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I. INTRODUCTION

At a time when processing information with
amazing speed penetrated all new areas of science,
production and social life in the field of automation
research, has long been marked by problems with the
available computing power of electronic computers
with traditional architecture. For this reason, remains
a large number of scientific problems, among which
can be attributed a comprehensive study of diffusion
processes in three dimensions, modeling of processes
in solid-state physics in the presence of phase transi-
tions with taking into account of quantum effects, the
simulation with optimization of large technical ap-
plications in planetary scale, complex study of prob-
lems in aero hydro dynamics and thermonuclear
fusion and many others.[3]

The persistence of these problems in this case is
considered only in the degree in which they relate to
the use of computers as a tool of self-alternative with
respect to classical methods of research. So, this
thesis does not mean that in the relevant research
areas some good results have not been reached yet.
This only highlights the complexity of these prob-
lems and the way to solve them is either too com-
plicated or requires higher performance of the com-
puting technique.

The experience of IBM, progress in microelec-
tronics does not allow the traditional ideology of
creating a computer significantly to reduce the dura-
tion of the cycle nor the reference to memory, nor,
especially, the duration of the basic cycle of computer
devices. Therefore, improving the performance of
computer equipment should be carried out primarily
by improving the architecture and computer design
techniques.[4]

II. THE PROBLEM STATEMENT

Multiprocessor systems that are considered in this
article require special approaches for their develop-

ment and research. Complexity of the structure of
such systems requires a good scientific justification
and comprehensive rationality sound technical solu-
tions. Under these conditions significantly increases
the role of mathematical models describing the sys-
tem as formalized by means of abstraction, allowing
high exponent adequacy reflect those of its properties
that are necessary for the evaluation of the studied
characteristics. [4]

Therefore, we believe that simulation modeling is
almost inevitable step in the study and evaluation of
complex systems with a large number of items, which
will certainly include the multiprocessor systems.

Simulation models reproduce the behavior of the
system in accordance with certain formal rules, asked
by the abstraction device. The dynamic processes
specific to the research object, are replaced by
processes taking place in an abstract environment,
and the degree of adequacy of the simulation model is
completely determined by the nature of space-time
correlations of these processes.

The structure of the simulation model can be
represented as the following functional dependence

P=F(X,Y),

where P =(p,,p,....,p,) — is the vector of studied
parameters; iz(xl,xz,...,xj) — is the vector of va-

riable arguments; Y = (y,,y,,...,y,) — is the vector
of inaccessible arguments; F — is the functional de-
pendence between arguments and parameters studied.

The simulation of such multicomponent structures
requires substantial investment of time when using
sequential, even quite powerful, computer.

Currently, there is a variety of approaches to the
subject, each of them is characterized by its own
advantages and disadvantages. The most widely used
are the following formal tools for describing multi-
processor systems [1]:
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— Petri nets;

— Colored Petri nets;

— E-nets;

— makro-E-nets;

— PRO-nets.

However, in this article we would like to consider
simulation modeling of multiprocessor systems based
on neural networks, in particular on the basis of
cellular neural networks (CNN).

An obvious approach to increase the simulation
speed is the use of parallel computation in which each
processor element (PE) is determined by a neuron
cell or a group of neurons of the neural network.

III. CELLULAR NEURAL NETWORKS

Cellular neural network are assigned to one of the
most promising directions of development of the
theory of artificial neural networks. Interest in them,
according to the authors, due primarily to the possi-
bility of easy adaptation to their actual physical
structure of the tasks that have natural parallelism.
Such structures are well known in contemporary
physics as complex systems, self-organizing systems,
border chaos systems with collective behavior, etc. In
the work [7] they are called cellular nonlinear net-
works and cellular neural networks (CNN) are con-
sidered as their species. According to [7], CNN - is
massively parallel computing paradigm defined by
the N-dimensional discrete space. It consists of an
N-dimensional array of homogeneous elements
(cells). Structure of types of links between CNN cells
is shown in Fig. 1.
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Fig. 1. Examples of structural connections in cellular
neural networks

Each of the data presented in Fig. 1 characterized
by the number of possible structures on the site link
neuron (cells) with neighbors, resulting environment
index a. If the value of a exceeds the number of
nearest neighbors, such a CNN may be set with a
multiple functions of the neighborhood:

N.:H—->H, N (g)= {z|d(g,z)£r},

where H — is the set of coordinates of all cells, H, —
the set of coordinates of neighboring cells, g, z — are
coordinate vectors, » —is the degree of neighborhood.

The degree of neighborhood » is a maximum
coordinate distance between the considered neuron
and its neighbors. Method of determining the dis-
tance is set up by the function d(g, z)=|g-z|.

Nodular CNN neuron is a specialized processor
with the number of external connections, relevant to
environment index o. When implementation of the
classical algorithm CNN its operation is reduced
mainly to the calculation of functional for data in an
explicit or implicit form with continuous or discrete
time. The general form of the dynamic equation for
discrete time

x,(n+)=x,(m)+ Y. A,_y,+ Y B u +I(n),

zeN, (g) zeN,(g)
Yo (m) = f(x,),

where x, is an internal state of the cell c(g); y. is
output signal of the cell ¢(z)I; u, is external input
vector of cell ¢(z); I, is offset; 4, ., B, . are functionals
corresponding to relations between CNN cells ¢(g)
and c(2).

IV. LOCALLY ASYNCHRONOUS METHOD

Let us consider locally asynchronous methods [5],
specifically targeted at the implementation of a cel-
lular neural networks. Problem for solving by the
mentioned methods can be represented as an operator
equation

LX=U, )

where L is the differential operator; X is matrix of
state of CNN; U is function of the right side.

To solve this equation, use one of the well-known
iterative methods [6], which suggests the reduction of
equation (2) to a system of difference equations on
homogeneous net Q with the step 4:

L,X,=U,, 3)

where L, is the difference operator; X, is the differ-
ence matrix operator; Uj, is network function.

In the simplest case, is set in direct correspon-
dence neuron cell network to node of the grid area.
Then the dynamics of cell should provide a solution
to a differential equation by an iterative formula
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corresponding to the selected method. When choos-
ing a suitable iterative formula plays an important
role view of the difference operator L,. The main
selection criteria is the difference operator form
template on which it is defined, and requirements for
the order update on the specified template.

Locally asynchronous method [5], is oriented for
application in cellular neural networks, allows to
generate a template of a difference operator, limited
degree of neighborhood 7, and to provide an asyn-
chronous transfer mode, removing a hard limit on the
update of all data on the template before executing
the next iteration. Dynamic cell in this case is de-
termined by the iterative

w
5 () =x, - Ly,m-u] @

where L, is part of a difference operator; x,(n) is state
of cell ¢(g) at the iteration step n; 4 is value of the
discretization step; w, is internal parameter; u, is
value of the grid function.

How to update the data on the pattern of each
component is determined by the difference operator
L, chaotic sequence of nonempty sets {1,2, ... n}.
Using this sequence, we construct a sequence of
iterations by the rule

xg(n_1)7 geEJn,
x =1L (a (1) x (2 (). 5)
T (Zn (n))]’ geJ,.

Maximum efficiency is achieved by asynchronous
algorithm

ER:{ge{l,Z,...,n}VneNEImZn:geJ"}. (6)

In this case we say that the chaotic sequence has a
maximum residue due to the presence of the mini-
mum sequence of sets {mg }g=0 .

Increasing sequence of sets is called a minimum
under the following conditions:

1. m,=0;

2. Y 2 ={L2...n},g=012,.;

i=mg+1
mgﬂ—l
3. | Je{l2...n},g=012,....
i=mg+1
Hence the set {zg (n)}:, g =11, 2,..m} asyn-
chronous algorithm (5) must satisfy the conditions of:
z, <(n-1),z,=(n) > .
In order to simplify the algorithm (5) the forma-

tion of iterative sequence {xg (n)}:;l must be en-

tered the condition of pseudo compressibility on the
differential operator L in the form of inequality

[2X — o] <[lX ~o]- Q)

In this case, the formation of iterative sequence

{xg (n)}jzl
x,(n+1)=L, (xg (zlg (n)),...,xg (s;fz(”) (n))), ®)

where {g(n) |n =1, 2, ...} —a sequence of elements
g(n)e H; z¢ ={Z,‘Z (n)}w_o, g=L..H k=1, k-

will occur by the rule

set of non-negative integers satisfying
0< Z/i(n) (n)<n,n>0,

~M <z (n)<0,n=0. ®

From (8) we can see that to start iteration we can
use data from the earlier started neurons with some
restriction M. Neuron, ahead of its neighbors may use
the outdated data lag with depth with a maximum
value equal to the number of iterations of this neuron.
It follows that locally asynchronous algorithm is
quite efficient in terms of physical asynchrony.
However, its maximum efficiency can only be
achieved with a maximum draft of chaotic sequence

{/,}"_, . i.e. aminimum delay of one with respect to

another neuron.
V. SIMULATION

Neuronal communications simulation model for
said computational process must meet the following
conditions [2]:

— Input streams coming from the neurons function
defined neighborhood N,(g), independent;

— Basic parameters for modeling of each neuron is
its condition o(c) and t(c) — the next time the data
modifications that could potentially lead to a change
in state.

In accordance with this definition, communication
model of CNN for each neuron sets two main func-
tions:

— GetState() — function of forming a new state;

— GetTime() — formation function of point in time
for the new state.

Condition arbitrary neuron CNN at time ¢ can be
expressed by dependence

c,(c)= GetState(c,{cx (c,eH, )}::1 S x—>t x< t).

Time of the next modification

t(c) = GetTime(c,{cx (c,eH, )}il g x—>1,x< l‘)-
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In both formulas, following designations are used:

x is time, directly prior to the time ; {GX (c,eH, )}?_1
is state of neurons belonging to the set neighborhood
H,.
Suppose that in a multiprocessor system, which

we model each neuron cell network is responsible for
the modeling of a single processing element. Con-
sider an asynchronous approach to the implementa-
tion of interneuron communication for such a model.
This approach is in contrast to synchronous, does not
require any additional resources, and at the same time
maintains a high rate of similarity computing process.

(Fig. 2).
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Fig. 2. Asynchronous simulation algorithm

The essential feature of this approach is that the
model time 1(c) of each of neurons is not divided into
periods of calculation and exchange, and is conti-
nuous. Due to this cellular network neurons can be
simultaneously at different stages of the calculations.
The key conditions for promotion of the local model
time 1(c) a single neuron in this case are the values of
model local time t(c;), topologically related neigh-
boring  neurons. However, the condition
t(c) < min{w:(c,.)}(iI does not imply its discovery

¢;eH, i=
immediately after the occurrence. To this condition
was found to PE function modeling the neuron cell
network, it needs to get information about the state of
the local and neighboring time in any order with an
arbitrary delay and regardless of how the neighboring
PE work.

Neuron model time 1(c¢) has no direct connection
with the physical time flow of simulation process. It
is important, however, to note that the model time as
a physical characteristic is the constant increase of

property.

The set of variables {c(c), 1(¢)}, for asynchronous
algorithm does not have a counterpart of the local.
Therefore, the values of state and local time poten-
tially become available neighboring neurons as soon
as they update. In this regard, there is a problem
accessing shared resources stored values of these
variables. One of the traditional methods can solve
this problem. Therefore, for simplicity, we assume
that this algorithm moments reading and writing data
in the shared resource is never the same.

Despite the apparent randomness of this algorithm
is deprived of clinch situations. Freedom from clinch
stems from the fact that a neuron with the minimum
time throughout the network always has the opportu-
nity to promote their local time. Assume that there is

no single neuron from set{c,}"  environment of the

neuron ¢, for which the steps are carried out to promote
the condition of the local time for the reason that a
neuron ¢ has the minimum local time t(c). In this case,
the execution of functions GetState and GetTime can
be safe: none of the next neuron changes its state or
local time to moment of the closure computation
neuron c. This fact guarantees a minimum perfor-
mance CNN which is average much higher.

Using the properties of locally asynchronous
method to ensure the convergence of asynchronous
physical conditions, combined with asynchronous
communication described algorithm can virtually
eliminate the simple computing resources during
problem solving. Sign of the asynchronous algorithm
is local in nature and provides a stop when the local
model time a certain critical value, selected from the
conditions of the rate of convergence locally asyn-
chronous method.

In the above algorithms for a single neuron cell
network corresponds to one PE. Such a structure can
be very inaccurate because of the difficulty of de-
signing PE. Computational process will be much
more credible if the description of PE by a subset of
neurons.

VI. EXAMPLE

Let us consider work of aggregate simulation
model of the example of the two-dimensional cellular
network C with dimension n X n. Lets n > m, nim
and available for use (n/m)* of processor elements,
each of which contains a subnetwork C,, |0<k,

[<n/m-1 from mxm neurons (Fig. 3).

Set of neurons C = {C

n/m-1 ., d
k*/}k,l:O , Interpreted as ag-

gregative structure can be roughly divided into two
subsets:
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- external subset of neurons

n/m—1 n-1 .
O = {{Ci-m,j’c(iﬂ)-mf],j }i=0 } i 5 consists Of neurons
j=

for which one or more neighbors are in one or two of
neighboring subnets;

— internal subset of neurons /= C\ O, for which all
the neighboring neurons belong in the same subnet.

&

Ci-11 Cri

P

Chea

.

.

Fig. 3. Aggregate simulation model (m = 4)

The main difference of aggregative data structure
of the algorithm is that each of the neurons further
stores data on the subnets which exist for that the
neuron communication topology according CNN. For
the topology presented in Fig. 3, the data can be
automatically generated in the form of setsw,, e W

under the following conditions:

c m(I+1)-1 c m(I+1)-1

k-1 € {ka,j }j=1m > Crpy € {Wm(kﬂ)—],j}j:lm
m(k+1)-1 mk+1)-1

Crir € {Wi,lm }j=km 3 G € {Wi,m(lﬂ)—] }i=km

Aggregative structure ¢y, has one channel of
communication with each of the adjacent aggregative
structure. This raises the question of priority access to
the resources of the channel. To solve this problem,
we introduce a variety of channel times:

() ={(Cor)(Cu ) (Cur ) (Cur).

The current value of channel time is always equal
to the minimum local time defined on the set of
neurons containing in its set w;; and corresponding to
aggregative structure.

For Example, W, of non-empty subsets w;; for
aggregative structure Cy,, illustrated in Fig. 3, con-
tains the following subsets

Wak 4> Wars1,40> Waki2,41> Wak 3,415
Wk,I =

Wak,a141> Wak 142> Wak 4143 Waks1,4143 >

Wake2,4143> Waks3 41430 Waks3,41010 Wak3 4142

When forming the channel time t(C,_,,) should
be used a subset of local times {T(c4k,4l)’r(c4k,4l+l)’

Caparr) T (Coparen )}, as aggregative structure C,_,

is an element of relevant to subsets

Waka1 = {Ck—l,lck,l—l }’W4k,4l+l = {Ck—l,l}’
Wakai2 = {Ck—l,l}ﬂw4k,4l+3 = {Ck—l,lck,lﬂ }

That is why,

T(Ck—l,l) = min{’c(c4k’4l )>T(c4k,4l+l )>T(c4k,4l+2 )>T(c4k,4l+3 )} .
This approach to the promotion of channel time frees
aggregation algorithm from clinch situations because
the neuron with minimum time will always be able to
move forward.

Block diagram of aggregative algorithm is shown
in Fig. 4. The main difference between this algorithm
from the previously considered is the presence of
branching which allows different promotions to
realize simulation time depending on the membership
of a neuron to the set O or set I. As the characteristic
¢ € O selected condition of the non emptiness of set
w, associated with the corresponding neuron c. Pro-
motion of local time for this type of neurons is the
group nature and is determined by the expression

1(C) = 1316151 {t(c,)}, which indicates that the local

time of the group t(C) equal to the minimum local

time of a neuron included in the appropriate group of
aggregative exchange. Resolution on the further
evolution can thus be obtained in the case where this
group is the local time at the minimum of all the
aggregative groups attached to a given communica-

tion channel.
( Begin )

in{t(c,)} I

T(c)<m
(c) o

>l
-

A
GetState

v

GetTime

I

Fig. 4. Aggregative simulation algorithm
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In case w=J we obtain the condition of be-
longing to a plurality of the neuron /. Progress in
promoting of local time for this type of neurons is
analogous to that discussed earlier in the description
of an asynchronous simulation algorithm.

VII. CONCLUSION

In this work we tested the possibility of using
neural networks for simulation of complex multi-
processor systems to improve their performance
characteristics. Cellular neural networks were used
for modeling, as soon as among all variants of neural
networks architectures they suit best for parallel
computing. Suggested to use locally asynchronous
methods specifically oriented toward the implemen-
tation of a cellular neural networks. Operation of this
approach to the organization of processes of interac-
tion between neurons allows implementing a variety
of models of asynchronous multiprocessor systems
through cellular neural networks in applications with
parallel structures by locally asynchronous method.
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