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Abstract—The questions of Galois and Fibonacci random size n  primitive matrices creation over the 
simple field ( )GF p  is considered. The synthesis is based on usage of irreducible polynomial nf  of degree 

n  and primitive elements of extended field ( )nGF p , which is generated by polynomial nf . The ways of 
linked primitive matrices of Galois and Fibonacci are offered. The possibilities of such matrices 
application are described. 
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I.  INTRODUCTION 

There is a problem of binary pseudo random 
sequences (PRS) creation in theory and practice of 
cryptographic security system for sequences of 
maximal length 2 1,nL    with acceptable static 
characteristics. Usually PRS generators implement 
by means of linear shift registers (LSR) of maximal 
period with linear feedbacks [1]. We will extend the 
concept of PRS in these articles, assuming each digit 
(memory cell) can reside in of states ( ),s GF p  

2p  . Let's call such registers as “generalized linear 
shift register”. 

The main goal of research is an invention of al-
gorithm for generalized matrix Galois and Fibonacci 
of order n  over field ( ),GF p  2,p   which is un-
ambiguously define the structure of corresponding 
n digit LSR of maximal period as long as PRS 
Galois created on their basis. 

IІ.  CONCEPTUAL-TERMINOLOGICAL DEFINITIONS 

The main terms we need to clarify are: “primitive 
polynomial” and “primitive matrix”. The definition 
for “linked Galois and Fibonacci matrices”, “genera-
lized generators of pseudo random Galois sequences” 
and others would be given later. 

In Galois field theory which is the basis of 
noiseless coding, cryptography and creation of 
modern electronic circuits of data transfer, the crucial 
concept is irreducible polynomial (IP). A polynomial 
of one variable x  degree n  

0

( ) ,
n

n i
n n i

i

f x u x 




  ( ),iu GF p  1,nu        (1) 

is called irreducible over field ( ),GF p  if it can't be 

divided on any polynomial of less degree over the 
given field. 

Polynomial (1) is written in so called algebraic 
form. It is also can be presented as a sequence of its 
coefficient 

1 1 0 ,n n n if u u u u u    

which we call as vector form IP. 
The most important property of final extended 

fields of Galois ( ),nGF p  which are generated by IP  

nf  and actually of simple fields ( ),GF p  is for each 
of its non-zero element g  there should be an inverse 
element 1 ,g   which is 1(mod ) 1.ng g f   The 
described condition is true only if p  is a prime 
number. From which it is follows the property p  of 
Galois field, as simple and for extended ( )GF p  
should be a prime number. 

For convenience, let’s introduce for the 
polynomials a notion, which is called the 
characteristic p  of polynomial ,nf  which coinciding 
with characteristic p  of simple Galois field.  

The set IP contains important for cryptographic 
applications, informatics, electronics and other 
branches of science and technique, subset of so call 
primitive polynomial (PrP). There are different 
variants of “primitive polynomial” definition. 

In algebra, numbers theory and Galois fields [2] 
irreducible polynomial nf  of degree n  is called 
primitive over ( )GF p  in the only case if it is – 
normalized polynomial, for which nf  is not equal to 
zero and  

ord ( ) 1.n
nf p   

In theory of noiseless coding [3] irreducible over 
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( )GF p  polynomial nf  is called primitive if its root 
  is a primitive element of extended field ( ).nGF p  

And finally, in cryptographic [4] the primitive is 
such an irreducible polynomial ( ),nf x  which can 
divide without leftover binomial 1,ex   its true while 
the minimal e  is given by 

1.ne p                             (2) 

The drawback of these definitions is that they do 
not reveal the physical sense to the full extent which 
makes it harder to give it engineering interpretation. 
For this purpose PrP may probably be more suitable. 

The primitive is a such irreducible polynomial 
over ( )GF p  polynomial nf  in degree n  (necessary 
conditions), which generate an extended Galois field 

( )nGF p  for which the minimal construction element 
  coincide with the property of polynomial p  
(sufficient conditions). 

The other possible definition is: the primitive over 
the field ( )GF p  is called an irreducible polynomial 

nf  in degree ,n  which constructs a cyclic group of 
maximal order 1np   while the minimal construction 
element   of the group coincide with the property of 
field .p  

Coefficients ,ku  0, ,k n  of polynomial nf  
belong to field ( ),GF p  i. e. ( ).ku GF p  But for any 
radix of positional number system (PNS) m , 
including m p  is the radix itself, i.e. the m  digit is 
written as 10. So, for each p  PNS and as a result for 
each field ( ),nGF p  generated by PrP nf , ( 1)k  
degree of minimal primitive element 10   field, 
which can be represented by ration 1 ,k k     is 
constructed by offset of k  value to one digit (as a 
result of multiply in p  digit 10). If it turns, that the 
older non zero digit of value 1k  is moved to n 
digit (digits are enumerated from left to right starting 
from zero position), so the value 1k  lead to residue 
by mod nf . 

Now let's explain the “primitive matrix” definition. 
Let ,( )i jA a is a positive non confluent matrix of 

1n   degree over the field of integral nonnegative 
numbers so as , ( )i ja GF p  for each , 1, ,i j n  and 

,( )i jE   , where ,i j  a Kronecker symbol is a 
singular matrix of the same degree as A . The A  
matrix is considered to be nonsingular in ( )GF p  
field if its determinant det A  by module p  is not 

equal to zero, i. e. det (mod ) 1, 1,A p p   where 

p  prime number. The operation of getting in degree 
d  of matrix A  is conducted in a loop of subtractions 
by p  module while each element of dA  matrix 
starting from zero position for which 0A E  creates 
a cyclic group A   of exponent e . The A  matrix 
would be called primitive if the most minimal natural 
e  fits ratio (2) while .e EA   The essence of 
“primitive” matrix is more like the essence of 
“primitive element” of field ( ).nGF p  

The primitive is a such irreducible polynomial 
over ( )GF p  polynomial nf  in degree n  (necessary 
conditions), which generate an extended Galois field 

( )nGF p  for which the minimal construction element 
  coincide with the property of polynomial p  
(sufficient conditions). 

The other possible definition is: the primitive over 
the field ( )GF p  is called an irreducible polynomial 

nf  in degree ,n  which constructs a cyclic group of 
maximal order 1np   while the minimal construction 
element   of the group coincide with the property of 
field .p  

Coefficients of polynomial nf  belong to field 
( ).GF p  But for any positional base of counting 

system (PNS) ,m  including m p  is the base itself, 
i. e. The m  digit is written as 10. So, for each p 
PNS and as a result for each field ( )nGF p  generated 
by PrP ,nf  ( 1)k   degree of minimal primitive 
element 10   field, which can be represented by 

ration 1k k    is constructed by offset of k  
value to one digit (as a result of multiply in p  digit 
10). If it happens the older non zero digit of value 

1k  is moved to n  digit (digits are enumerated 
from left to right starting from zero position), so the 
value 1k  lead to residue by mod .nf  

Now let's explain the “primitive matrix” definition. 
Let ,( )i jA a  is a positive non confluent matrix of 
degree 1n   over the field of integral nonnegative 
numbers so as , ( )i ja GF p  for each , 1, ,i j n  and 

,( ),i jE    where ,i j  a Kronecker symbol is a 
singular matrix of the same degree as .A  The A  
matrix is considered to be nonsingular in ( )GF p  
field if its determinant det A  by module p  is not 
equal to zero, i. e. det (mod ) 1, 1,A p p   where 
p  prime number. The operation of getting in d  

degree of A  matrix is conducted in a loop of 
subtractions by p  module while each element of dA  
matrix starting from zero position, for which 0A E  
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creates a cyclic group A   of degree .e  The A  
matrix would be called primitive if the most minimal 
natural e  fits ratio (2) while .eA E  The essence of 
“primitive” matrix is more like the essence of 
“primitive element” of field ( ).nGF p  

III.  CLASSIC PRIMITIVE MATRIXES OF GALOIS 
AND FIBONACCI 

The terms “Galois matrix” and “Fibonacci matrix” 
are taken from theory of cryptography and coding [1], 
[4], where the generators of pseudo random 

sequences of Galois and Fibonacci are widely 
applicable and based on LRS with linear feedbacks. 
We will call them PRS generators of Galois and 
Fibonacci. 

It is known, that the LSR to be the register of 
minimal period, the corresponding feedback 
polynomial shall be a primitive polynomial. The 
structural schema of generator and configuration of 
Galois is shown on Fig. 1, for which the linear 
feedback link are created PrP 8 101001101.f   
Galois generator confronts with each non zero 
element of field 8(2 )GF  corresponding degree of 
primitive element 10   by module 

8 101001101.f 

 
Fig. 1. Structural schema of Galois generator over PrP 8 101001101f   

As elements of LSR memory discharge used 
usually D  triggers, the signal level at the output of 
which (“0” or “1”) repeats the level of the input signal. 
The element   in LSR implements the addition 
operation by module 2 (XOR operation). As it seen 
from structural schema of generator (as an example 
shown in Fig. 1) the feedback links in simple 
(classical) Galois registers (generators) 
unambiguously defined by chosen PRP nf  and 
created like this: responses of each digit comes to 
inputs of subsequent digits for which they are 
stimulating functions. Besides, the response of older 
register digit is supplied (by XOR schema) to inputs 
of such and only such register digits the numbers of 
whose coincide with non-zero monomial PRP 
numbers. At that the lower monomial, which reside to 
the right of nf  polynomial corresponds number 1 as 
for the lower digit ( D  trigger) of register. 

Let's identify fG  matrix using which we will 
compute the state ( )S t  of Galois registers at the 
moment of time t  using formula: 

( ) ( 1) , (0) 00000001,fS t S t G S    1, 2,t   . 

The very low row is selected by vector (0)S  (let's 
give it a number 1) of matrix fG . Consequently in 

the very low row of matrix fG  it is required to write a 
(1)S  value which coincide with minimal creational 

element (CE) 10   of field 8(2 )GF  over PrP 

8 101001101.f   Doing the same operation we come 
to the final matrix: 

0 1 0 0 1 1 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

fG

 
 
 
 
 
   
 
 
 
  
 

.         (3) 

According to (3), the algorithm of Galois matrices 
fG  synthesis can be described as following. Let's 

nf  is a vector form of PrP in degree n  so as 

 1 2 2 11, , , , , , 1 ,n n nf u u u u     0, 1 ,iu   

1, 1,i n   and 10   is the minimal CE of field 
(2 ).nGF  Now reside the CE to the right of the very 

low row of fG  matrix and fill elements of it using the 
strict rule. Place identities for elements which reside 
in diagonal lower from main diagonal of the matrix, 
and place zeroes for elements which are left, except 
elements of top row. It is assumed to get ( 1)n   byte 
vector in the top row of matrix .fG  This is 
unacceptable because the degree is equal to .n . 
Taking this ( 1)n   byte vector to remainder by 
module nf  we come to the state where PRP nf  is 
placed in the top row of matrix fG  excluding its top 
unity, i. e. n  bits vector 1 2 2 1, , , , , 1.n nu u u u    

Using this simple rule, let's call it the simple rule 
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of diagonal completion; we get the general formula of 
Galois matrix of order n 

1 2 2 1 1
1 0 0 0 0
0 1 0 0 0

.

0 0 1 0 0
0 0 0 1 0

n n

f

u u u u

G

  
 
 
 

  
 
 
  
 





     



          (4) 

From matrix (3) and corresponding structural 
schema LSR (see Fig. 1) comparison we get values of 
function initiation ( )k t  of classical PrP generators 
for Galois configuration at any point of time .t  Let's 

( )ks t  is a state of k  digit ( D  trigger) of Galois 
register. The register's state  1( ) ( ), ( ),n nS t s t s t

2 1, ( ), ( )s t s t  in initial point of time 0t   is 

 (0) 0, 0, , 0,1 .S    So for each moment of time 
1t   the function of initiation ( )k t  k  digit of 

register would be defined by  

1 1( ) ( 1); ( ) ( 1) ( 1),

2, 1, 2, ...

n k k k nv t s t v t s t u s t

                       k n t

     

 
 

In addition to Galois matrixes we can introduce 
Fibonacci matrixes fF  over PRP nf  which 
correspond to LSR using the Fibonacci schema 
(Fibonacci PRP generators). Fibonacci matrixes fF  
self-including mutually unambiguously connected 

with Galois matrixes fG  by operator of right-hand 
transposition   (transposition relatively to helper 
diagonal), i. e. 

.f fF G                         (5) 

It is possible to come to Fibonacci matrixes of 
n  degree according to ratio (5), as a result of 
right-hand transposition of matrix (4) we have: 

1

2

2

1

0 0 0 0 1
1 0 0 0
0 1 0 0

.

0 0 1 0
0 0 0 1

f

n

n

u
u

F

u
u





 
 
 
 

  
 
 
  
 





     



          (6) 

The special case (6) is Fibonacci matrix over PRP 
in degree eight 8 101001101,f   which created by 
right-hand transposition of matrix (3), i. e. 

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1

.
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0

fF

 
 
 
 
 
   
 
 
 
  
 

           (7) 

The structural schema of PrP generators in Fibo-
nacci configuration which correspond to matrix (7) is 
shown on Fig. 2.

 
Fig. 2. The structural schema of Fibonacci generator over PRP 8 101001101f 

IV.  CONCEAL GENERATORS OF GALOIS 
AND FIBONACCI 

An x  element of some group X  is concealed to 
element x  of the same group in group theory if there 
is some element z X which is 

1 .x z x z                             (8) 

By analogy with (8) let's introduce formal 
definition of conceal matrixes of Galois and 
Fibonacci using 

1 ,M P M P                          (9) 

where M  is matrix G  or ,F  and P matrix which 

is called a transition matrix from M  to .M   
As it follows from ratio (9) matrixes M  are the ma-
trixes which are alike M and thereby have properties 
of matrix .M  It is signification the matrixes G  and  
F   is called concealed matrixes G  and F  corres-
pondingly using just formal similarity of (8) and (9). 
For the matrix P  the matrix of inverse rearrange-
ment (IR) is chosen in this article which we symbol-
ically mark with 1 digit, where 1 – symbol of the 
operator inverse permutation is an involute square 
matrix of order n,  on the auxiliary diagonal which is 
ones and zero in other elements. 

IR matrix is involute, i. e. matrix which is 
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self-inverse. This means 21 1 1 .E    So 

1 1, 1 1;
1 1, 1 1.

G G G G
F F F F

 

 

     

     
               (10) 

and, as a result 

 , , .M M M G F                (11) 

Multiplication of square matrix M  times IR 
matrix from the left is equal to rows of M  matrix 
inversion, and from the right – to columns inversion 

of the same matrix. So, conceal matrix M   can be 
obtained from M  matrix by means of mutual 
inversion of its rows and columns conducted in any 
order. 

According to mutual unambiguously compliance 
(11) any of described Galois and Fibonacci matrixes 
(base M and conceal M  ) can be obtained by means 
of similarity transformation from another matrix. The 
combined forms of classical conceal matrixes of n 
degree, according to (4), (6) and (10) are:

1 2 2 1

0 1 0 0 0
0 0 1 0 0

;
0 0 0 1 0
0 0 0 0 1
1

f

n n

G

u u u u



 

 
 
 
 

  
 
 
  
 




     




        

1

2

2

1

1 0 0 0
0 1 0 0

.
0 0 1 0
0 0 0 1

1 0 0 0 0

n

n

f

u
u

F
u
u







 
 
 
 

  
 
 
  
 




     




According to (12) for conceal matrixes 
fG and 


fF over PrP 8 101001101f we came to structural 

eight digit PRS Galios and Fibonacci generators, 
depicted on Figs 3 and 4 respectively:

 

 
Fig. 3. Structural schema of conceal Galois generator over PrP 8 101001101f   

 
Fig. 4. Structural schema of conceal Fibonacci generator over PrP 8 101001101f 

Initiation functions of D  triggers for classical 
n  digit linked PRS Galois and Fibonacci generators 
(the initial states for both generators are the following: 

1(0) 1,s   (0) 0,ks   2, , k n  where 8n  ) is 
described by: 

1 1 1( ) ( 1); ( ) ( 1) ( 1),

1, 1 1, 2, ...;

n k k n kt s t t s t u s t

                 k n t

        

  
 

and 

1

1 12

( ) ( 1), 1, 1;

( ) ( 1) ( 1),

1, 2, ... .

k k

n

n k kk

t s t k n

t s t u s t

                    t





    

    



 

V.  LINEAR TRANSFORMATIONS IN PRS 
GENERATORS 

Using the comparison of base Galois G  (4) and 
Fibonacci F  (6) matrixes as well as from conceal 
variants G  and F   (12) and could be easily defined 
(Table 1) operators of one well known matrix 
transformation into another. 

TABLE 1 

OPERATORS OF MATRIXES TRANSFORMATION 

 G    F  G   F  
G  —   T  T 
F    — T T  

G  T  T —   

F  T T    — 
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According to Table 1, if two matrixes belong to 
different subgroups (let's call them subgroups of 
Galois and Fibonacci), at that one of matrixes is 
conceal, so they linked by operator of classical 
transposition T.  

By analyzing structural schemas of simple special 
LRS generators over PrP 8 101001101f   generators, 
shown on Figs 1–4, we came to general 
transformation rules, gathered in Table 2, the 
schemas of linear feedbacks (LF) of well known PRS 
generator over given PrP nf  to schemas LF for any 
of three types of left generators. Unlike from Table 1, 
in which by G , F , G  and F   symbols are used to 
define primitive matrixes of PRS generators, the 
same symbols in Table 2 is used for symbolically 
define schemas of feedbacks in corresponding 
generators. 

TABLE 2 

OPERATORS OF FEEDBACKS TRANSFORMATION 

 G  F  G  F  
G  — 1 1  1  1  
F  1 1  — 1  1  
G  1  1  — 1 1  
F  1  1  1 1  — 

The sense of “schemas of feedbacks” in G , F , 
G  or F   PRS generators can be explained by 
looking at their styled graphical representation shown 
on Fig. 5. Please notice on such F distinctions. While 
in base G  and F  PRS generators their feedbacks are 
conducted clockwise so in conceal G  and F  – 
counterclockwise. 

 

 
Fig. 5. Styles representation of feedbacks in PRS generators

Let's make it exact the physical sense of 
transformation operators from tables 2. Operator 1  
means the schema LF, which is marked by  , symbol, 
is being rotated by 180 relatively to vertical axis. 
Such transformations happen, as it stands from Fig. 5, 
in generator pairs ( , )G G  or ( , ).F F   Operation 1  
is alike operation of inverse shifting of columns of 
matrix ,M  which is implemented if it would be 
multiplied times matrix of inverse transformation 1. 
By 1  operator the rotation of F schema is conducted 
relatively to horizontal axes. Thus, operation 1  is 
alike operation of inverse transformation of rows of 
matrix M  if it would be multiplied times matrix of 
inverse transformation from the left. Mentioned 
transformations of feedbacks are having place in 
generator pairs ( , )G F   or ( , ).F G  And finally 
operator 1 1  means the F is being rotated on 180
relatively to both vertical and horizontal axes. Such 
transformations are being executing in generator 
pairs ( , )G F  or ( , ).G F   

VI.  GENERALIZED PRIMITIVE GALIOS MATRIXES 
OVER (2)GF  

In this section we will describe the algorithm for 
primitive Galois matrixes construction and others 
related matrixes where primitive elements 

2 10p     of field (2 )nGF  over random 
irreducible polynomial nf  in degree n is used as the 
base construction elements. 

To solve the task of synthesis of primitive 
matrixes let's use the generalized rule of diagonal 
completion the sense of which is in following. First of 
all for the very low row of G  matrix fill the 
construction element   which is a primitive of 

( )nGF p  field over chosen IP nf . The row elements 
to the left of   are filled with zero. The following 
rows of the matrix (in direction from bottom to top) is 
constructed by means of previous row shifting for 
one digit to the left. If it happens the oldest nonzero 
digit of the row goes off the matrix's limits, the 
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vectors responsible from such rows, gives a residue 
by module CE nf  and the row is getting n  digit. 

Let's 8n   and 8 101001101.f   Choose, as for 
example, IP 2 101101.D    Here we go to 
primitive Galois matrix which is depicted as: 

1 1 0 0 1 0 1 0
0 1 1 0 0 1 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

.
0 0 1 0 0 1 0 1
1 0 1 1 0 1 0 0
0 1 0 1 1 0 1 0
0 0 1 0 1 1 0 1

fG

 
 
 
 
 
   
 
 
 
  
 

       (13) 

Generalized Galios G  matrix corresponds to 

generalized Fibonacci F  matrix, which is created by 
means of right-hand transposition  operator of 
matrix (13), i. e. 

1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 1 0 1 1 0
1 1 0 0 1 0 0 1

.
0 1 1 0 0 1 0 0
1 0 1 1 0 0 1 0
0 1 0 0 1 0 1 1
0 0 1 0 0 1 0 1

fF

 
 
 
 
 
   
 
 
 
  
 

          (14) 

Using the 1 1  operator matrixes (13) and (14) 
transformed into generalized conceals matrixes G  
and F   described as:

 

1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0
0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0
0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1
1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0

; .
0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1
0 0 1 0 1 0 0 1 0 1 1 0 1 1 0 1
1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0
0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1

f fG F 

   
   
   
   
   
       
   
   
   
      
   

Let's examine an example of synthesis of genera-
lized primitive matrixes and generators of Galois. 
Choose a polynomial of fourth degree of 4 11111f   

degree which is not a primitive and a primitive CE   
of fG matrix equal to 111. Matrixes which fit chosen 
generators properties look like

 

0 1 1 0 1 0 1 0
0 0 1 1 1 1 1 1

1 ; 1 ;
1 1 1 0 1 1 0 1
0 1 1 1 0 1 0 0

G F

   
   
    
   
   
   

  

1 1 1 0 0 0 1 0
0 1 1 1 1 0 1 1

1 ; 1
1 1 0 0 1 1 1 1
0 1 1 0 0 1 0 1

G F 

   
   
    
   
   
   

.             (15)

Structural schema of generalized base fourth digit 
Galois generator which coincides with generalized 
schema of base Fibonacci generator is shown in 
Fig. 6. The registers of generators are located verti-
cally and marked with   symbol. They implement 
multiplication operation. Registers, marked with 
symbol, – addition operation of register content by 
module 2. 

If we would place the columns elements of 1G  
matrix from system (15) we would get the PRS ge-
nerator by Galois schema. For the case if using the 
same registers we would use elements from 1F  ma-
trix, so we would get the PRS by Fibonacci schema. 
Schema of conceal PRS generators is shown on 
Fig. 7. 

In much the same way as PRS generators, if for 
the multiplication registers of structural schema on 
Fig. 7 we would reside elements of 1G   matrix we 
would get the generalized conceal PRS generator by 
Galois schema. If using the same registers we would 
use elements from 1F  matrix so we would get PRS 
by Galois schema. 

The generalized primitive matrixes which belong 
to the same groud (Galois or Fibonacci) have amaz-
ing commutatively properties which can be explained 
as following. Let's 2 1011   is second primitive 
element of 4(2 )GF , fields which is different from CE 

1 111  . The following group of primitive matrixes 
correspond to creation element 2 :
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0 1 0 1 1 1 1 1
1 1 0 1 1 0 0 0

2 ; 2 ;
1 0 0 1 0 0 1 1
1 0 1 1 1 1 1 0

G F

   
   
    
   
   
   

1 1 0 1 0 1 1 1
1 0 0 1 1 1 0 0

2 ; 2 .
1 0 1 1 0 0 0 1
1 0 1 0 1 1 1 1

G F 

   
   
    
   
   
   

       (16) 

 
Fig. 6. Structural schema of generalized base PRS generators of Galois/Fibonacci 

 
Fig. 7. Structural schema of generalized conceal PRS generators of Galois/Fibonacci

For many primitive matrixes (15) or (16) we can 
select commutative and non-commutative matrixes. 
Commutative are the any pair of matrixes, which 
belong to one of two groups of monotonous primitive 
matrixes. The first monotonous group consists of 
Galois matrix ( G  group) which include primitive 
matrixes  1, 2,G G G 1 , 2 .G G   The second 
(F–group) include primitive Fibonacci matrixes 

 1, 2, 1 , 2F F F F F  . Thus, for example, matrix 

1G  is commutative with each of three 2G , 1G   or 
2G   matrix, but is not commutative with any of 

primitive matrixes from F  group. 
Besides such an interesting property of primitive 

base Galois matrixes G  over IP nf  and CE 10.   
The structure of degrees of G   matrixes, i. e. kG  
matrixes the same as structure of base G  matrix, i.e. 
the concept of diagonal rows completion is also 
applied. This means in order to compute the kG  

matrix it is enough to take CE   in k  degree and 
take remainder of k  value by nf  module and then 
apply the rule of diagonal completion using the CE 

( ) mod .k
k nf    This matrixes property would be 

considered in unit 6 where the isomorphism of Galois 
matrixes is described. 

VII.  SYNTHESIS OF PRIMITIVE GALOIS MATRIXES 
OVER ( ),GF p  2p   

Primitive matrixes over ( ),GF p  2p   are syn-
thesized using the same rules (diagonal completion) 
as matrixes over (2)GF do. Let's choose, just for 
example, 4,n   3p   and irreducible over (3)GF  
polynomial 4 12101.f   Let's 1102.  . Base ,G F  
and conceal ,G F   generalized Galois and Fibo-
nacci matrixes which correspond to chosen parame-
ters ,n    and 4f , look like:

1 1 1 2 2 2 1 2
1 0 2 1 0 2 2 1

; ;
2 2 2 2 1 2 0 1
1 1 0 2 1 2 1 1

G F

   
   
    
   
   
   

   

2 0 1 1 1 1 2 1
2 2 2 2 1 0 2 1

; .
1 2 0 1 1 2 2 0
2 1 1 1 2 1 2 2

G F 

   
   
    
   
   
   

        (17) 
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Structural schemas of generalized LSR are inva-
riant to the property of p  field. In particular, the 
structural schemas of fourth digit Galois LSR the 
feedbacks in which are given by G  matrix of (17) are 

shown on Fig. 8, moreover   is an addition operator 
by module 3.p   

The structural schema of fourth digit conceal Fi-
bonacci LSR the feedback of which is given by F   
matrix of (17) is shown on Fig. 9.

 
Fig. 8. Structural schema of LSR generalized Galois 

 
Fig. 9. Structural schema of LSR generalized Fibonacci

It is followed from Figs. 6 to 9 comparison 
structural schemas of base and conceal generators are 
invariant to operators of right hand transposition. 

At the finish line of the section need to pay your 
attention to the following facts. First of all, if even the 
only one matrix over the chosen IP is not primitive 
(this can happen only if chosen CE of matrix the 
Galois element is not primitive), the primitive 
property and commutative property are lost. 
Secondary, according to (17) conceal Galois and 
Fibonacci matrixes are matrixes which are created by 
similarity transformation of initial (base) G  and F  
matrixes. The matrixes of inverse shifting 1 are used 
in the role of transformation matrixes P . As it is 
knows, similar matrixes keep all properties of source 
matrixes. Up to this property, if G  and F  matrixes 
(simple and generalized) are primitive, so the G  and 
F   are. 

VIII.  ISOMORPHISM OF MATRIXES GALOIS 

It was stated in unit four that in order to compute 
k  degree of Galois matrix it is enough to take CE 
  of this matrix in k  degree then compute the 
remainder by nf  module using k  and afterwards 
apply the generalized rule of diagonal completion 

using ( ) modk
k nf    as creation element. 

Let's examine another interpretation of “diagonal 
completion” rule which is used for Galois matrix over 

( )nGF p  field synthesis. According to offered rule on 
the initial stage of fG  matrix synthesis the creational 
element   resides in lower (right) digits of the very 
bottom row of n  degree matrix. All following 
matrix's rows are created by means of shifting to one 
digit to the left of previous row, besides after this 
shifting the 0 is filled to the right released position. 
For the case when none zero older (left) element of 
the row under a shifting is moved out of matrix's 
limits then ( 1)n   digit p  vector is taken to 
remainder by mod nf . By this procedure such a row 
returns back to matrix's limit and the process of its 
completion of remained top rows is going using just 
described rule. 

The creational element   of Galois fG  matrix 
which contains 1k   digits which belong to ( )GF p  
field can be depicted as polynomial in k  degree of 
one of variable x , i. e. like  k x .  As it is known 
from polynomial theory, the multiplication of random 
polynomial  k x  of k  degree x  is equal to poly-
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nomial shifting for one digit to the left and thereafter 
equal to polynomial's degree increment by 1. Another 
word 

   1k kx x x .                    (18) 

Using (18) we can express the Galois fG  matrix 
of n degree as 

1 1

2 2

( ) (mod ).

1

mod

n n

n n

f

x x
x x

f f
x x

G









 

 

 

   
   

   
     
   

   
      

  (19) 

Elements l ,x  0, 1l n  , of right 
vector-column in (19) are polynomials of l  degree 
of single variable the vector form of which is 

( 1)

1, 0, ...0, 0, 0, 1.l

l

x l n


                 (20) 

Taking replacement in (20) into consideration we 
have the vector-column as 

1

2

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 11

n

n

x

x
E

x





   
   
   
    
   
   
   

  




    



,    (21) 

where E  is a single matrix of n–degree. 
Correlations (19) – (21) makes us able to formu-

late the conclusion: Galois fG  matrix of n degree 

over IP nf  unambiguously defined of its creational 
element .  Consequently Galois fG  matrixes of n 

degree over ( )GF p is isomorphs’ to it creational 
element ,  which belong to ( )nGF p  field. That 
means that there is a mutually unambiguously cor-
relation between fG  matrix and its CE, i. e. 

.fG    

IX.  CHARACTERISTIC POLYNOMIALS OF GALOIS 
MATRIXES 

The characteristic polynomial (CP) of nonsingular 
square matrix A  of order n is a polynomial of 
n–degree 

( ) det( )A E    , 

where E–the unity matrix of the same n degree, as A  
matrix [6]. 

An amazing property CP of matrix is: if the some 
matrices A  and B  are similar, then they CP 
coincide. The reverse is also true: if the matrices have 
identical CP, consequently the matrix similar.  

Let's have a look on analyses of characteristic 
polynomials of Galois, Fibonacci and conjugate 
matrixes. The following is true 

Statement: Characteristic polynomials of Galois 
and Fibonacci (both basic and conjugate) over 

( )GF p , 2p  , with a generating element 10  
are coincide with irreducible polynomials, which 
generate by data matrixes. 

The main point of the approval is 

( ) det( ) ( ),
nf nx M xE f x                  (22) 

where 
nfM  matrix G , F , G  or F , generated 

IP ( )nf x  and the generating element 10. . 
The proving of the statement can be conducted by 

method of direct verification. Indeed, let's choose, 
just for example, PRS of third degree 3 ( ) 1011f x  , 

2p  , for which 

1 1 0 1
( ) 1 0 ; ( ) 1 1 ;

0 1 0 1
G F

x x
x x x x

x x

 
     

      

1 0 1 0
( ) 0 1 ; ( ) 1 1 ,

1 1 1 0
G F

x x
x x x x

x x
 

 
     

 

where A determinant of matrix A . 
It is easy to make sure, that for all four matrixes 

the CP is the same, so they 3( ) 1x x x     are 
coincide with PrP 3 ( ).f x  

Using the same approach the verification of (22) 
equation can be conducted for matrixes, which are 
generated by irreducible polynomials, but with the 
proviso, that their GE are equal to 10. 

At the same time for generalized matrixes G , F , 
G  and F , so those for which GE 10 , the 
statement is not always true. Let's have a look on the 
example. Let's 2p  , 3( ) 1011f x   and 101  . 
So, we have 

0 1 0
0 0 1 ;
1 0 1

G
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3 2
1 0

( ) 0 1 1 1101,
1 0 1

G

x
x x x x

x


      


, 

i. e. ( )G x  does not coincide with 3( )f x . 

CONCLUSIONS 

The main result of the current research is an 
invention of algorithm for generalized base and 
conceal Galois and Fibonacci matrixes the elements 
of which belong to simple field ( )GF p  of 2p   
property. Those matrixes have amazing properties 
such as primitiveness and commutations which made 
it possible to create linear registers of maximal period 
and corresponding generators of pseudo random 
sequences. Structural schemas of generalized LSR 
are happened to be similar and invariant to registers 
n  orders as well as to p  properties of Galois field. 

It is worth mentioning the generalized LSR with 
linear feedback do not introduce any new properties 
to sequences which created by generalized PRS ge-
nerators because Golomb's postulates are kept the 
same way as for classical generators. 
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