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Abstract—An attempt to check the “Subjective Entropy Extremization Principle” on the basis of the ne-
cessary and sufficient conditions is proposed. The maximizing preferences density distribution for a com-
bined continuous alternative is obtained. Mathematical models for the distributions “goodness” are in-
troduced. Calculation experiments are carried out. The necessary diagrams are plotted.
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I. INTRODUCTION

A transport systems operation is connected with a
control of its functioning processes in the situations of
multi-alternativeness. For example, it deals with the
problems of control in the field of flight safety, navi-
gation and others.

The responsible person (operator/pilot) solves a
specific controlling problem of operational (safety,
navigational, combined etc.) uncertainty using a dis-
tribution of his/her own preferences in regards with the
considered by him/her set of reachable for his/her
goals set of operational alternatives.

The problem formulation in the general view and
its relation to important scientific and practical tasks
refers to the necessity of having some “goodness”
estimates for the extremal preferences density distri-
butions.

II. ANALYSIS OF THE LATEST RESEARCHES
AND PUBLICATIONS

In the following latest researches and publications
it was brought forth the solution to the given problem.

A. Criteria

One of the closest to ours attempts was made in
works [1], [2] where the important notions of an ag-
gregation of performances [1, P. 264, (1)], preferences
for alternatives [1, P. 265, (2)], social temperature [1,
P. 266], and Shannon normalized entropy [1, P. 266,
(3)] were used to simulate experiments with group
decision processes.

Such kinds of criteria are applied in the presented

paper.

B. Application of the Subjective Entropy Max-
imum Principle

In the context of an active system control, we use
the postulated in subjective analysis [3] — [6] principle
of the maximum of the subjective entropy of individ-
ual preferences.

The mentioned principle happened to be a very
useful and helpful tool for solving control problems in

the variety of applications [3] — [11]. In particular,
papers [7], [8] are about control in active systems with
respect to psychophysics laws. And the well known
laws: Weber-Fechner, Stevens, Zabrodin (for stimuli
and sensations/perceptions connections), Jakob Ber-
noulli (subjective value) are revealed anew on the
basis of the postulated variational principle.

Recursive models for active control systems with
memory are considered in paper [9]. Quasi-closed
(closed for substance, energy, and information, the
latter is just in the conserved view) active systems are
able to reduce their own entropy.

Entropy measures of certainty/uncertainty com-
piled on the basis of the traditional entropy of the
Shannon’s view and their “goodness” and “badness”
are discussed in work [10].

Continuous alternatives preferences densities dis-
tributions are obtained in paper [11] with the help of
the subjective entropy maximum principle.

Methods of calculus of variations [12], [13] are
used in this paper.

All the initial ideas of [3] — [13] have been laid
down into the basement of the presented problem
solution.

III. OUTLINING THE PREVIOUSLY UNSOLVED
PARTS OF THE GENERAL PROBLEM

Individual preferences densities distributions ob-
tained for continuous alternatives of common value
separately for each discrete alternative got in work
[11] do not show themselves the “goodness” of the
optimal/best values amongst them.

It is necessary to check the extremality of the ob-
tained distributions.

IV. FORMULATION OF THE PAPER’S MATERIAL
OBJECTIVES (PROBLEM SETTING)

This paper is intended to make an attempt to check
the extremization on the basis of necessary and suf-
ficient conditions.
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Then, it will be necessary to introduce some
measures for continuous individual preferences den-
sities distributions which conveniently indicate their
“goodness” as a parameter of the operational control
optimality.

V. CONSIDERATION OF THE RESEARCH’S
MAIN MATERIAL WITH THE COMPLETE SUBSTANTIA-
TION OF THE ACHIEVED SCIENTIFIC RESULTS

When there is a set of discrete operational alter-
natives each of which has a common continuous
alternative, like in cases considered in paper [11], we
use a combination of described there methods of
subjective analysis to find extremums.

A. Specific Case of Two Alternatives

For the presented paper let us consider a set of two
discrete navigational alternatives, for example, two
equal in width gates that an airplane can fly through.
For each of the given two discrete alternatives
(gates), there is a common continuous alternative (the
width of the gates). The effectiveness (flights through
each of the gates) functions are characterized with
some values (of possible losses, for instance).

Let us say, the effectiveness functions and cor-
responding preferences, for both discrete and conti-
nuous alternatives (densities of corresponding pre-
ferences distributions) are given in the view shown in
Fig. 1.
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Fig. 1. Effectiveness functions, preferences densities distributions, and corresponding preferences functions
for the related alternatives

In Fig. 1 it is presented the effectiveness functions
R, (x) and R, (x) for the two navigational alterna-

tives; m,(x), m, (x), and n(x) are densities distribu-
tions of the preferences for the first, second, and

common continuous alternatives of the first and
second discrete alternatives, and in common case,
when the both continuous alternatives form the

common one, in regards; 7, (x) and 7, (x) are pre-
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ferences functions for the discrete alternatives;
1

X =X

, where x, and x, are the boundary values of

2
X

— illustra-

the independent variable, " X -

dex szdx

% %
tive uniform, linear, and squared densities distribu-
tions for comparison of the optimal n(x) with the
others and revealing its “goodness” in this context.

The density distribution of the common prefe-

rence TE()C) , the common distribution for the common
continuous alternative, is a polymodal density dis-
tribution of the preference, unlike the separate ones of
n,(x) and ,(x) for the continuous alternatives of
the two given discrete navigational alternatives with
their own preferences functions of =, (x) and =, (x)
for the corresponding effectiveness functions of
R, (x) and R, (x) shown in Fig. 1 in the scale factor

of % for the expositional ease.

The advantages of the density distribution of the
common preference Tc(x) , obtained with a special
kind of integrand, is that it is visible from the shape of
the density distribution what the preference density is
the highest; i.e. the mode of the distribution in com-
bination with the discrete preferences Tcl(x) and

Tc2(x) or the density distributions of the separate
navigational alternatives preferences Tcl(x) and

n,(x) shows which discrete alternative is the best,

how much it is better (more optimal in case of po-
lymodal density distribution), thus the absolutely
optimal value of the common continuous alternative
for the considered navigational optional problem with
the corresponding effectiveness functions of R, (x)

and R, (x)

B. Canonical Distributions of Preferences of
Alternatives
The density distributions TE()C), nl(x), and 7, (x)
are obtained with the help of canonical expressions:
e—ﬁx’Rf(x)

T (x)=

)jl e PR gy

X0

(1

where f3; are corresponding endogenous parameters
(analogous to the inverse social temperature) of the
responsible person’s psych.

Expressions (1) are got from the functionals:

.H_ x)In, (x)—Bre, (xR, (x)Jdx +

+7y jni(x)dx—l —InAx,

X0

2

where v is a weight coefficient for the normalizing

condition,
Ax is a degree of accuracy at the entropy deter-
mination,

J.[ 11‘17E Bn(x)lntegmnd(x)]dx
3)
+ y{[ m(x)dx —1:] —InAx,
where
_ Ry(x) if R,(x)< R (x)
Integrand (x) = R, (x) otherwise -(4)

For discrete alternatives, preferences functions are

e*BiRi(x)

®)

=1

~.

The preferences of (5) are yielded by functional

——zn —Bgni(x)R .
+y§fni(x)—1] (6)

C. Conditions of the Extremum

Both (1) and (5) types of preferences are obtained
on the basis of the necessary conditions for an ex-
tremum to exist in the form of the well known Eu-
ler-Lagrange equation:

OF _df[oF"|_,
on, dx| on' ’
where F" is the underintegral function of function-
als (2), (3) or the functional itself in the case of (6).
Accordingly to the methods of calculus of varia-
tions [12], [13], for the sufficient conditions of having
the extremum, we ought to add two more conditions to

(7). Namely, for the weak maximum of (2), (3), (6)
along with the extremal, [12, p. 115, § 24]:

ll’lTC
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— the strengthened condition by Legendre. This con-
dition replaces by itself the condition of nonposi-
tiveness of the Weierstrass function, [13, p. 375].

Also, the segment of [xo, xl] does not contain
points adjoint to the point of x = x,, (the strengthened
Jacobi’s condition). This condition replaces by itself
the requirement of the possibility for the given ex-

tremal to be included into the extremals field.
But for (2), (3), (6) the condition of (8) turns into

Fl. =0, ©)

as the functionals do not depend upon the derivative
of n' explicitly.

Let us analyze the necessary sign of the second
variation:

qu)n [hn]
: 10
:% (ool +2F, b+ Fl bl )dx, "

R

where h, =h,_ (x) is an increment of the function of
T, =T, (x)

Hence, it will be necessary, instead of (8) and
because of (9) and through (10),

*

F . <0. (11
Indeed,

F:‘ =—Inn, -1-B,R, +v, F =—L<0. (12)
i TC.

T
i

Which, at the absence at the segment of [xo, xl]

of the adjoint to the point of x = x,, points, will en-

sure the maximum to the functional.
Concerning the latter condition the Jacobi’s equ-
ation:

(F:/n/ —diF,:,n; ju —%(F:;n;u’)z 0, (13)

x
om,(x, C)
oC

each fixed from the family of the curves, where C is
a parameter of the bunch of the extremals with the
center in the initial boundary point of A(x,, Tfi(xo ))

where u = is a certain function, along with

Although, for the specific case, the equation of
(13) does not help much, since

F;mu:(), = u=0, (14)

because of (9) — (12).

D. Experiments

Calculation experiments for functional (3) with
the data x, =1, x, =3, =09, Ax=0.01,

1
R =b(x-d )" +——, 15
1(x) 1(" 1) +a1(x—d1) (15)
b =3,d =0999, ¢, =3, a, =05,
Rz(x)=0.5+b2(x—d2)“'2+;, (16)
az(x_dz)

b,=3,d,=0657, ¢,=3, a,=0.75, give the
results illustrated in Fig. 1.

In order to check the existence of the maximum,
let us consider the functional of (3) with the densities

of preferences of , nl(x), and T, (x) as some

1 0
variations of the extremal preference density of m(x).

) nl(x)
1 0

and T, (x) in functional (3), we can make sure in the
maximum existence provided with the density dis-
tribution of Tc(x).

It is represented in Fig. 2.
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Fig. 2. The values of the optimized functional

Thus, the responsible person controls the opera-
tional process, through the optimal preferences den-
sities distributions as the optimal process controlling
functions, with respect to the minimization of the
corresponding negative effects of the considered
operational alternatives related with the functions of
possible risks (losses, harmfulness etc.) Ri(x) and

uncertainty of the choice.
In Fig.2 it is depicted: @ is for the value of
integral (3); @, as the value of integral (3) variated
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with preferences distribution 7,(x); ®, — the same

— with

€

with nl(x); ®

X~ X
We have to say that unconditional entropy does
not give the same result. Using the equation for the
entropy of the individual preferences densities dis-
tributions:

ch) = —J.ni(x)lnni(x)dx —InAx,

Xo

(17)

we get the following picture shown in Fig. 3.

S5.298, 33
HAx
— sk |
HAx1
HAx2
451 —
H max  fpececccccccccccccaaa
4308, 4 |
2 3
L X 3.

Fig. 3. Entropies of preferences densities distriburions

In Fig. 3 it is depicted: HAx is for the value of

integral (17) H,, with n(x); HAx1 — HS) with
Ttl(x); HAx2 — Hgi) with nz(x); H max - Hgfx)
with
1
m,(x)= (18)
X=Xy

It is quite naturally that the uniform preferences
density of (18) delivers the maximal value to the
subjective entropy of (17). This situation radically
differs from that one with the optimized functional
(3). Which is visible from the comparison of the
correspondingly considered values in Fig. 2 and
Fig. 3.

E. The “Goodness”

In order to discover the “goodness” of the optimal
preference’s density distribution TE(X) , let us intro-
duce the following measures:

Info) -7, (x) (19)

Here, in measures (19), integrals @) and

Do) = P ) -

@ (,) are taken from the form of (3) with the cor-

responding preferences densities of: TE(X) and nl(x),
nz(x), in the form of (1), obtained from the related

(3) and (2) functionals; and 7, (x) in the form of (18).
As far as we can see the measures of (19) take into
consideration the absolute differences between the
compared preferences densities distributions and
increment values of the optimized functionals with
the integrand of (4).
It is logically to choose w, (x) of the expression of

(18) for the basis comparison distribution since it
delivers the maximal value to the subjective entropy

of HS;) of the functional of (17) and means total
uncertainty of controlling functions (individual pre-
ferences densities) for the according alternatives in an
operational situation.

Also, let us introduce the following combined
measures:

)7 (x)

)=, () (@ ) =@ ): Do) = Pr(v)

[, ()= m ) @ =P
I ()=, (x) P =P

and many all other possible combinations.
These models of (20) have a meaning of a com-
parison of the second order. They consider first dif-
ferences and increments, the varieties of their abso-

lute and relative values.
One of the models of (20), in particular

|TC()C)— TCi(xl . CDT[(X) _ch[(x)
|TE(X)— T, ()C) (Dn(x) _(Dne(x)

which considers the basis of 7, (x), gives a result

; (20)

, e2y)

illustrated in Fig. 4.
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F. The Researches Results

The presented researches, described with the
formulas of (1) — (21), portrayed in Fig. 1 — Fig. 4,
give the following results. The obtained optimal
controlling functions are (1) and (5) for operational
controlled functionals (2), (3) and (6) in case of the
continuous and discrete operational alternatives (see
Fig. 1).

Sufficient conditions of maximum in the given
case are (7) and (11) instead of (7) and (8).

The maximal value of functional (3) (see Fig. 2)
corresponds with the minimal one of losses (15) and
(16) (see Fig. 1). It does not coincide with the max-
imal value of subjective entropy (17) (see Fig. 3).

For the evaluation of the extremal control
“goodness” there is a few models (19) — (21).

The variant of (21) is an interesting one because it
shows all climaxes and corner points (see Fig. 4) of
the functions depicted in Fig. 1 in the relative inter-
pretation which is rather convenient.
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Fig. 4. Relative “goodness” of the optimal preferences densities distriburions compared with its “goodness”
to the uniform (maximal subjective entropy/uncertainty) one

CONCLUSIONS ON THE PRESENTED RESEARCH

The proposed approach allows finding optimal
control functions as extremals. And describe their
“goodness” in some convenient manner. It is imposs-
ible to see the advantage of the optimal preference
density distribution of m(x) on the basis of the sub-

jective entropy itself in the traditional view of (17).

PROSPECTS OF FURTHER STUDYING
IN THE SPECIFIED DIRECTION

The further researches are worth of investigating

some other models of the optimal control “good-
ness”.
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