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Abstract—A multidisciplinary optimization is used for the navigation equipment test table design. The six 
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among the discipline level optimizations. 
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I.  INTRODUCTION 

The increasing complexity of engineering systems 
has sparked increasing interest in multidisciplinary 
optimization. Navigation equipment test table as 
means of providing technical testing navigation 
equipment in conditions close to the real flight. 
Navigation equipment test table must ensure tests on 
the parameters close to real, namely the 
angularpositions, overload, angular velocity and 
acceleration of all control channels. Moreover it must 
ensure required reliability and credibility performance. 

Six discipline level performances – dynamic 
platform, gears, electric drives, electric drive control 
subsystem, data acquisition subsystem, power supply 
subsystem – are optimized simultaneously (Fig. 1). 

The results from this design approach provides the 
results to a single design which improves the 
discipline level objective functions while at the same 
time producing the highest possible improvement at 
the system level. 

Multidisciplinary design optimization can be 
described as a methodology for the design of systems, 
where the interaction between several disciplines 
must be considered, and where the designer is free to 
significantly affect the system performance in more 
than one discipline. To ensure all navigation 
equipment test table performances on the technical 
design stage it is necessary to solve the task of 
developing assembly units, functional task, the task 
of software development, the task of selecting a set of 
technical means, etc. 

 

 
Fig. 1. Schematic of navigation equipment test table design multidisciplinary optimization process 

 

The interdisciplinary coupling inherent in 
navigation equipment test table design tends to 
present additional challenges beyond those 
encountered in a single-discipline optimization. It 
increases computational burden, and it also increases 
complexity and creates organizational challenges for 

implementing the necessary coupling in software 
systems. To address complexity of the navigation 
equipment test table design task hierarchical 
decomposition approach is used. 

A hierarchic system is defined as one in which a 
subsystem exchanges data directly with the system 
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only but not with any other subsystem. Such data 
exchange occurs in analysis of structures by 
substructuring. A concept to exploit this in structural 
optimization was formulated in Schmit and 
Ramanathan [1] and generalized in Sobieszczanski- 
Sobieski [2] and [3]. It was then shown in the latter 
how the hierarchic decomposition derives from the 
Bellman's optimality criterion of the dynamic 
programming. The concept was also contributed to 
by Kirsch, [e.g., Kirsch, 4]. It was demonstrated in 
several applications, including multidisciplinary 
ones, e.g., Wrenn and Dovi [5] and Beltracchi [6].  

Sobieski [2] proposed an approach described most 
appropriately as a linear decomposition strategy. 
Here, the coupling between subproblems was 
represented at the coordination problem level; this 
was achieved by using a linear extrapolation of the 
subproblem optimal design with changes in the 
coordination problem design variables. The 
approach, although effective for the class of problems 
considered, was not without its drawbacks. Perhaps 
the most significant problem that could exist with the 
approach in more realistic problems is the accuracy 
with which the subproblem optimal design is 
represented at the coordination problem level. This 
representation requires the sensitivity of the optimal 
design in each subproblem to prescribed problem 
parameters, where the latter are the coordination 
problem design variables. Methods to obtain this 
sensitivity are restrictive in that the sensitivity is valid 
for a limited change in the problem parameters; this 
translates into tighter move limits in the coordination 
optimization problem. 

Artificial neural network based approximations 
can be used to mitigate some of the aforementioned 
problems. In particular, the multilayered 
feed-forward network can be used to map the 
coordination problem design variables into 
subproblem optimal solutions. This eliminates the 
need to construct restrictive linear approximations of 
the subproblem optimal solutions in terms of the 
coordination problem design variables. In 
hierarchical optimization, it is typical to distribute the 
design variables and design requirements into loosely 
coupled subgroups. Such a grouping is typically 
facilitated by classifying the design requirements into 
either a global or local category. 

II.  COMPLEX CRITERIA STATEMENT 

Consider the navigation equipment test table 
design problem formulated in terms of a design 
variable vector X [H, P, N, G, Q, L, E, R], where 

H is the size of the mounting for the equipment 
under test; 

P is the mass of the test equipment; 

N is the maximum overload; 
G is the limits of the angular positions; 
Q is the motion trajectory deviation limits; 
L is the digital resolution of test results; 
E is the accuracy of the acquisition of the test 

results digital information; 
R is the reliability. 
Also, let the design constraints gj(X) belong to the 

global constraint set G. The vector X and constraint 
set G are said to define system level problem. 

Assume further that problem was decomposed 
into six discipline subproblems d1, d2, d3, d4, d5, d6. 
The design variables and constraints for each of these 
disciplines are denoted by Xd1,  Xd2,  Xd3,  Xd4, Xd5,  Xd6, 
and gd1, gd2, gd3, gd4, gd5 and gd6, respectively 
(Table 1). 

TABLE 1 

DESIGN VARIABLE DEFINITIONS 

Variable Definition 

 Xd1 is the dynamic platform 

M Test equipment load capacity 

m Mass of platform 

D Dimensions of platform 
 Xd2 is the gears 

r Dependability 

d Types of sizes 

a The degree of accuracy 

s The gear ratio 

T Output torque 
B Mechanical backlash 

 Xd3 is the electric drives 

b The mechanical stiffness of the drive 

h Weight and dimensions 

l Reliability 

S Response performance of the drive 
 Xd4 is the electric drive control subsystem 

u Performance of control equipment 

j Smoothness of the drive motion control 

g Control accuracy 

 Xd5 is the data acquisition subsystem 

A Accuracy 
n Sampling frequency 

i Noise immunity 

 Xd6 is the power supply subsystem 

K Efficiency 

o Fault tolerance 
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The objective function F(X) for each of the 
discipline is the same, and is the system level 
objective function defined in terms of accuracy, 
reliability and cost. 

F = (F1(x), ..., Fi(x), ..., Fl(x)), (i = 1, ..., l) 

min F(X) 

subject to G = {gj(X), j = 1 ... N} ≤ 0, 

where N is the number of constraints. 
After problem decomposition, the design 

optimization problem is represented by the following 
six disciplines subproblems. 

min F(Xd1), subject to gd1(Xd1) ≤ 0, 

Xd2, Xd3, Xd4, Xd5, Xd6 = const 

min F(Xd2), subject to gd2(Xd2) ≤ 0, 

Xd1, Xd3, Xd4, Xd5, Xd6 = const 

min F(Xd3), subject to gd3(Xd3) ≤0, 

Xd1, Xd2, Xd4, Xd5, Xd6 = const 

min F(Xd4), subject to gd4(Xd4) ≤ 0, 

Xd1, Xd2, Xd3, Xd5, Xd6 = const 

min F(Xd5), subject to gd5(Xd5) ≤ 0, 

Xd1, Xd2, Xd3, Xd4, Xd6 = const 

min F(Xd6), subject to gd6(Xd6) ≤ 0, 

Xd1, Xd2, Xd3, Xd4, Xd5 = const 

The methods of computing the sensitivity of 
subproblem optimal solutions are not well developed, 
and for the above linear approximation to be valid, 
very restrictive move limits on the global variables 
have to be imposed at the coordination problem level. 
Instead, a back-propagation network can be used to 
develop the nonlinear relationship between the 
subproblem optimal solution and the global design 
variables.  

The back-propagation algorithm is an 
error-correcting learning procedure that generalizes 
the delta rule to multi-layer feedforward neural 
networks with hidden units between the input and 
output units. In order to train a back-propagation 
neural network, it is necessary to have a set of input 
patterns and corresponding desired output, and an 
error function that measures the cost of differences 
between network output and the desired values. This 
is the basic steps to implement a back-propagation 
neural network. 

1. Present a training pattern and propagate it 
through the network to obtain the desired outputs. 

2. Compare the network outputs with the desired 
target values and then calculate the error. 

3. Calculate the derivatives of the error with 
respect to the weights. 

4. Adjust the weights to minimize the error. 
5. Repeat the above procedure until the error is 

acceptably small or the limit of iteration is reached. 
Such an approach circumvents the need to 

construct the linear approximation required at the 
global level. 

The genetic algorithm (GA) strategy can be 
implemented for each of the disciplines. The genetic 
evolution process can be carried out in parallel. The 
principal difficulty in this approach is that the 
constraint sets identified for a particular discipline, 
are not completely independent of the design 
variables that may have been assigned to another 
discipline. Such coupling must be accommodated in 
the parallel optimization scheme, and was facilitated 
through the use of a neutral network based 
approximation [7], [8]. An important property of this 
network is a pattern completion capability - if an 
incomplete input pattern is presented to the network, 
the network estimates the most likely make-up of the 
missing components.  

Barai and Pandey [12] proposed a conclusion that 
issues will affect the design performance of a neural 
network. Selecting an optimal neural network 
architecture depends on the application domain. The 
successful application of neural networks to a 
specific problem depends mainly on two factors, 
representation and learning. Choosing a topology and 
training parameters are very much context-dependent 
and usually arrived at by trial-and-error.  

1. Choosing Input/Output nodes. Every training 
example will decide the number of input nodes, and 
the corresponding desired output parameter gives the 
number of nodes in the output layer. 

2. Training Patterns. It is very important to present 
a good training set in network learning and the 
decision is very critical. If a small percentage of the 
resulting generalization may be poor, while in the 
opposite case it is likely that higher oscillation would 
make it impossible to reach a state of global minima. 

3. Normalization of the Training Set. The input 
patterns must be normalized before being given to the 
network. This gives an advantage over the size of the 
network. 

4. Number of Hidden Layers in the Network. Two 
to three layers are sufficient for most problems. 
However, the optimal number of layers will 
dependent on different applications. It is suggested 
that multilayer networks with linear neurons are 
equivalent to two-layer networks. Hence, the various 
weight matrices can be combined into a single matrix, 
which serves the same purpose as a multilayer 
network with linear neurons. 
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5. Number of Neurons in the Hidden Layers. How 
many hidden neurons should be used in a layer is 
arbitrary, and has been usually decided by 
trail-and-error. It is good enough to use the average of 
the number of input and output neurons. Another 
possibility is to make the hidden layer of the same 
size as either the input or the output layer. The fewer 
hidden neurons the fewer connections, and hence less 
training capacity. Generally the hidden layer should 
not be the smallest layer in the network, nor should it 
be the largest. 

6. Choosing Training Parameters. The training 
parameters are arrived at by investigating the 
application domain. Though these parameters have 
generally been frozen in several investigations, it 
would be desirable to carry out a further study of 
these parameters in order to see their influence in the 
context of the application. 

7. Choosing the Activation Function. There are 
several types of activation functions, linear, linear 
threshold, step, sigmoid, and Gaussian activation 
functions. With the exception of the linear activation 
functions, all these functions introduce a nonlinear in 
the network dynamics by bounding the output values 
within fixed ranges. The sigmoid function (S-shaped 
semi-linear or squashing function) has been 
recommended in most of the back-propagation 
applications. In a sigmoid function the output is a 

continuous, monotonic function of the input. The 
function itself and its derivatives are continuous 
everywhere. 

8. Choosing the Average System Error. The 
acceptable average system error depends upon the 
amount of accuracy required for training and testing 
the network. The acceptable error plays an important 
role in determining the number of training cycles, and 
finally it has an impact on the training time. The best 
way to choose the average system error is to start with 
a large value of the average system error and watch 
the performance of the network. Then, depending 
upon the accuracy required from the network, reduce 
the value of average system error. The initial large 
value of average system error also helps in 
determining the possibility of the network’s 
convergence for a small value of the average system 
error. 

Proposed coordination strategy is based on QSD 
(Quasiseparable Decomposition) approach [9] where 
each discipline is assigned a manufacturing cost (сd, 
сr, сm, ck, cd, cp) for a local objective and the 
discipline problems maximize the margin in their 
local constraints and the cost objective (Fig. 2). 
System subproblem minimizes a shared objective and 
the manufacturing cost of each discipline subject to 
shared design constraints and positivity of the margin 
in each discipline.

 
Fig. 2. Multidisciplinary design optimization design process in GA decomposition approach

A number of numerical experiments were 
conducted to determine the validity of the proposed 

approach [10]. One of them is the use of neural 
networks to design helicopter rotor blade [11]. The 
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convergence histories of the system level objective 
function for two different strategies of the 
coordination are shown in Fig. 3. These would 
include current problem parameters, and those 
available as the new best designs in other disciplines. 
Select a combination so that the current objective 
function either improves or, at worst, stays the same. 

 
Fig. 3. System level objective function convergence 

history of GA based neutral networks MSDO approach: 
S1 for each discipline, use as problem parameters the 

current best design variable values of other subproblems; 
S2 for each discipline, evaluate all possible combinations 

of problem parameters 

Thus, the proper selection of coordination strategy 
directly affects the overall design results. 

CONCLUSIONS 

Multidisciplinary design optimization approach for 
navigation equipment test table design adapting 
genetic algorithms and neural networks for 
development of a rational approach by which the 
multidisciplinary design problem could be partitioned 
into a number of separate disciplines was described. 
Once the optimization task was decomposed by six 
subproblems, the GA based search was implemented 
in parallel in each of the disciplines. Coordination 
strategies to account for the interactions between 
disciplines were the other focus of the present study. 
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