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Abstract—It is considered the approach to the design of the ensemble of neural networks, where a collec-
tion of a finite number of neural networks is trained for the same task, then their results of the given task 
solution are combined. It is proposed an algorithm of optimal choice of neural networks topologies and 
their quantity for their inclusion as a member in ensemble. The further refinement of ensemble composition 
is done with help pruning operation. The output of an ensemble is a weighted average of the outputs of each 
network, with the ensemble weights determined as a function of the relative error of each network deter-
mined in training. It is presented a novel approach to determine the ensemble weights dynamically as part 
of the training algorithm. The weights are proportional to the certainty of the respective outputs. 

Index Terms—Neural networks; ensemble; training; optimization; topology. 
I. INTRODUCTION 

An ensemble of neural networks (NN) is called a 
group of topologies, united into a single structure, 
which may differ in architecture, learning algorithm, 
training criteria, and types of generating neurons [1]. 
In another variant, the term ensemble means "united 
model", the output of which is a functional combina-
tion of individual models outputs [1]. The construc-
tion of classifier ensembles is an active field of re-
search in machine learning because of the improve-
ments in classification accuracy that can be obtained 
by combining the decisions made by the units in the 
ensemble. 

Input data can be broken down into certain groups 
for processing by different NNs or applied to all 
networks at the same time. 

Forming of NN ensembles requires a solution of 
two stages problem – the qualitative learning of each 
NN which is supposed to include to the ensemble and 
their optimal association. The known algorithms are 
divided into two classes: algorithms that for new 
classifiers change the distribution of learning exam-
ples based on the accuracy of the previous models 
(boosting), and those in which new members of the 
ensemble learn independently of others (bagging).  

II. PROBLEM REVIEW 

The main algorithms of the NN ensemble associ-
ation and their disadvantages are shown in the Table I 
[1]. 

In contrast to [2], in this work, instead of separate 
NNs, modules of neural networks are used. 

The necessity of the modulus principle applying in 
the hybrid NN of ensemble structure is determined by 
the following: 

– heterogeneity of the data of the training sample, 
which leads to the inability of a one-module NN to 
correctly approximate the necessary dependence; 

– the complexity of the algorithm of the solvable 
problem, which requires a multimodal structure; 

– characteristics difference of the errors function 
on the various fragments of the training sample; 

– need to accumulate the knowledge of experts in 
NN modules learning. 

For new, there are serial and parallel types of 
structures for the construction of NN ensembles. 
Investigations of the serial structure of the of modules 
connection into the ensemble are currently absent. In 
work [3] the examples of serial construction of 
modules structure networks are presented. An ex-
ample of a parallel modules structure is presented in 
work [4]. 

The main difficulty of networks ensemble asso-
ciation is the training of all components for the 
problem solution. In order to increase the effective-
ness of learning, each NN is learnt separately (if 
possible), and then united into a single structure. 
However, in the case where the training algorithms of 
selected topologies belong to different classes, the 
synchronous training of all modules included in the 
ensemble is required, and therefore it is necessary to 
develop a single algorithm for all ensembles modules 
adjustment. 

Let's consider the principles of hybrid NN ensem-
bles constructing of seriel and parallel structures. 

III. MODULE CONNECTION TYPES  

The sireal ensemble organization structure con-
sists in supplying the output data of one module to the 
inputs of another module. A similar structure is used 
to restore the input data or to improve their differ-
ences (normalization) for execution of the main task 
(approximation, classification, etc.). 

The general scheme of modules serial connection 
of the is shown in Fig. 1. 
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TABLE I 

CHARACTERISTICS OF ALGORITHMS 
Technology Methodology for obtaining the 

result 
Disadvantages 

Static structures   

Averaging over 
ensemble 

Linear combination of NN output 
signals 

1. Dependence of the result on the correct determination 
of the competence of the NN. 

2. Increasing the complexity of the algorithm by apply-
ing algorithms of "data noise emissions" correction. 

Boosting Each new NN is based on the re-
sults of previously built neuron 
networks 

1. The presence of more examples of learning sample. 
2. The degeneration of the NN ensemble into a complex 

inefficient neural network structure that requires a 
large amount of computing resources. 

3.The last NNs learn on the "most complex" examples. 

Stacking Applying the concept of meta 
learning 

1. The complexity of the theoretical analysis through a 
set of sequentially shaped models. 

2. Possible growth of meta model levels, which can lead 
to a rapid depletion of computing resources. 

Bagging Formation of the NNs set on the 
basis of the set of subsets of the 
learning sample and the subsequent 
combining of the results of the 
SNN work 

1. Additional computational expenses associated with 
the need to form a large number of learning sample 
subsets. 

2. The subsets of the examples differ from each other, 
but are not independent, since they all are based on 
the same set. 

3. The algorithm requires a large amount of data for 
adjustment and learning. 

Dynamic structures   
Mixing of expert 
opinions 

Integration of expert knowledge 
through the use of the gateway 
network 

1. The algorithm demands the computing resources in 
the breakdown of the output area. It is possible to 
create a large number of areas, which will lead to 
excessive clustering of area and will create a larger 
group of basic NNs with a complex mechanism of 
interaction with the networks of the gateway. 

2. Learning and adjusting the hierarchical model 
represents a complex computational process. The 
learning process based on the stochastic gradient is 
based on the adjustment of the weight coefficients of 
the NNs, the network of the gateway of the first and 
second levels, which leads to a complicated algo-
rithm of complex optimization of the total NN ma-
chine. 

 

( )X k 1( )y k 2( )y k 3( )y k
 

Fig. 1. Serial connection of modules

An ensemble in which the input data is applied 
simultaneously to the inputs of all modules that form 
the hybrid NN is called parallel. The main element of 
such structure is the "layer of association", which is 
responsible for aggregating the results of the various 
ensemble components. The general structure of the 
parallel modules ensemble of NN is shown in Fig. 2. 

The main disadvantage of using a parallel ensem- 

ble is an overly complex learning algorithm with 
probabilistic convergence. 

Based on the analysis conducted in this paper, it is 
proposed to synthesize the hybrid topology in the 
form of a series-parallel ensemble of NN modules, 
which is the most generalizing structure. The selected 
conceptual model is shown in Fig. 3. 
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Fig. 2. Parallel connection of modules 
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Fig. 3. Serial-parallel structure of ensemble of NN modules  

IV. PROBLEM STATEMENT 

“A necessary and sufficient condition for an en-
semble of classifiers to be more accurate than any of 
its individual members is if the classifiers are accu-
rate and diverse.” Since the diversity of the ensemble 
decreases with the increase in accuracies of ensemble 
members, the key to the success of any ensemble 
learning method is the appropriate handling of the 
trade-off between accuracy and diversity. 

Many approaches have been proposed to create 
accurate and diverse ensembles. Examples include 
bagging [5], boosting [8], random forests [6], the 
random subspace method [9] and random decision 
trees [7]. In most ensemble methods, the diversity 
and accuracy are acquired by manipulating subsets of 
data points or features. One problem with these en-
sembling approaches is that they tend to construct 
unnecessarily large ensembles, which requires a large 
amount of memory to store the trained classifiers and 
decreases the response time for prediction. Ensemble 
pruning, or selective ensembles, is a technique that 
tackles this problem by choosing a subset of indi-
vidual classifiers from a trained ensemble to form a 
subensemble for prediction. The classifiers in the 
subensemble need to be carefully chosen so that it is 
small enough to reduce the memory requirement and 
response time with predictive accuracy that is similar 
to or better than the original ensemble. 

Based on analysis of Table I it can by shown that 
bagging has advantages before others:  

– Bagging reduces variance or model 
nconsistency over diverse data sets from a given 

distribution, ithout increasing bias, which results in a 
reduced error and enhanced stability. 

– The other benefit of using bagging is related to 
the model selection. Since bagging transforms a 
group of over-fitted neural networks into a 
better-than perfectly-fitted network, the tedious time 
consuming model selection is no longer required. 
This could even offset the computational overhead 
needed in bagging that involves training many neural 
networks. 

– Bagging is very robust to noise. 
– Parallel execution: although the boosting 

algorithm has better generalization ability than the 
bagging algorithm, the bagging algorithm has the 
benefit of training ensembles independently, hence in 
parallel. 

Let D = {d1, ...., dN} be a set of N data points 
where di = {(xi, yi) | and  [1, N]} is a pair of input 
features and label that represents the ith data point, 
C = {c1, ...., cM} be a set of M classifiers where ci(xj) 
gives the prediction of the ith classifier on the jth data 
point, V = {v(1), ...., v(N)|v(i) = [v1

(i), ..., vL
(i)], and  [1, 

N]} be a set of vectors where vj(i) is the number of 
predictions for the jth label of the ith data point of an 
ensemble combined with majority voting, and L is the 
number of output labels. 

It is necessary, based on the accuracy and variety 
of classifiers C = {c1, ...., cM}, to select members to 
form an ensemble, having a test set of data and 
assuming that the networks are previously trained on 
bootstrap samples. 

V. PROBLEM SOLUTION 

For the begining it is necessary to select the con-
didates from the set of NN for their inclusion into 
ansemble.  

From our point of view it must be hybrid NN, for 
example modules of NNs [3], [4], whire is presented 
their structure. 

Equal models become diverse when learning from 
different data sets. If we have at our disposal only one 
set of m examples, then the different subsamples with 
close statistics can be obtained by applying a boot-
strap [17] – a random sample with a return. 

The main idea of the bootstrap is to repeatedly 
retrieve repeated samples from the empirical distri-
bution by the method of Monte Carlo statistical tests. 
Namely, we take a finite set of n terms of the original 
sample x1, x2, ..., xn–1, xn, from which it is "stretched" 
at each step of n consecutive iterations using a ran-
dom number generator uniformly distributed on the 
interval [1, n] an arbitrary element xk, which again 
"returns" to the original sample (that is, it can be 
retrieved). 
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So preliminary stage of ensemble building is the 
creation of basic classifiers which must be independet.  

These classifiers are learnt on independent data 
sets. As result we have the following algorithm: 

1) A set of training examples is given (х1, у1), 
…, (хm, уm) tagged  1, ..., .y k  

2) Get Т bootstrap sampling  Dt. 
3) Independently (in parallel) to train t classifi-

ers ht, everyone in their sample Dt. 
In bagging, only a subset of examples typically 

appears in the bag which will be used in training the 
classifier. Out-of-bag error provides an estimate of 
the true error by testing on those examples which did 
not appear in the training set. Formally, given a set T 
of examples used in training the ensemble, let t be a 
set of size T  created by a random sampling of T 
with replacement, more generally known as a bag. 
Let s be a set consisting of T – (T ∩ t). Since s consists 
of all those examples not appearing within the bag, it 
is called the out-of-bag set. A classifier is trained on 
set t and tested on set s. In calculating the voted error 
of the ensemble, each example in the training set is 
classified and voted on by only those classifiers 
which did not include the example in the bag on 
which that classifier was trained. Because the 
out-of-bag elements, by definition, were not used in 
the training set, they can be used to provide an esti-
mate of the true error. 

We have developed an algorithm which appears to 
provide a reasonable solution to the problem of de-
ciding when enough classifiers have been created for 
an ensemble. It works by first smoothing the 
out-of-bag error graph with a sliding window in order 
to reduce the variance [19]. 

Only a fraction of the trees in the ensemble are 
eligible to vote on any given item of training data by 
its being “out-of-bag” relative to them. Consider the 
meaning of diversity. 

Given two classifiers ci and cj, where N(01) denotes 
the number of data points incorrectly predicted by ci 
but correctly predicted by cj, and N(10) is the opposite 
of N(01), the diversity of ci and cj, denoted by Divi, j, is 
the ratio between the sum of the number of data 
points correctly predicted by one of the classifiers 
only and the total number of data points, as given in 
equation 

(01) (10)

,
  Div  .
 i j

N N
N


                (1) 

A classifier ci’s diversity contribution to an en-
semble, denoted by ConDivi, is the sum of the diver-
sities between ci and each other classifier in the en-
semble (excluding ci because according to equation 

(1) a classifier’s diversity to itself is zero), as given in 
equation 

 

,
1

ConDiv  Div .
M

i i j
j

                 (2) 

For the two-class classification problem, the va-
riety contribution of classifier ci  

 ( )
( )

 1

1 ConDiv    ,
i k

N
i

i c x
k

M v
N 

                 (3) 

where N is the number of data points; М is the total 
number of classifiers; ( )

( )i k

i
c xv  is the number of 

classifiers that agree with ci in prediction (including 
itself);  ( )

( )  
i k

i
c xM v  is the number of classifiers that 

disagree with ci in prediction. In a two-class learning 
task, each disagreement is counted once when 
calculating the diversity contribution of ci, as defined 
in equation (2). Thus the sum of the disagreements on 
all data points divided by N is exactly equal to 
equation (2). 

In general an individual classifier’s prediction on 
the data points can be divided into four exclusive 
subsets: 

1) the subset in which the individual classifier 
predicts correctly and is in the minority group (en-
semble predicts incorrectly); 

2) the subset in which the individual classifier 
predicts correctly and is in the majority group (en-
semble predicts correctly);  

3) the subset in which the individual classifier 
predicts incorrectly and is in the minority group 
(ensemble predicts correctly);  

4) the subset in which the individual classifier 
predicts incorrectly and is in the majority group (en-
semble predicts incorrectly).  

In work [20] for designing a heuristic metric for 
evaluating individual contributions of ensemble 
members it is determined the rules of for evaluating 
contributions of predictions: 1) correct predictions 
make positive contributions (correct predictions that 
are in the minority group make more positive con-
tributions than correct predictions that are in the 
majority group); 2) incorrect predictions make nega-
tive contributions (incorrect predictions that are in the 
minority group make less negative contributions than 
incorrect predictions that are in the majority group). 

The individual contribution of a classifier ci is 
therefore defined as: 

( )

1

IC   IC ,
N

j
i i

j
                         (4) 

where ( )IC j
i  is ci’s contribution on the jth data point dj. 
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When ci(xj) equals yj, which means ci makes cor-
rect predictions on dj, if ci(xj) is in the minority group 
(the first subset), ( )IC j

i  is defined as: 
( ) ( ) ( )

max ( ) IC  = 2   ,
i j

j j j
i c xv v                   (5) 

where ( )
max

jv  is the number of majority votes on dj and 
( )

( ) i j

j
c xv  is the number of predictions on ci(xj), as de-

fined before. 
When ci(xj) equals yj and ci(xj) is in the majority 

group (in this case ( ) ( )
( )  maxi j

j j
c xv v ) (the second subset), 

( )ICi
j  is defined as: 

 
s c( e)  IC  ,i

j
jv                          (6) 

where  
sec

jv  is the second largest number of votes on 

the labels of dj.     sec max
j jv v  is an estimation of the 

“degree of positive contribution” in this case. 
It is clear, if the majority of classifiers predicts 

correctly with a classifier on dj, this classifier’s con-
tribution is not very valuable because without its 
prediction, the ensemble would still be correct on dj 

(assuming no tie). Note that     sec max
j jv v

 
is negative. 

According to our rules for designing the individual 
contribution measure, all correct predictions make 
positive contributions. Thus a term  

max
jv  is added to 

   
sec max

j jv v  to normalize it to always be positive, 

which gives equation (6). And  
max

jv  is added to 
    max ( )i j

j j
c xv v

 
to maintain their relative order, which 

gives equation (5). When ci(xj) does not equal yj (the third and the 
fourth subsets), ( )ICi

j  is defined as: 

   
 

    
 correct maxIC    ,

i j

j j j j
i c x

v v v              (7) 

where    
correct

jv  is the number of votes for the correct 
label of dj. The two negative cases can be considered 
together. Similar to the discussion of “degree of pos-
itive contribution”, the “degree of negative contribu-
tion” is estimated by      

correct ( )i j

j j
c xv v  which is the-

difference between the number of votes on the correct 
label and the number of votes on ci(xj). The expres-
sion      

correct ( )i j

j j
c xv v  could give a positive value, but 

according to our designing rules incorrect predictions 
should make negative contributions. So a term 

  max  jv  is added to      
correct ( )i j

j j
c xv v  to normalize it 

to always be negative. 

Combining equations (5), (6), and (7) with 
equation (4), the individual contribution of the clas-
sifier ci is:

  
 

      
 

      
max sec correct max

1
IC  2 ,

i j i j

N
j j j j j j

i ij ij ijc x c x
j

v v v v v v


                                   (8) 

where  

1 if  ( ) and  ( ) is in the minority group;
0 otherwise.

1 if  ( ) and  ( ) is in the majority group;
0 otherwise.

1 if  ( ) ;

0 otherwise.

i j j i j
ij

i j j i j
ij

i j j
ij

c x y c x

c x y c x

c x y


  




  



  



 

Accordance to equation (8) it is forming the set of 
NN modules which include into ancemble. It de-
mands the NNs modules combining. 

VI. PROCEDURE OF NN MODULES COMBINING 
The output of an ensemble is a weighted average 

of the outputs of each network, with the ensemble 
weights determined as a function of the relative error 
of each network determined in training [14] – [16]; 
the resulting network often outperforms the consti-
tuent networks. There is a growing body of research 
into ensemble methods, for example, improvements 
in performance can result from training the individual 
networks to be decorrelated with each other [12], 
[13], [17], [18] with respect to their errors. 

It used an approach to determine the ensemble 
weights dynamically as part of the training algorithm, 
i.e. during each propagation through the network, as 
opposed to any pre-determined fixed values or cal-
culations [21]. The weights are proportional to the 
certainty of the respective outputs. The certainty of a 
network output measures how close the output is to 
one or the other of the target values. 

We define the dynamically averaged network 
(DAN) by: 

DAN ( ),
n

i i
i n

f w f x


  

where the wi  ( 1,i n ) are according to: 
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 

 

( )
,

( )

i
i n

i
i n

c f x
w

c f x





 

where  
( )       if   ( ) 0.5,

( ( ))
1 ( )  otherwise.

i i
i

i

f x f x
c f x

f x


  
 

The w is sum to 1, so fDAN is a weighted average 
(WA) of the network outputs. The difference is that 
the weight vector is recomputed each time the en-
semble output is evaluated, to try to give the best 
decision for the particular instance under considera-
tion, instead of statically choosing weights that give 
an optimal decision with respect to a cross validation 
set. Each network’s contribution to the sum is pro-
portional to its certainty. A value close to 0.5, for 
instance, would contribute very little to the sum while 
a very certain value of 0.99 (or 0.01) among many 
less certain values would dominate the sum. 

VII. ENSEMBLE PRUNING 

Two classifiers are said to be complementary 
when their errors are uncorrelated. When comple-
mentary classifiers are combined in an ensemble, 
correct decisions are amplified by the aggregation 
process [10], [11]. 

The pruning strategies proposed are based on 
modifying the order of aggregation in the bagging 
ensemble: classifiers that are expected to perform 
better when combined are aggregated first. From the 
subensemble Su–1 of size u – 1, the subensemble Su of 
size u is constructed by incorporating a single clas-
sifier selected from the set ET / Su–1, which contains 
the classifiers from the original ensemble not in-
cluded in Su–1. This classifier is identified using a rule 
that attempts to optimize the performance of the 
augmented ensemble Su. The original random order 
of the pool of classifiers t = 1; 2; ...; T is replaced by 
an ordered sequence s1; s2; ...; sT, where sj is the 
original label (in the randomly ordered bagging en-
semble) of the classifier that occupies the jth position 
in the newly ordered ensemble. The curves that trace 
the evolution of the error as a function of the number 
of classifiers included in the ordered ensemble gen-
erally exhibit a minimum at intermediate ensemble 
sizes. This minimum corresponds to subensembles 
whose misclassification rates are below the error of 
the complete bagging ensemble. In this manner, ap-
proximate solutions to the problem of identifying 
near optimal subensembles can be obtained in poly-
nomial time. 

Finally, depending on the desired amount of 
pruning, the first  classifiers in the sequence are 
selected. If the goal is to improve accuracy,  should 

correspond to the minimum in the test set. Deter-
mining the location of this minimum using informa-
tion only from the training set is a difficult task be-
cause test and train minima can occur at different 
subensemble sizes. Nonetheless, the minimum ob-
served in the ensemble test error curves is fairly 
broad, which means that it is easy to improve the 
results of bagging by early stopping in the aggrega-
tion process in the ordered bagging ensembles. 

VIII.  CONCLUSION 

It is proposed a new structure of NN ensemble, 
which elements are NN modules, that permits to in-
crease its accuracy. It is considered a general ap-
proach of NN ensembles building: choice of kind and 
number of elements, procedure of NN modules 
combining and ensemble pruning. It is determined 
the best algorithms which supply the best solution of 
each task. 
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О. І. Чумаченко, А. Т. Кот. Структурно-параметричний синтез  ансамблів гібридних нейронних мереж 
У статті розглянуто підхід до дизайну ансамблю нейронних мереж як колекції кінцевого числа нейронних мереж 
для вирішення однієї і тієї ж задачі, а потім об'єднання результатів їх роботи. Запропоновано алгоритм опти-
мального вибору топологій нейронних мереж і їх кількості для включення в ансамбль. Подальше уточнення 
складу ансамблю здійснюється за допомогою операції обрізання. Вихід ансамблю є середньозваженим значен-
ням виходів кожної мережі, при цьому сукупні ваги визначаються як функція відносної похибки кожної мережі, 
визначеної при навчанні. Представлено новий підхід до динамічного визначення ансамблевих ваг в рамках ал-
горитму навчання. Ваги пропорційні визначеності відповідних виходів. 
Ключові слова: нейронні мережі; ансамбль; навчання; оптимізація; топологія. 
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Е. И. Чумаченко, А. Т. Кот. Структурно-параметрический синтез  ансамблей гибридных нейронных сетей 
В статье рассмотрен подход к дизайну ансамбля нейронных сетей как коллекции конечного числа нейронных 
сетей для решения одной и той же задачи, а затем объединения результатов их работы. Предложен алгоритм 
оптимального выбора топологий нейронных сетей и их количества для включения в ансамбль. Дальнейшее 
уточнение состава ансамбля осуществляется с помощью операции обрезки. Выход ансамбля представляет собой 
средневзвешенное значение выходов каждой сети, при этом совокупные веса определяются как функция отно-
сительной погрешности каждой сети, определенной при обучении. Представлен новый подход к динамическому 
определению ансамблевых весов в рамках алгоритма обучения. Веса пропорциональны определенности соот-
ветствующих выходов. 
Ключевые слова: нейронные сети; ансамбль; обучение; оптимизация; топология. 
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