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Abstract—In this paper, traditional noise reduction algorithms such as spectral subtraction, Wiener,
MMSE and logMMSE filtering algorithms, and two less known Wiener-TSNR and Wiener-HRNR filtering
algorithms had been compared with the use of a set of quality measures. It is found that excessive noise
reduction leads to insignificant degradation of the speech signals quality, but significantly reduces the
accuracy of the automatic speech recognition (ASR). It is shown the existence of the speech quality
measures which satisfactorily are matching with the accuracy of automatic speech recognition. This
result is useful for practice because of speech recognition accuracy can be predicted by means of speech
quality measures. In addition, it is found that there is no single algorithm among the considered noise
reduction algorithms, which is the best in terms of maximum recognition accuracy for a wide range of
input signal-to-noise ratio from minus 10 dB to plus 30 dB.

Index Terms—Noise reduction algorithm; speech quality indicator; recognition accuracy; speech signal;

noise interference.

I. INTRODUCTION

A number of new aviation systems, and
unmanned aerial vehicles (UAVs) are among them,
are Dbeginning to utilize speech recognition
technology. In particular, it is believed that voice
control would enable air battle managers to control
their UAVs using voice commands in addition to
joystick, mouse, and keyboard inputs [2].

The block diagram shown in Fig. 1 is a schematic
diagram of a voice control channel that incorporates
natural language processing. A human controller is
present to issue directives based on an UAV’s
current state and the controller’s intentions. Once
these verbal commands are processed by the ASR
system, they are translated into a set of high-level
goals and constraints that are then passed on to the
UAV’s planning algorithms. These planning
algorithms then generate a sequence of maneuvers
for the UAV.

Human command UAYV action
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Fig. 1. ASR system incorporation into UAV control
channel

Ensuring of acceptable speech quality [4], as well
as increasing of automatic speech recognition (ASR)
systems robustness [7] to the action of noise
interference through the use of noise reduction pre-
processors (Fig. 2) is issue of the day. Traditional
noise reduction algorithms are spectral subtraction

(SpecSub), Winer, minimum mean-square error
amplitude spectrum estimator (MMSE) and
minimum mean-square error log-spectral amplitude
estimator (logMMSE) filtering [3], [4]. Wiener
Two-Step Noise Reduction (Wiener-TSNR) and
Wiener Harmonic Regeneration Noise Reduction
(Wiener-HRNR) algorithms are less known, but they
are attractive because of their ability to great noise
suppression  [5], [6].  Unfortunately, the
aforementioned noise reduction algorithms were not
compared with each other on speech quality and
speech recognition accuracy indicators.
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Fig. 2. Noise reduction system as ASR pre-processor

Speech recognition accuracy and different speech
quality measures can be wused to assess the
performance of noise reduction algorithms. While
this assessment is fairly typical task, the choice of
the best quality measure is largely dependent on the
predilections of researchers [1] — [6]. This can be
explained by the fact that the choice problem is not
enough investigated.

II. PROBLEM STATEMENT

When model y(¢) = x(¢) + n(¢)
x(t) 1s considered, noise

of distorted
n(?)

speech signal
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reduction algorithm provides recovery of signal x(¢)
from mixture y(¢):

X(1) = A{y (D)},

where x(f) and A{} are result and operator of

speech enhancing, respectively.

Analyzed in this paper noise
algorithms implement speech
frequency domain

suppression
enhancing in

ALKy =GN (1),

where A (/,k) is power spectrum of signal y(¢) /-
th frame at frequency f; =kF, /N, ; F, is sampling

rate; N, is FFT parameter; k£ is number of

frequency sample; ix(l,k) is power spectrum
[th frame; G(l,k) is

correction filter gain. Usually phase of distorted
signal y(¢) is used as enhanced signal x(¢) phase.

estimator of signal x(¢)

The first object of the paper is comparison
aforementioned noise reduction algorithms (i.e.
different correction filter gains G(/,k)) with each
other on speech quality and speech recognition
accuracy indicators.

When noise reduction algorithm is used as ASR
pre-processor, its performance can be evaluated by
means of end-to-end quality indicator which is
named “ASR accuracy” [8]:

Acc% =(N—-D—-S-1)/N x100%,

where N is the total number of labels in the
reference transcriptions; D is the number of
deletion errors; S is the number of substitution
errors; / is the number of insertion errors.

The approach drawback is the need for ASR
systems simulation. It seems advisable to explore the
possibility of replacing Acc% indicator on speech
quality measures. Thus, second object of the paper is
searching of objective speech quality measures
which are matching with speech recognition
accuracy Acc%.

III. NOISE REDUCTION ALGORITHMS
SpecSub, Wiener, MMSE and logMMSE
traditional noise reduction algorithms [4] are
considered in this paper, and proper G(f,m) are
follows

(/. m) —1]‘”

é s = ~
SpeCSub(f m) ( 'Y(f, m)

&(f,m)

GWiener (fﬂm) = 1+ &(f’m) s

G (f m) =T (1,5), | 2L exp[_ﬁ(f,m)j

7 (fm) 2
x {(1 FA(f ), [_ﬁ(/;’m)j o1, (_ﬁ(f;’m) H

: _&fm 1T et
Glogunise (f,m)= It é_,(f, ) eXp{z J ) dl},

P(f,m)
where  E(f,m)=A (f,m)[A,(f,m) is a priori
signal-to-noise ratio (SNR) estimator,
f/(f,m):iy(f,m)/in(f,m) is a posteriori SNR
estimator,  $(f,m) = E(f,m3(/,m)/[1+E(f,m)],
re I,() and [I,(-) are
modified Bessel functions of zero and first order,

respectively.
Decision directed method is usually used for

&(f.m) calculation [4]:

Epn(fsm)= Ao (fm=1)/R,(f,m—1)

is gamma function,

+(1-a)-P[y(f,m)—1], 0<a<l,
x, x=0;

P(x) =
0, x<0,

where o is averaging parameter with o =0.98
optimal value for F, =8 kHz sample rate and

N.

inc

be shown that for arbitrary values of F, and N,

inc

=64 frame shift. Generalizing this result, it can

optimal value of averaging parameter will be
QU = exp(—= N, /(0.396- F)).

Wiener-TSNR and Wiener-HRNR  algorithms
had been proposed relatively recently [5], [6]. Their
noise suppression action is much more efficient
compared to the aforementioned traditional
algorithms. The word «Wiener» in the names of
these algorithms means that the transfer functions of
the correction filters are formed similar to one of
Wiener filter. However, this does not mean that the
transfer functions are prohibited from forming
otherwise.

Wiener-TSNR transfer function is formed in two
steps.

Step I:

Eronn (fsm)=E,p (fom+ D) = h (fum)/ &, (f).
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Step 2:

éTASNR (f,m) ‘
1+ & ron (fm)

When noise suppression is strong as is the case of
Wiener-TSNR algorithm, speech signal components
are also suppressed intensively. Wiener-HRNR
algorithm was proposed for regeneration of the lost
signal components. This procedure consists of three
steps.

Step 1. Output of TSNR algorithm (or other noise
reduction algorithm) is used as input of half-wave
rectifier:

GTSNR (f,m)=

Sharm (t) = §(t) : P[§(t)]

Step 2. A priori SNR is calculated:

E o (f>m) =p(fsm) - hs(fom) /b, (f)
+[1=p(f )] Ay (fsm) [, (),

where ihm (f,m) is power spectrum estimator of

signal s, (1), p(f,m) (0<p(f,m)<1) is weight
coefficient. Although there is a certain freedom of
p(f,m) choice, it was proposed assign

P(f ) = Groe (fom) in [5].
Step 3. Transfer function for HRNR algorithm is
formed:

éliRNR (f,m)
1+ &y (5 m) )

It is natural to assume that the ability of Wiener-
TSNR and Wiener-HRNR algorithms radically
suppress the noise is balanced by unpleasant
consequence such as unacceptably high distortion of
the speech signal. Therefore one of the objects of the
paper is to verify the validity of this assumption.

GHRNR (f,m)=

IV. QUALITY MEASURES

Segmental Signal-to-Noise Ratio (SSNR), Log-
Spectral Distortion (LSD), Log-Likelihood Ratio
(LLR), Weighted Spectral Slope (WSS), Itakura-
Saito distance (IS), cepstral distance (CEP),
composite index “Signal Composite Index, Noise
Composite Index, Overall Composite Index” (SCI,
NCI, OCI), perceptual indicators Bark-Spectral
Distortion (BSD) and Perceptual Evaluation of
Speech Quality (PESQ) speech quality measures
were used in the paper.

Analytically parameters SSNR, LSD and BSD
are described as follows

RI+N-1
w 2, x(n)
SSNR =—>"101g| 7"~ ,
- 2 [x@.m=y@.nT

n=RI

R

LSD:%ZZ]G{X(M)}—G{Y(Z,V)}|.

G{X(l,r)} =max{201g(| X (,7)|), &}.
0= n}%x{201g(| XU, -50

> [B.(1.k) - B,(L,bF
BSD — =1 k=1
)3

=1

[~

-1

[B.(1,b)}

MI\)

=
Il

0

where x(/,n) and x(/,n) are nth samples of /th
frame of clear speech signal x(¢) and enhanced

signal %(n), respectively; X (k) and X(I,k) are
x(n) x(n),
respectively; B{X(l,k)} and B{X(l,k)} are bark
spectrums of /th frame of signals x(n) and x(n),

respectively.

Indicators LLR, IS and CEP are computed for
each of the frames, and further averaged over all
frames:

spectrograms  of  signals and

CEP =

10 Z )
1n10\/2;[c"(k) —c, (B,

m—1 k
c(m)=a, + Z— c(k)a, ,, 1<m<p,
k=11

where a. and d, are linear prediction coefficients
of clean and enhanced signals, respectively; R, is
pure autocorrelation coefficient matrix signal; o’
and Gf, are variances of clean and enhanced signals,

respectively; c¢(k) are cepstral coefficients; p is

filter-predictor order.
The indicator WSS is calculated as follows:
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Mo K w .’ S ., _S ., 2
WSS:_ZZH (J,m)(S.(j,m)=S,(j,m))

K .
M3 ZF]W(],m)

where W (j,m) is weight for ;th spectral band and
mth frame; K is quantity of spectral bands; M is
quantity of frames; S.(j,m) and S,(j,m) are the

spectral slopes of the clean and processed speech
signals, respectively. The spectral slope is obtained
as the difference between adjacent spectral
magnitudes in decibels. In our implementation, the
number of bands was set to K =25.

PESQ is effective indicator of speech quality, but
its analytical description is very cumbersome. Brief
description can be found in [4]. We note only that it
was used wideband, designed for speech signal
analysis over a 7 kHz bandwidth, version of the
indicator WB-PESQ in our study.

Composite index was described in [4].

V. EXPERIMENTAL RESULTS

Clean speech signals (single words) were
recorded in anechoic room and had been used for
ASR system training. Parameters of digitized sounds
were: sampling rate 22050 Hz, linear quantization
16 bit. Signal-to-noise ratio (SNR) was near 35 dB
for saved clean speech signals.

Signal frames with 50 % overlapping and
Hamming window were used for signal processing.
Frames duration was 32 ms.

Toolkit HTK [8] had been used for ASR system
simulation. Training of ASR system had been made
with usage of 269 samples of 27 words of clean
speech recorded for two speakers-women. Noised
discrete speech signals (with 0.2...0.5 s pauses
between single words) were used as test signals, and
there were presented, in testing, all 27 words used in
training. There were 27 phonemes of Ukrainian
language in phoneme vocabulary and there had been
used 39 MFCC 0 D A coefficients when ASR
simulating.

The experimental results had showed, first, that
the indicators Acc% and PESQ does not agree very
well with each other (Fig.3). Among other
indicators had been studied (Figs. 4, 5), only two -
LLR and SCI — were in good agreement with the
Acc% indicator (Fig. 4). At the same time, the
essential disadvantage of LLR and SCI indicators is
their inability to display fairly substantial difference
of MMSE, logMMSE and spectral subtraction
algorithms performance.

Analysis of the Ass% indicator behavior had
showed that there is no single noise reduction
algorithm, which would be best in terms of

maximum Ass% in a broad range of signal-to-noise
ratio from minus 10 dB up to plus 30 dB.
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Second, unexpectedly low efficiency of the
Wiener-TSNR and Wiener-HRNR algorithms was
revealed. Indeed, according to Fig. 3, usage of
Wiener-TSNR and Wiener-HRNR algorithms for
SNR > 3 dB leads to the lowest Acc% values
compared to other algorithms. Moreover, for SNR >
8 dB the situation was even worse than in the case of
disabling noise reduction algorithm (curve “no
enhance”). LLR and SCI graphs confirm this fact
(Fig. 4), although in somewhat “soften” manner: the
situation is worse than in the case of disabling noise
reduction algorithm only when SNR > 15 dB.
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Fig. 5. Acc % (SNR) (a) and WB-PESQ (SNR) (b)

This result is not consistent with the results of the
algorithms authors [5], [6] and can be explained as
result of signal distortion. At the same time, these
algorithms have shown the best results in all
indicators when SNR is below 0 dB.

VI. CONCLUSION

Comparison of six noise reduction algorithms
have shown that only two of the nine indicators
examined - log-likelihood ratio and signal composite
index — are in good matching with speech
recognition accuracy Acc% when the noise
reduction system is used as pre-processor of
automatic speech recognition system.

Unexpectedly low efficiency of the Wiener-
TSNR and Wiener-HRNR algorithms had been
revealed: when SNR > 8 dB, speech recognition
accuracy Acc% is worse than in the case of disabling
noise reduction algorithm. This result can be

explained as consequence of strong signal distortion.
LLR measure and, what is much more important,
SCI measure had confirmed this fact, although in
somewhat “soften” manner: the situation is worse
than in the case of disabling noise reduction
algorithm only when SNR > 15 dB.

It was shown that there is no single algorithm
among the considered noise reduction algorithms,
which is the best in terms of maximum recognition
accuracy Acc% for a wide range of input signal-to-
noise ratio from minus 10 dB to plus 30 dB. It
follows that the choice of noise reduction algorithms
for engineering applications should be performed
taking into account the value of the signal-to-noise
ratio of the distorted signal.

It should be taken into account also that there
isn’t generally accepted standard ASR system
model, so Acc% values will be dependent on the
kind of ASR model. However, it is hoped that results
obtained in this paper will remain qualitatively
correct when using other models of automatic
speech recognition system.
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