess nonlinear interactions in 
physiological systems.  

The main material. The main concept of the multimodal pressure flow method is to quantify 
nonlinear BP-BFV relationship by concentrating on intrinsic components of BP and BFV signals 
that have simplified temporal structures but still can reflect nonlinear interactions between two 
physiologic variables [1]. The MMPF method includes four major steps:  

1. Decomposition of each signal (BP and BFV) into multiple empirical modes; 
2. Calculation of instantaneous phases of extracted BP and BFV oscillations; 
3. Calculation of biomarker(s) of CA based on BP-BFV phase relationship. 
 The improved MMPF method provides a more reliable estimation of BP-BFV phase 

relationship by implementing a noise assisted EMD, called ensemble EMD (EEMD) [5], to extract 
oscillations embedded in nonstationary BP and BFV signals. The EEMD technique can  
ensure that each component does not consist of oscillations at dramatically disparate scales, and that 
different components are locally nonoverlapping in the frequency domain.  

To achieve the first major step of MMPF, we originally utilized the empirical mode 
decomposition (EMD) algorithm, developed by Huang to decompose the nonstationary BP and 
BFV signals into multiple empirical modes, called intrinsic mode functions (IMFs) [2]. Each IMF 
represents a frequency-amplitude modulation in a narrow band that can be related to a specific 
physiologic process. IMF, by definition, satisfies two conditions: 

a) the number of extrema and zero crossings of the line should be the same or differ by no 
more than one; 
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b) the local average, defined as the average of the maximum and minimum envelope function 
is zero. 

These conditions make it possible to unambiguously determine the instantaneous frequency 
and amplitude of each function inside mode, using the Hilbert transform to it.  

After the iterative process signal x(t) can be represented as: 
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where N – number of own mode; dN(t) – closing balance, which is interpreted as a constant component 
of the signal; cj(t) – function inside mode orthogonal to each other (all with zero average). 

The ensemble EMD algorithm first generates the ensemble of data sets obtained by adding 
different realizations of white noise to the original data. Then, the EMD analysis is applied to these 
new data sets. Finally, the ensemble average of the corresponding intrinsic mode functions from 
different  decompositions is calculated as the final result. Shortly, for a time series x(t), the EEMD 
includes the following steps: 

1) to generate a new signal y(t) by superposing to x(t) a randomly generated white noise with 
amplitude equal to certain ratio of the standard deviation of x(t) (applying noise with larger 
amplitude requires more realizations of decompositions). 

2) to perform the EMD on y(t) to obtain intrinsic mode functions. 
3) to iterate steps (1) – (2) m times with different white noise to obtain an ensemble of 

intrinsic mode function (IMFs); 
– calculate the average of intrinsic mode functions. 
The next step is applied to reduce noise level and to ensure that the obtained IMFs reflect the 

true oscillations in the original time series x(t). 
The second major step of the MMPF analysis is to obtain instantaneous phases of the 

extracted BP and BFV oscillations. Note that the extracted BP and BFV oscillations are not 
stationary, that is, their amplitude and frequency vary over time. Such nonstationary oscillations can 
be better characterized by analytical methods that can quantify the amplitude and phase (or 
frequency) at any given moment. Therefore, the MMPF uses Hilbert transform to obtain 
instantaneous phases of BP and BFV oscillation. Unlike Fourier transform, Hilbert transform does 
not assume that signals are composed of superimposed sinusoidal oscillations with constant 
amplitude and frequency. Thus, the instantaneous phases obtained from Hilbert transform are more 
suitable for the assessment of the nonlinear relationship between complex oscillations [3]. 

In order to obtain instantaneous phases with appropriate physical meaning, Hilbert transform 
requires that an oscillatory signal should be symmetric with respect to the local zero mean and the 
numbers of zero crossings and extreme should be the same. The intrinsic mode function derived 
from the EMD method satisfies this requirement. For a time series s(t), its Hilbert transform is 
defined as where P denotes the Cauchy principal value. Hilbert transform has an apparent physical 
meaning in Fourier space: for any positive (negative) frequency f, the Fourier component of the 
Hilbert transform 푠 (푡) at this frequency f can be obtained from the Fourier component of the 
original signal s(t) at the same frequency f after a 90° clockwise (anticlockwise) rotation in the 
complex plane, for example, if the original signal is cos(ωt), its Hilbert transform will become cos 
(ωt − 90°) = sin (ωt). For any signal s(t), the corresponding analytic signal can be constructed using 
its Hilbert transform and the original signal: 

S(t) ≡ s(t) + i푠 (푡) = A(t)ei(t) , 
where A(t) and i(t) are the instantaneous amplitude and instantaneous phase of s(t), pespectively [7]. 

Solution of problem. EMD algorithm is defined and has no analytical formulation, therefore, 
our understanding of EMD is derived from experimental rather than analytical results. In the 
experimental results it has been shown that mixing and discontinuous modes – the main obstacle to 
use EMD of many signals. Mixing modes indicates that the oscillations of different time scales 
coexist in the same IMF, or that fluctuations with the same time scales were eliminated for various 
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IMFs. Consequently, this leads to distortion of the actual process. To illustrate the mixing mode 
problem, we applied both EMD and EEMD to BP signal of a healthy subject. In fig. 1, 2 the 
simulation BP and the result of its expansion classical EMD. We are shown clearly notice the 
mixing modes. When we apply the EEMD, no mixing modes were found.  

  

  

  
Fig. 1. (Left panel) A raw BP signal and its decomposed empirical modes (c3–c7 are components from 

bottom to top) obtained by the EMD method. (Right panel) The corresponding Hilbert spectrograms 
of the signals are in left panel 

  

  
Fig. 2. (Left panel) The same BP signal as shown in fig. 1 and its decomposed empirical modes (c5–c9 

components from bottom to top) obtained by the EEMD method. (Right panel) The corresponding Hilbert 
spectrograms of the signals are in left panel. The noise ratio for EEMD method is 0,2 
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Fig. 2. Continuation. (See the also p. 45) 
The third step was to obtain the instantaneous phases of BP and BFV oscillations using 

Hilbert transform and to find the biomarker of cerebral autoregulation. In fig. 3 we see the large 
time/phase delays in BP oscillations compared to the BFV oscillations. For each subject, the 
average BFV-BP phase shift was obtained as the average of instantaneous BFV-BPV phase shifts. 
Phase shifts between spontaneous oscillations of BP and BFV were much bigger in control group.  

 
Fig. 3. Instantaneous phases of BP and BFV oscillations 

Conclusions. Cerebral autoregulation dynamics can be reliably estimated from spontaneous 
BP and BFV fluctuations, and the BFV-BP phase shift obtained by the improved MMPF method is 
a sensitive and reliable measure of blood flow regulation and can be potentially used to monitor 
autoregulation in subjects with cerebromicrovascular diseases. 
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Ю. Ю. Оникієнко, І. О. Васильчук, Я. В. Нагорна, Л. В. Приймак 
Застосування перетворення Гільберта–Хуанга для дослідження регуляції кровотоку 
мозку 
Розглянуто нову технологію мультимодального методу потоку-тиску, що використовує 
перетворення Гільберта–Хуанга для визначення відношення між двома нестаціонарними 
сигналами: кровопотоку та тиску крові, – для дослідження динаміки мозкової авторегуляції. 

Ю. Ю. Оникиенко, И. А. Васильчук, Я. В. Нагорна, Л. В. Приймак 
Применение преобразования Гильберта–Хуанга для исследования регуляции 
кровотока мозга 
Рассмотрено новую технологию мультимодального метода потока-давления, что использует 
преобразование Гильберта–Хуанга для определения соотношения между двумя 
нестационарными сигналами: кровопотока и давления крови, – для исследования динамики 
авторегуляции мозга. 


