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Abstract—A multidisciplinary optimization is used for the navigation equipment test table design. The six
discipline level optimizations are driven by a top system level optimization which minimizes the
manufacturing cost while at the same time coordinating the exchange of information and the interaction

among the discipline level optimizations.
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1. INTRODUCTION

The increasing complexity of engineering systems
has sparked increasing interest in multidisciplinary
optimization. Navigation equipment test table as
means of providing technical testing navigation
equipment in conditions close to the real flight.
Navigation equipment test table must ensure tests on
the parameters close to real, namely the
angularpositions, overload, angular velocity and
acceleration of all control channels. Moreover it must
ensure required reliability and credibility performance.

Six discipline level performances — dynamic
platform, gears, electric drives, electric drive control
subsystem, data acquisition subsystem, power supply
subsystem — are optimized simultaneously (Fig. 1).

The results from this design approach provides the
results to a single design which improves the
discipline level objective functions while at the same
time producing the highest possible improvement at
the system level.

Multidisciplinary design optimization can be
described as a methodology for the design of systems,
where the interaction between several disciplines
must be considered, and where the designer is free to
significantly affect the system performance in more
than one discipline. To ensure all navigation
equipment test table performances on the technical
design stage it is necessary to solve the task of
developing assembly units, functional task, the task
of software development, the task of selecting a set of
technical means, etc.

Discipline 1 Discipline 2
Dynamic Gears Discipline 3
plationn Electric
Drives
Navigation Equipment Test Table
Discipline 6 Discipline 5 Discipline 4
Power Data Acquisition Electric Drive
Supply Subsystem Control Subsystem
Subsystem

Fig. 1. Schematic of navigation equipment test table design multidisciplinary optimization process

The interdisciplinary coupling inherent in
navigation equipment test table design tends to
present additional challenges beyond those

encountered in a single-discipline optimization. It
increases computational burden, and it also increases
complexity and creates organizational challenges for

implementing the necessary coupling in software
systems. To address complexity of the navigation
equipment test table design task hierarchical
decomposition approach is used.

A hierarchic system is defined as one in which a
subsystem exchanges data directly with the system
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only but not with any other subsystem. Such data
exchange occurs in analysis of structures by
substructuring. A concept to exploit this in structural
optimization was formulated in Schmit and
Ramanathan [1] and generalized in Sobieszczanski-
Sobieski [2] and [3]. It was then shown in the latter
how the hierarchic decomposition derives from the
Bellman's optimality criterion of the dynamic
programming. The concept was also contributed to
by Kirsch, [e.g., Kirsch, 4]. It was demonstrated in
several applications, including multidisciplinary
ones, €.g., Wrenn and Dovi [5] and Beltracchi [6].

Sobieski [2] proposed an approach described most
appropriately as a linear decomposition strategy.
Here, the coupling between subproblems was
represented at the coordination problem level; this
was achieved by using a linear extrapolation of the
subproblem optimal design with changes in the
coordination problem design variables. The
approach, although effective for the class of problems
considered, was not without its drawbacks. Perhaps
the most significant problem that could exist with the
approach in more realistic problems is the accuracy
with which the subproblem optimal design is
represented at the coordination problem level. This
representation requires the sensitivity of the optimal
design in each subproblem to prescribed problem
parameters, where the latter are the coordination
problem design variables. Methods to obtain this
sensitivity are restrictive in that the sensitivity is valid
for a limited change in the problem parameters; this
translates into tighter move limits in the coordination
optimization problem.

Artificial neural network based approximations
can be used to mitigate some of the aforementioned
problems. In  particular, the multilayered
feed-forward network can be used to map the
coordination problem design variables into
subproblem optimal solutions. This eliminates the
need to construct restrictive linear approximations of
the subproblem optimal solutions in terms of the
coordination  problem design variables. In
hierarchical optimization, it is typical to distribute the
design variables and design requirements into loosely
coupled subgroups. Such a grouping is typically
facilitated by classifying the design requirements into
either a global or local category.

II. COMPLEX CRITERIA STATEMENT

Consider the navigation equipment test table
design problem formulated in terms of a design
variable vector X [H, P, N, G, Q, L, E, R], where

H is the size of the mounting for the equipment
under test;

P is the mass of the test equipment;

N is the maximum overload;

G is the limits of the angular positions;

Q is the motion trajectory deviation limits;

L is the digital resolution of test results;

E is the accuracy of the acquisition of the test
results digital information;

R is the reliability.

Also, let the design constraints g(X) belong to the
global constraint set G. The vector X and constraint
set G are said to define system level problem.

Assume further that problem was decomposed
into six discipline subproblems d,, d,, ds, d4, ds, ds.
The design variables and constraints for each of these
disciplines are denoted by X1, Xp, X3, Xaa, Xus, Xus,
and ga1, ga, Zas, Qas» Qas and gus, TeEspectively

(Table 1).
TABLE 1

DESIGN VARIABLE DEFINITIONS

Variable Definition
X, is the dynamic platform
M Test equipment load capacity
m Mass of platform
D Dimensions of platform
X, is the gears
r Dependability
d Types of sizes
a The degree of accuracy
s The gear ratio
T Output torque
B Mechanical backlash
X3 1s the electric drives
b The mechanical stiffness of the drive
h Weight and dimensions
/ Reliability
S Response performance of the drive
X4 1s the electric drive control subsystem
u Performance of control equipment
j Smoothness of the drive motion control
g Control accuracy
Xys is the data acquisition subsystem
A Accuracy
n Sampling frequency
i Noise immunity

X6 1s the power supply subsystem
K Efficiency

o Fault tolerance
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The objective function F(X) for each of the
discipline is the same, and is the system level
objective function defined in terms of accuracy,
reliability and cost.

F = (F\(x), ..., F(x), ..., Fi(x)), (i =1, ..., ])
min F(X)
subject to G = {g(X),j =1... N} <0,

where N is the number of constraints.

After problem decomposition, the design
optimization problem is represented by the following
six disciplines subproblems.

min F(X,), subject to g,1(Xz) <0,
Xy X3, Xas, Xas, Xas = const
min F(Xz), subject to g»(Xp) <0,
Xar, X3, Xas, Xas, Xas = const
min F(Xz), subject to g,3(X3) <0,
Xat, Xany Xas, Xas, Xas = const
min F(Xy4), subject to g4(Xu) <0,
Xar, Xar, Xas, Xys, Xa = const
min F(X;s), subject to g 5(Xys) <0,
X, Xy Xz, Xaa, Xy = const
min F(Xy), subject to gu6(Xu) <0,
X, Xy Xz, Xaa, Xys = const

The methods of computing the sensitivity of
subproblem optimal solutions are not well developed,
and for the above linear approximation to be valid,
very restrictive move limits on the global variables
have to be imposed at the coordination problem level.
Instead, a back-propagation network can be used to
develop the nonlinear relationship between the
subproblem optimal solution and the global design
variables.

The back-propagation algorithm is an
error-correcting learning procedure that generalizes
the delta rule to multi-layer feedforward neural
networks with hidden units between the input and
output units. In order to train a back-propagation
neural network, it is necessary to have a set of input
patterns and corresponding desired output, and an
error function that measures the cost of differences
between network output and the desired values. This
is the basic steps to implement a back-propagation
neural network.

1. Present a training pattern and propagate it
through the network to obtain the desired outputs.

2. Compare the network outputs with the desired
target values and then calculate the error.

3. Calculate the derivatives of the error with
respect to the weights.

4. Adjust the weights to minimize the error.

5. Repeat the above procedure until the error is
acceptably small or the limit of iteration is reached.

Such an approach circumvents the need to
construct the linear approximation required at the
global level.

The genetic algorithm (GA) strategy can be
implemented for each of the disciplines. The genetic
evolution process can be carried out in parallel. The
principal difficulty in this approach is that the
constraint sets identified for a particular discipline,
are not completely independent of the design
variables that may have been assigned to another
discipline. Such coupling must be accommodated in
the parallel optimization scheme, and was facilitated
through the use of a neutral network based
approximation [7], [8]. An important property of this
network is a pattern completion capability - if an
incomplete input pattern is presented to the network,
the network estimates the most likely make-up of the
missing components.

Barai and Pandey [12] proposed a conclusion that
issues will affect the design performance of a neural
network. Selecting an optimal neural network
architecture depends on the application domain. The
successful application of neural networks to a
specific problem depends mainly on two factors,
representation and learning. Choosing a topology and
training parameters are very much context-dependent
and usually arrived at by trial-and-error.

1. Choosing Input/Output nodes. Every training
example will decide the number of input nodes, and
the corresponding desired output parameter gives the
number of nodes in the output layer.

2. Training Patterns. It is very important to present
a good training set in network learning and the
decision is very critical. If a small percentage of the
resulting generalization may be poor, while in the
opposite case it is likely that higher oscillation would
make it impossible to reach a state of global minima.

3. Normalization of the Training Set. The input
patterns must be normalized before being given to the
network. This gives an advantage over the size of the
network.

4. Number of Hidden Layers in the Network. Two
to three layers are sufficient for most problems.
However, the optimal number of layers will
dependent on different applications. It is suggested
that multilayer networks with linear neurons are
equivalent to two-layer networks. Hence, the various
weight matrices can be combined into a single matrix,
which serves the same purpose as a multilayer
network with linear neurons.
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5. Number of Neurons in the Hidden Layers. How
many hidden neurons should be used in a layer is
arbitrary, and has been wusually decided by
trail-and-error. It is good enough to use the average of
the number of input and output neurons. Another
possibility is to make the hidden layer of the same
size as either the input or the output layer. The fewer
hidden neurons the fewer connections, and hence less
training capacity. Generally the hidden layer should
not be the smallest layer in the network, nor should it
be the largest.

6. Choosing Training Parameters. The training
parameters are arrived at by investigating the
application domain. Though these parameters have
generally been frozen in several investigations, it
would be desirable to carry out a further study of
these parameters in order to see their influence in the
context of the application.

7. Choosing the Activation Function. There are
several types of activation functions, linear, linear
threshold, step, sigmoid, and Gaussian activation
functions. With the exception of the linear activation
functions, all these functions introduce a nonlinear in
the network dynamics by bounding the output values
within fixed ranges. The sigmoid function (S-shaped
semi-lincar or squashing function) has been
recommended in most of the back-propagation
applications. In a sigmoid function the output is a

G jn Riscipline 1

continuous, monotonic function of the input. The
function itself and its derivatives are continuous
everywhere.

8. Choosing the Average System Error. The
acceptable average system error depends upon the
amount of accuracy required for training and testing
the network. The acceptable error plays an important
role in determining the number of training cycles, and
finally it has an impact on the training time. The best
way to choose the average system error is to start with
a large value of the average system error and watch
the performance of the network. Then, depending
upon the accuracy required from the network, reduce
the value of average system error. The initial large
value of average system error also helps in
determining the possibility of the network’s
convergence for a small value of the average system
error.

Proposed coordination strategy is based on QSD
(Quasiseparable Decomposition) approach [9] where
each discipline is assigned a manufacturing cost (cd,
cr, cm, ck, cd, cp) for a local objective and the
discipline problems maximize the margin in their
local constraints and the cost objective (Fig. 2).
System subproblem minimizes a shared objective and
the manufacturing cost of each discipline subject to
shared design constraints and positivity of the margin
in each discipline.
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Fig. 2. Multidisciplinary design optimization design process in GA decomposition approach

A number of numerical experiments were
conducted to determine the validity of the proposed

approach [10]. One of them is the use of neural
networks to design helicopter rotor blade [11]. The
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convergence histories of the system level objective
function for two different strategies of the
coordination are shown in Fig. 3. These would
include current problem parameters, and those
available as the new best designs in other disciplines.
Select a combination so that the current objective
function either improves or, at worst, stays the same.

5000 — T T T T T
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20 30 40 B0 5:0 0
numbar ol sysiem level generation
Fig. 3. System level objective function convergence
history of GA based neutral networks MSDO approach:
S1 for each discipline, use as problem parameters the
current best design variable values of other subproblems;
S2 for each discipline, evaluate all possible combinations
of problem parameters

Thus, the proper selection of coordination strategy
directly affects the overall design results.

CONCLUSIONS

Multidisciplinary design optimization approach for
navigation equipment test table design adapting
genetic algorithms and neural networks for
development of a rational approach by which the
multidisciplinary design problem could be partitioned
into a number of separate disciplines was described.
Once the optimization task was decomposed by six
subproblems, the GA based search was implemented
in parallel in each of the disciplines. Coordination
strategies to account for the interactions between
disciplines were the other focus of the present study.
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