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Abstract—It is considered the approach to the design of the ensemble of neural networks, where a collec-
tion of a finite number of neural networks is trained for the same task, then their results of the given task
solution are combined. It is proposed an algorithm of optimal choice of neural networks topologies and
their quantity for their inclusion as a member in ensemble. The further refinement of ensemble composition
is done with help pruning operation. The output of an ensemble is a weighted average of the outputs of each
network, with the ensemble weights determined as a function of the relative error of each network deter-
mined in training. It is presented a novel approach to determine the ensemble weights dynamically as part
of the training algorithm. The weights are proportional to the certainty of the respective outputs.

Index Terms—Neural networks; ensemble; training; optimization; topology.

I. INTRODUCTION

An ensemble of neural networks (NN) is called a
group of topologies, united into a single structure,
which may differ in architecture, learning algorithm,
training criteria, and types of generating neurons [1].
In another variant, the term ensemble means "united
model", the output of which is a functional combina-
tion of individual models outputs [1]. The construc-
tion of classifier ensembles is an active field of re-
search in machine learning because of the improve-
ments in classification accuracy that can be obtained
by combining the decisions made by the units in the
ensemble.

Input data can be broken down into certain groups
for processing by different NNs or applied to all
networks at the same time.

Forming of NN ensembles requires a solution of
two stages problem — the qualitative learning of each
NN which is supposed to include to the ensemble and
their optimal association. The known algorithms are
divided into two classes: algorithms that for new
classifiers change the distribution of learning exam-
ples based on the accuracy of the previous models
(boosting), and those in which new members of the
ensemble learn independently of others (bagging).

II. PROBLEM REVIEW

The main algorithms of the NN ensemble associ-
ation and their disadvantages are shown in the Table I
[1].

In contrast to [2], in this work, instead of separate
NNs, modules of neural networks are used.

The necessity of the modulus principle applying in
the hybrid NN of ensemble structure is determined by
the following:

— heterogeneity of the data of the training sample,
which leads to the inability of a one-module NN to
correctly approximate the necessary dependence;

— the complexity of the algorithm of the solvable
problem, which requires a multimodal structure;

— characteristics difference of the errors function
on the various fragments of the training sample;

— need to accumulate the knowledge of experts in
NN modules learning.

For new, there are serial and parallel types of
structures for the construction of NN ensembles.
Investigations of the serial structure of the of modules
connection into the ensemble are currently absent. In
work [3] the examples of serial construction of
modules structure networks are presented. An ex-
ample of a parallel modules structure is presented in
work [4].

The main difficulty of networks ensemble asso-
ciation is the training of all components for the
problem solution. In order to increase the effective-
ness of learning, each NN is learnt separately (if
possible), and then united into a single structure.
However, in the case where the training algorithms of
selected topologies belong to different classes, the
synchronous training of all modules included in the
ensemble is required, and therefore it is necessary to
develop a single algorithm for all ensembles modules
adjustment.

Let's consider the principles of hybrid NN ensem-
bles constructing of seriel and parallel structures.

III. MODULE CONNECTION TYPES

The sireal ensemble organization structure con-
sists in supplying the output data of one module to the
inputs of another module. A similar structure is used
to restore the input data or to improve their differ-
ences (normalization) for execution of the main task
(approximation, classification, etc.).

The general scheme of modules serial connection
of the is shown in Fig. 1.
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TABLE I

CHARACTERISTICS OF ALGORITHMS

Technology Methodology for obtaining the

result

Disadvantages

Static structures

Averaging over Linear combination of NN output

1. Dependence of the result on the correct determination

basis of the set of subsets of the

combining of the results of the
SNN work

ensemble signals of the competence of the NN.
2. Increasing the complexity of the algorithm by apply-
ing algorithms of "data noise emissions" correction.
Boosting Each new NN is based on the re- 1. The presence of more examples of learning sample.
sults of previously built neuron 2. The degeneration of the NN ensemble into a complex
networks inefficient neural network structure that requires a
large amount of computing resources.
3.The last NNs learn on the "most complex" examples.
Stacking Applying the concept of meta 1. The complexity of the theoretical analysis through a
learning set of sequentially shaped models.
2. Possible growth of meta model levels, which can lead
to a rapid depletion of computing resources.
Bagging Formation of the NNs set on the 1. Additional computational expenses associated with

learning sample and the subsequent

the need to form a large number of learning sample
subsets.

2. The subsets of the examples differ from each other,
but are not independent, since they all are based on
the same set.

3. The algorithm requires a large amount of data for
adjustment and learning.

Dynamic structures

Mixing of expert
opinions

Integration of expert knowledge
through the use of the gateway
network

1. The algorithm demands the computing resources in
the breakdown of the output area. It is possible to
create a large number of areas, which will lead to
excessive clustering of area and will create a larger
group of basic NNs with a complex mechanism of
interaction with the networks of the gateway.

2. Learning and adjusting the hierarchical model
represents a complex computational process. The
learning process based on the stochastic gradient is
based on the adjustment of the weight coefficients of
the NN, the network of the gateway of the first and
second levels, which leads to a complicated algo-
rithm of complex optimization of the total NN ma-

chine.
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Fig. 1. Serial connection of modules

An ensemble in which the input data is applied
simultaneously to the inputs of all modules that form
the hybrid NN is called parallel. The main element of
such structure is the "layer of association", which is
responsible for aggregating the results of the various
ensemble components. The general structure of the
parallel modules ensemble of NN is shown in Fig. 2.

The main disadvantage of using a parallel ensem-

ble is an overly complex learning algorithm with
probabilistic convergence.

Based on the analysis conducted in this paper, it is
proposed to synthesize the hybrid topology in the
form of a series-parallel ensemble of NN modules,
which is the most generalizing structure. The selected
conceptual model is shown in Fig. 3.
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Fig. 2. Parallel connection of modules
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Fig. 3. Serial-parallel structure of ensemble of NN modules
IV. PROBLEM STATEMENT

“A necessary and sufficient condition for an en-
semble of classifiers to be more accurate than any of
its individual members is if the classifiers are accu-
rate and diverse.” Since the diversity of the ensemble
decreases with the increase in accuracies of ensemble
members, the key to the success of any ensemble
learning method is the appropriate handling of the
trade-off between accuracy and diversity.

Many approaches have been proposed to create
accurate and diverse ensembles. Examples include
bagging [5], boosting [8], random forests [6], the
random subspace method [9] and random decision
trees [7]. In most ensemble methods, the diversity
and accuracy are acquired by manipulating subsets of
data points or features. One problem with these en-
sembling approaches is that they tend to construct
unnecessarily large ensembles, which requires a large
amount of memory to store the trained classifiers and
decreases the response time for prediction. Ensemble
pruning, or selective ensembles, is a technique that
tackles this problem by choosing a subset of indi-
vidual classifiers from a trained ensemble to form a
subensemble for prediction. The classifiers in the
subensemble need to be carefully chosen so that it is
small enough to reduce the memory requirement and
response time with predictive accuracy that is similar
to or better than the original ensemble.

Based on analysis of Table I it can by shown that
bagging has advantages before others:

— Bagging reduces variance or model
nconsistency over diverse data sets from a given

distribution, ithout increasing bias, which results in a
reduced error and enhanced stability.

— The other benefit of using bagging is related to
the model selection. Since bagging transforms a
group of over-fitted neural networks into a
better-than perfectly-fitted network, the tedious time
consuming model selection is no longer required.
This could even offset the computational overhead
needed in bagging that involves training many neural
networks.

— Bagging is very robust to noise.

— Parallel execution: although the boosting
algorithm has better generalization ability than the
bagging algorithm, the bagging algorithm has the
benefit of training ensembles independently, hence in
parallel.

Let D = {dy, ...., dy} be a set of N data points
where d; = {(x;, y;) | and € [1, N]} is a pair of input
features and label that represents the ith data point,
C = {c, ...., cu} be a set of M classifiers where ci(x;)
gives the prediction of the ith classifier on the jth data
point, V' = {v(]), s v(N)|v(i) = [v](i), - vL(i)], and € [1,
N} be a set of vectors where v(i) is the number of
predictions for the jth label of the ith data point of an
ensemble combined with majority voting, and L is the
number of output labels.

It is necessary, based on the accuracy and variety
of classifiers C = {cy, ...., cy}, to select members to
form an ensemble, having a test set of data and
assuming that the networks are previously trained on
bootstrap samples.

V. PROBLEM SOLUTION

For the begining it is necessary to select the con-
didates from the set of NN for their inclusion into
ansemble.

From our point of view it must be hybrid NN, for
example modules of NNs [3], [4], whire is presented
their structure.

Equal models become diverse when learning from
different data sets. If we have at our disposal only one
set of m examples, then the different subsamples with
close statistics can be obtained by applying a boot-
strap [17] — a random sample with a return.

The main idea of the bootstrap is to repeatedly
retrieve repeated samples from the empirical distri-
bution by the method of Monte Carlo statistical tests.
Namely, we take a finite set of n terms of the original
sample xy, xa, ..., X,_1, X,, from which it is "stretched"
at each step of n consecutive iterations using a ran-
dom number generator uniformly distributed on the
interval [1, n] an arbitrary element x;, which again
"returns" to the original sample (that is, it can be
retrieved).
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So preliminary stage of ensemble building is the
creation of basic classifiers which must be independet.

These classifiers are learnt on independent data
sets. As result we have the following algorithm:

1) A set of training examples is given (x;, 1),

cves (X yu) tagged ye{l,..., k}.

2) Get T bootstrap sampling D,.

3) Independently (in parallel) to train ¢ classifi-
ers /,, everyone in their sample D.,.

In bagging, only a subset of examples typically
appears in the bag which will be used in training the
classifier. Out-of-bag error provides an estimate of
the true error by testing on those examples which did
not appear in the training set. Formally, given a set T
of examples used in training the ensemble, let # be a

set of size |T| created by a random sampling of T
with replacement, more generally known as a bag.
Let s be a set consisting of 7— (7T N ¢). Since s consists
of all those examples not appearing within the bag, it
is called the out-of-bag set. A classifier is trained on
set t and tested on set s. In calculating the voted error
of the ensemble, each example in the training set is
classified and voted on by only those classifiers
which did not include the example in the bag on
which that classifier was trained. Because the
out-of-bag elements, by definition, were not used in
the training set, they can be used to provide an esti-
mate of the true error.

We have developed an algorithm which appears to
provide a reasonable solution to the problem of de-
ciding when enough classifiers have been created for
an ensemble. It works by first smoothing the
out-of-bag error graph with a sliding window in order
to reduce the variance [19].

Only a fraction of the trees in the ensemble are
eligible to vote on any given item of training data by
its being “out-of-bag” relative to them. Consider the
meaning of diversity.

Given two classifiers ¢; and ¢;, where N denotes
the number of data points incorrectly predicted by c¢;
but correctly predicted by c;, and N9 is the opposite
of NV, the diversity of ci and ¢;, denoted by Div;_, is
the ratio between the sum of the number of data
points correctly predicted by one of the classifiers
only and the total number of data points, as given in
equation

oy (10)
Div, | NN (1)
’ N

A classifier ¢;’s diversity contribution to an en-
semble, denoted by ConDiv;, is the sum of the diver-
sities between ¢; and each other classifier in the en-
semble (excluding ci because according to equation

(1) a classifier’s diversity to itself is zero), as given in
equation

M
ConDiv, =) Div, . (2)
Jj=1

For the two-class classification problem, the va-
riety contribution of classifier ¢;

. 1< i
ConDiy; ZN;(M - fo()xk)), 3)

where N is the number of data points; M is the total
number of classifiers; v")

¢ (%)

classifiers that agree with ¢; in prediction (including
itself); (M -y

¢ (%

is the number of

)) is the number of classifiers that

disagree with ¢; in prediction. In a two-class learning
task, each disagreement is counted once when
calculating the diversity contribution of ¢;, as defined
in equation (2). Thus the sum of the disagreements on
all data points divided by N is exactly equal to
equation (2).

In general an individual classifier’s prediction on
the data points can be divided into four exclusive
subsets:

1) the subset in which the individual classifier
predicts correctly and is in the minority group (en-
semble predicts incorrectly);

2) the subset in which the individual classifier
predicts correctly and is in the majority group (en-
semble predicts correctly);

3) the subset in which the individual classifier
predicts incorrectly and is in the minority group
(ensemble predicts correctly);

4) the subset in which the individual classifier
predicts incorrectly and is in the majority group (en-
semble predicts incorrectly).

In work [20] for designing a heuristic metric for
evaluating individual contributions of ensemble
members it is determined the rules of for evaluating
contributions of predictions: 1) correct predictions
make positive contributions (correct predictions that
are in the minority group make more positive con-
tributions than correct predictions that are in the
majority group); 2) incorrect predictions make nega-
tive contributions (incorrect predictions that are in the
minority group make less negative contributions than
incorrect predictions that are in the majority group).

The individual contribution of a classifier ¢; is
therefore defined as:

N
IC, = > ICY, @)
Jj=1

where IC" is ¢;’s contribution on the jth data point d;.



O.1. Chumachenko, A.T. Kot Structural-Parametric Synthesis of Hybrid Neural Networks Ensembles 85

When c¢(x;) equals y;, which means ¢; makes cor-
rect predictions on dj, if ¢{(x;) is in the minority group
(the first subset), ICY is defined as:

ICY =2 _ ) (5)

G(x;) 2

()

max

where v
9
¢ (x;)
fined before.

When ci(x;) equals y; and c(x;) is in the majority
group (in this case v\” | =v!) ) (the second subset),

¢ (x;) ma
IC’('].) is defined as:

is the number of majority votes on d; and

v is the number of predictions on c(x;), as de-

Ic, =W, (©)

where 1!/ is the second largest number of votes on

the labels of d;. (vs(;j -\ ) is an estimation of the

“degree of positive contribution” in this case.

It is clear, if the majority of classifiers predicts
correctly with a classifier on dj, this classifier’s con-
tribution is not very valuable because without its
prediction, the ensemble would still be correct on d;

(assuming no tie). Note that (v =/

sec max

) is negative.
According to our rules for designing the individual
contribution measure, all correct predictions make

positive contributions. Thus a term vgj;( is added to

IC, =

J=1

W) )

sec max

to normalize it to always be positive,

which gives equation (6). And vgj;( is added to
(V(j) )

max ¢ (x;)

) to maintain their relative order, which

gives equation (5).
When c(x;) does not equal y; (the third and the
fourth subsets), IC’('].) is defined as:

c¥) = 0 _ Vf-j) ) (7)

max 2
,.(x/.)

where v/} is the number of votes for the correct

correct
label of d;. The two negative cases can be considered
together. Similar to the discussion of “degree of pos-
itive contribution”, the “degree of negative contribu-

W) ) which is the-

¢ (x;)

tion” is estimated by (v(j)

correct

difference between the number of votes on the correct
label and the number of votes on c;(x;). The expres-

sion (v(j) _—

correct ¢ (x;)

) could give a positive value, but

according to our designing rules incorrect predictions
should make negative contributions. So a term

(—vﬁ{; ) is added to (Vif,})rea ¢(x;)

—y7) ) to normalize it
to always be negative.

Combining equations (5), (6), and (7) with
equation (4), the individual contribution of the clas-
sifier ¢; is:

N
() () () () () ()
z (a‘ij (2vmjax - vcfj(x/) ) + Bijvs;c +eij (VC(j)rrect - vcfj(x/,) - vmjax ))3 (8)

Lif ¢,(x;)=y; and c,(x,) is in the minority group;

o, = )
0 otherwise.

where B, :{

{1 if ¢.(x;)#y;

0 otherwise.

v 0 otherwise.

Accordance to equation (8) it is forming the set of
NN modules which include into ancemble. It de-
mands the NNs modules combining.

VI. PROCEDURE OF NN MODULES COMBINING

The output of an ensemble is a weighted average
of the outputs of each network, with the ensemble
weights determined as a function of the relative error
of each network determined in training [14] — [16];
the resulting network often outperforms the consti-
tuent networks. There is a growing body of research
into ensemble methods, for example, improvements
in performance can result from training the individual
networks to be decorrelated with each other [12],
[13], [17], [18] with respect to their errors.

Lif ¢,(x;)=y, and ¢,(x,) is in the majority group;

It used an approach to determine the ensemble
weights dynamically as part of the training algorithm,
i.e. during each propagation through the network, as
opposed to any pre-determined fixed values or cal-
culations [21]. The weights are proportional to the
certainty of the respective outputs. The certainty of a
network output measures how close the output is to
one or the other of the target values.

We define the dynamically averaged network
(DAN) by:

Joan = Zn: w,f;(x),

where the w; (i= I,_n) are according to:
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c(f£,(x)

i n

Y.c(f)

i=n

fi(x) if f(x)=0.5,
1- f,(x) otherwise.

b

where c(f;(x))= {

The w is sum to 1, so fpan is a weighted average
(WA) of the network outputs. The difference is that
the weight vector is recomputed each time the en-
semble output is evaluated, to try to give the best
decision for the particular instance under considera-
tion, instead of statically choosing weights that give
an optimal decision with respect to a cross validation
set. Each network’s contribution to the sum is pro-
portional to its certainty. A value close to 0.5, for
instance, would contribute very little to the sum while
a very certain value of 0.99 (or 0.01) among many
less certain values would dominate the sum.

VII. ENSEMBLE PRUNING

Two classifiers are said to be complementary
when their errors are uncorrelated. When comple-
mentary classifiers are combined in an ensemble,
correct decisions are amplified by the aggregation
process [10], [11].

The pruning strategies proposed are based on
modifying the order of aggregation in the bagging
ensemble: classifiers that are expected to perform
better when combined are aggregated first. From the
subensemble S,_; of size u — 1, the subensemble S, of
size u is constructed by incorporating a single clas-
sifier selected from the set £/ S,.;, which contains
the classifiers from the original ensemble not in-
cluded in S, ;. This classifier is identified using a rule
that attempts to optimize the performance of the
augmented ensemble S,. The original random order
of the pool of classifiers t = 1; 2; ...; T is replaced by
an ordered sequence si; S»; ...; S;, where s; is the
original label (in the randomly ordered bagging en-
semble) of the classifier that occupies the jth position
in the newly ordered ensemble. The curves that trace
the evolution of the error as a function of the number
of classifiers included in the ordered ensemble gen-
erally exhibit a minimum at intermediate ensemble
sizes. This minimum corresponds to subensembles
whose misclassification rates are below the error of
the complete bagging ensemble. In this manner, ap-
proximate solutions to the problem of identifying
near optimal subensembles can be obtained in poly-
nomial time.

Finally, depending on the desired amount of
pruning, the first t classifiers in the sequence are
selected. If the goal is to improve accuracy, T should

correspond to the minimum in the test set. Deter-
mining the location of this minimum using informa-
tion only from the training set is a difficult task be-
cause test and train minima can occur at different
subensemble sizes. Nonetheless, the minimum ob-
served in the ensemble test error curves is fairly
broad, which means that it is easy to improve the
results of bagging by early stopping in the aggrega-
tion process in the ordered bagging ensembles.

VIII. CONCLUSION

It is proposed a new structure of NN ensemble,
which elements are NN modules, that permits to in-
crease its accuracy. It is considered a general ap-
proach of NN ensembles building: choice of kind and
number of elements, procedure of NN modules
combining and ensemble pruning. It is determined
the best algorithms which supply the best solution of
each task.
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O. I. Yymauenko, A. T. Kot. CTpyKTypHO-TapaMeTPUYHHUI CHHTe3 aHCaM0J1iB riOpuIHUX HelipOHHUX Mepesk

VY crarTi po3risSHYTO MiAXi A0 AU3aliHy aHCaMOITI0 HEHPOHHHUX MEPEK K KOJIEKIT KIHIIEBOTO YHCia HEHPOHHHUX MEPEK
JUIsl BUPIIICHHS OJIHIET 1 Tiel X 3ajauyi, a MoTiM 00'€IHAHHS PE3yNbTATIB iX POOOTH. 3alIPOINIOHOBAHO AITOPUTM OITH-
MaJbHOTO BHOOPY TOMOJOTiH HEHPOHHHUX MEPEX 1 iX KITBKOCTI JUIs BKJIIOUCHHS B aHcaMOub. [lomanbline yrouHEHHS
CKJIaly aHCaMOJTIO 3IHCHIOETBCS 3a TOITOMOTO0 orepallii o0pizanHsA. Buxin aHcaMOIIIO € cepeHbO3BaXKCHUM 3HAUYCH-
HSIM BHXOJIiB KOXXHOI MEpEXi, P [IbOMY CYKYIIHI Barl BU3HAYAIOTHCS SIK QYHKIIS BIZIHOCHOT IMOXHOKU KOXKHOI Mepexi,
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E. 1. Yymauenko, A. T. Kotr. CTpykTypHO-napaMeTpu4yecKkmii cMHTe3 aHcaM0Jieil rHOpuAHBIX HeHPOHHBIX ceTell
B craTtbhe paccMoTpeH moaxo[ K Iu3aiiHy aHcaMmOllsi HEHPOHHBIX CeTel KaK KOJUIEKIWH KOHEYHOI'O YWCiia HEHPOHHBIX
cerell U pelIeHus OJJHOM W TOH JKe 3aJ1ayd, a 3aTeM OOBEAMHEHUs Pe3yNbTaToB MX padoTsl. [IpemioxeH anropurm
OIITHMAJBHOTO BHIOOpA TOMOJIOTMH HEHPOHHBIX CETEH M MX KOJMYEeCTBAa Ul BKJIIOYEHHs B aHcaMOub. JlanbHeliniee
YTOYHEHHE COCTaBa aHCAMOJISl OCYIIECTBIISIETCS C IOMOIIBIO Orepanuy o0pe3ku. Beixoa aHcaMOI1st mpecTaBisieT co0ok
Cpe/IHEeB3BEIICHHOE 3HaYEeHHE BBIXOJIOB KaXKJIOH CETH, TIPH 3TOM COBOKYITHBIE Beca ONpPEessIFoTCs Kak (yHKIMS OTHO-
CHUTENILHOM MOTPENTHOCTH KaXKI0W CETH, Olpe/ielIeHHOH pu o0y4yeHun. [IpencraBieH HOBBIN MTOIXO/ K TUHAMHUYECKOMY
OITpe/IeTICHUI0 aHCaMOJIEBBIX BECOB B paMKax alropuTMa oOydeHus. Beca mpomopiyioHa bHBI ONMPEeIeHHOCTH COOT-
BETCTBYIOIIUX BBIXO/IOB.

KiroueBble cJIoBa: HEHPOHHBIE CETH; aHCAMOJIh; 00YUCHHE; OIITUMHU3AITUS; TOIOJIOTHSL.

Yymauenko Enena Minbuanyna. KanaunaTt rexHudeckux Hayk. JIOIEHT.

Kadenpa texunyeckoli knbepHeTnky, HanoHanbHBI TEXHUYECKUH YHUBEPCUTET YKpauHbl «KHEBCKHH MONUTEXHHU-
yeckuil HHCTUTYT UM. Urops Cukopckoroy», Kues, Ykpauna.

O0pasoBanue: ['py3uHckuil monurexHuueckuii HHCTUTYT, ToOwmucu, ['py3us, (1980).

Hanpagienue HaygyHOI A€ATENBHOCTH: CUCTEMHBINA aHAIN3, UCKYCCTBEHHBIE HEHPOHHBIE CETH.

Konugectro myOnukanuii: 6onee 60 HayIHBIX paboT.

E-mail: chumachenko@tk.kpi.ua

Kot Anatonuii TapacoBuu. Acriupasrt.

HanmonanpHelil TeXHUYECKU YHUBEpcUTET YKpauHbl «KueBckuii moduTexHuueckuii uHCTUTYT uM. Uropst Cukopcko-
ro», Kues, Ykpauna.

OO0pasoBanue: HanmoHanbHBIM TEXHMYECKHH YHHUBEpCUTET YKpauHbl «KHEBCKHMH MONUTEXHUYECKUH HHCTHTYT WM.
Urops Cukopckoro», Kues, Ykpauna, (2017).

Hanpagienue HaygHOH A€ATENBHOCTH: UCKYCCTBEHHBIN HHTEIIEKT.

E-mail: anatoly.kot@gmail.com



