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Abstract—The processes of blood flow in the aorta under the influence of swirling blood flow at the 
output from the left ventricle of the heart are studied. The problem of simulated swirling flow of blood in 
the left ventricle as a nonlinear boundary value problem in the form of a system of differential equations 
in partial derivatives with moving limits is formulated. Expressions for the field of blood flow velocity 
and pressure in the left ventricle are obtained. The flow of blood in the aorta under the influence of a 
swirling flow at the exit from the left ventricle is described by a system of nonlinear equations in partial 
derivatives. The solution of this boundary-value problem is sought using an iterative procedure based on 
using integral transformations for spatial variables and time.  

Index Terms—Aorta; vortex flows; swirling currents; Navier–Stokes equation; integral transformations; 
left ventricle. 

I. INTRODUCTION 

The nature of vortex currents in the left ventricle 
of the heart has been studied and studied by many 
leading scientists in the world. The left ventricle is 
seen as part of an elongated ellipsoid with a movable 
wall, the dynamics of which is induced from the 
outside. One of the most important properties of the 
blood that is observed in the left ventricle during 
diastole is the presence of vortex rings that curl 
through the jet phenomena coming from the mitral 
valve. The presence of vortex rings that develop 
during stasis of diastole is confirmed by numerous 
experimental studies on the basis of Doppler and 
magnetic resonance. During diastole, when the left 
ventricle is filled with a blood stream from the 
atrium, the ventricle expands, resulting in the area of 
the stomach moving in the opposite direction to the 
flow of blood. 

II. PURPOSE OF THE RESEARCH 

The purpose of the research is to develop a 
mathematical model of the vortex blood flow in the 
left ventricle, under the influence of which the flow 
of blood swirled at the entrance to the aorta and on 
this basis in the development and solution of the 
corresponding mathematical model of blood flow in 
the aorta. 

III. OVERVIEW 

It is believed [1] that the main dimensionless 
parameter for any viscous flow is the Reynolds 
number. The characteristic of the degree of rotation 
of the flow is the spin parameter. Experimental 
studies [2], usually use the integral spin parameter: 
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The momentum flow in the axial direction, taking 
into account the contribution of the components of 
the turbulent shear stress [1].  

= ( ) .mm z zF V V V V rd 
      

The flow of traffic in axial direction, taking into 
account the contribution of turbulent normal stresses 
and pressures. 

2 '2= [ ( )] .m z zF V V p p d
        

Most of the twisty currents in the technical 
dictations are turbulent. Therefore, an effective 
Reynolds number is introduced and used to solve the 
complete Navier–Stokes differential equation 
system. A detailed review and analysis of such 
models is made in [4], and an example of a study of 
a swirling current in a vortex tube and jet is 
considered in [5]. 

A significant drawback of all these models, 
which are considered in the links, is the absence of 
external force, which prompts the emergence of 
twisted streams. 

The Navier–Stokes equation and the continuity 
equation for an axially symmetric flow in cylindrical 
coordinates ( , , )r z  can be represented in the    
form [2]. 
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Following the generally accepted method to 
exclude the variable p  from these equations, we 
write them with respect to the function of the current 
 , the vorticity   and the azimuthal velocity V : 
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The flow is considered in the cylindrical region 
{0 , 0 )}k kD z z r r     bounded by the planes 
= 0z , = kz z  and the surface of rotation = kr r . In the 

case of flow in an axisymmetric channel, the 
computational domain is bounded by a solid surface 

= 1kr , in the case of a free vortex, by the conditional 
boundary = const 1kr  . 

The main input data determining the flow 
development in the D  region are given in the initial 
section = 0z : 0 0= ( ), = ( ).z zV V r V V r   

The radial velocity is generally assumed to be 
zero. The functions 0 ( )zV r , 0 ( )V r  are taken either 
from experimental data or derived from theoretical 
considerations. The first possibility refers to the case 
when the initial field is formed using special 
devices; such flows are organized in pipes for 
technical applications. The second possibility arises 
in cases where the vortex flow with a twist is formed 
due to the natural development of the flow. 

Thus, for = 0z  there is some flow with a certain 
initial spin. It is required to determine the further 
structure of such an initial swirling flow in the D  
region. Ultimately, for the region under study, it is 
necessary to find the velocity field and construct a 

picture of the streamlines. Of particular interest here 
are the areas of return currents adjacent to the flow 
axis, which can be formed with certain combinations 
of the Reynolds number and the spin parameter. The 
formation and structure of such recirculation zones 
will be focused on. 

In the output section, the boundary conditions 
can be set differently. It can be possible directly set 
the values of  ,   and V  (hard boundary 
conditions) or assume that the derivatives of these 
variables on the coordinate z  are zero (soft 
boundary conditions).  
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They have a weak effect on the structure of the 
flow upstream; therefore, when using them, one can 
confine oneself to a less extended region D  along z . 

The adhesion conditions are set on the side 
surface of the computational domain for swirling 
flow in an axisymmetric channel  

1= = const, = 0, = 0, 0 , = ,k kV z z r r
r


   


 

The current function is determined up to a 
constant, so it is assumed that = 0  for = 0r . Then 
on the flow axis it is had the following conditions of 
flow symmetry  

= 0, = 0, = 0, 0 , = 0.kV z z r     

Initial conditions specified  

0 0= ( , ), = ( , ), = 0, ( , ) .r z V V r z t r z D       (9) 

The general algorithm for solving the Navier – 
Stokes system (equations (5) – (7)) includes the 
following iterations [7]. For each time step, the 
Poisson equation is first solved for  , then the 
values of zV , rV  are calculated using the formulas 
(8), then the equation (7) is solved for V , after 
which the vorticity field from (6) is determined. 

A significant feature of the movement of blood in 
the left ventricle is that the shape of the heart is a 
function of time, that is, it is mobile. Therefore, it is 
necessary to path from a cylindrical coordinate 
system to a mobile one, considering the shape 
(idealized) in the form of an elongated ellipsoid. 

The degenerate ellipsoidal coordinates ( , ,   ) 
for an elongated ellipsoid of rotation are determined 
using the formulas  

= sin cos , = sin sin sin , = cos ,x c y c z c        

c  is a scale factor, 0 <  , 0     ,      . 
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Coordinate surfaces: extruded ellipsoids of 
rotation = const , [3].  

2 2
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After solving the boundary value problem (5) – 
(7) taking into account (10) over the found velocity 
field, the pressure distribution in the flow can be 
determined from the following Poisson equation: 
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The boundary conditions for it are the Neumann 
conditions, which are obtained from the equations of 
the normal component of the impulse and in 
dimensionless form have the form:  
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The metric coefficients of the moving coordinate 
system are 

= , = ( )sin , = 2( ) cos 2 ,h h h h            

where the time dependence is omitted for brevity. 
This coordinate system describes a moving object in 
physical space; therefore, a fixed point in ( , , )    – 
space has a physical velocity c , whose components 
can be written in the general case as  

= ( )( ) ,
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h
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where the point denotes the time derivative. In this 
case, the expression for c  is simplified, since 

= 0.  
The diameter of 0 = ( = 0)D D t  at the beginning 

of the diastole filling phase is selected as the 

reference length scale. The time scale of T  is the 
heart rate period. Thus, we have the Stokes number 

2
0= / ,D T     is the kinematic viscosity of the 

fluid. 
Here the diastolic phase is analyzed, therefore it 

has a dimensionless duration of approximately 0.5. 
The system is excited by the arrival of a 

discharge with a given temporary law; A simple 
analytical form was chosen, which reproduces the 
rapid acceleration and deceleration of the flow 
pulsation inside the chambers of the heart and the 
main arterial vessels. It is represented by a 
dimensionless function.  

2( ) = ( ) ,ftt A St t e                  (11) 

= 20f  is the characteristic deceleration frequency, 
giving a peak time of = 0.1pt . 

The ( )A St  function, which scales the total bit, 
depends on the Strouhal number 0= / ( )St D UT ; the 
scale of U  is the speed at the input section, = / 2,   
which corresponds to the maximum value of the 
discharge = ( )p pt   averaged over the area 
actually occupied jet. The following velocity profile 
v  is assigned to the input: 

42 2

2

( cos ) ( sin )( , ) = ( ) exp

                                                                for = / 2,
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where   is the eccentricity of the profile,   controls 
the relationship between the incoming jet and the 
diameter D(t), C  is the normalization factor for 
matching with (11). From the formula (12) the 
velocity scale is 2

0= 4 / ( ( ) )pU D  . 
The real values for the parameters 

(0.6 0.7)   and (0.1 0.14)   cm; in this 
paper, we use the fixed value 0.6 , therefore 

= 209/C St . 
A realistic flow profile ( )Q t  for an ideal early 

filling period can be represented as  
2= ,ftQ At e                            (13) 

where f  is the scale frequency deceleration; A is 
the scale of the total volume input. The specification 
of the law of discharge corresponds to the change in 
time of the volume 2 2= / 6V D H  and gives the 
ratio between the diameter and height of the 
derivatives  

2
2 2 1= .

6
dD dHQ D H

D dt H dt
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The system was analyzed by changing the 
eccentricity of the   inlet profile (13) in the range 
from 0.02 to 0.125. The Stokes number   was 
considered in the interval between 64 and 144, the 
Strouhal number was first set to St = 0.072, and then 
reduced to 0.05. 

The case of 144  , 124   is discussed as a 
reference; the results are then compared with the 
results obtained with different parameter values. 

To determine the moving boundaries in [5], a 
system of differential equations for ( )D t  and ( )H t  
is proposed:  
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with initial conditions 0 0(0) = , (0) = .D D H H  

IV. SETTING RESEARCH TASKS 

The considered mathematical models of fluid 
motion in the left ventricle (2) – (4) and the 
corresponding equations for vorticity (5) – (7), in 
our opinion, does not correspond to the actual state 
of affairs. It means the following. Fluid motion and, 
respectively, equations for vorticity are considered 
as non-stationary equations (6) – (7), that is, 
vorticity is a function of spatial coordinates and 
time, and Poisson’s equation (5) – stationary. It is 
logical instead of (5) to write a nonstationary 
equation  

2

2

1 1= .
t r z r r r

           
 

The study of vortex flows in the heart in the 
moving coordinate system leads to the need to 
consider the following system of nonlinear equations 
with respect to flow velocity and vorticity. First of 
all, we write down the expressions for the Laplacian 
and the divergence of the flow (the convective 
component in the moving coordinate system) taking 
into account the moving wall of the heart and 
equation: 
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Here, the symbol u in accordance with the 
equations (5) – (7) is denoted  , V  or  . The 
system of equations (5) – (7) can now be written in 
this form:  
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Formulas (8) take the form:  
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V. PROBLEM SOLUTION  

Since the reduced equations describing the 
swirling flows in the left ventricle represent a system 
of nonlinear equations for fluid flow velocity, 
vorticity and current functions, as well as wall 
motion, the real way to solve such a system of 
equations, in our opinion, lies in using approximate 
numerical-analytical methods, since the use of 
difference schemes for solving nonlinear differential 
equations seems attractive only at the stage of 
writing the corresponding difference schemes. 
Practical implementation of them is associated with 
significant difficulties both algorithmic and 
computational aspects. 

The construction of iterative schemes for 
numerical-analytical modeling consists of several 
stages, the first of which deals with the linear 
approximation of the corresponding boundary value 
problem. In this case, we begin with the search for a 
solution to the equation for the v  – equation (17). 
We write the equations (14) – (16) in the form  
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Boundary and Initial conditions on the bottom of 
rigion afte Laplace transform ve be as follows:  
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Note that the statements of the authors of 
numerous publications related to solving the 
problem under study, that the equation is solved first 
(19) (in the stationary case, this Poisson equation) is 
doubtful, since it contains the unknown in the right-
hand side the function ( , , )t   . 

The general scheme for the numerical-analytical 
solution of nonlinear equations of mathematical 
physics is given in [8], [9]. 

The equation (18) can be represented in the 
following form.  
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In the linear approach we have a parabolic 
equation. The use of integral transformations in the 
 ,  and   variables gives a solution  
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In this solution, nmZ  and nmY  are the associated 
Legendre polynomials.  

( ) (cos( ) = (cos ),sin
cos

m
m m

n nm

dP P
d

  


 

21( ) = [( 1) ],
2 !

n
n n n

dP x x
n dx


 

( = 0,1,2, ).n   

The resulting expression for the azimuthal flow 
velocity is used to find the solution in the linear 
approximation of the equation (18). After that we 
find the solution of the equation (19). 

V. SIMULATION OF AORTIC FLOW DYNAMICS 
An equation system, which describes the 

distribution of fluid in the aorta, is conveniently 
presented in cylindrical coordinates. For the 
assumption of the existence of the coefficients of 
turbulent exchange, the stationary three-dimensional 
equations have the form [6]: 
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Simulation of twisted streams will be performed 
according to the iterative scheme [7]. For this we 
present the equation of the components of the speed 
of the fluid in the form 
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Since the Navier–Stokes equation contains a term 
relative to pressure, one needs to add another equation 
for closing this equation system. This equation is an 
equation with respect to the flow temperature 
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Given the equation of continuity of the flow (25) 
we obtain the following system of equations: 
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The solution of the linear part of this system, 
taking into account the initial and boundary 
conditions, is obtained as: ( 2= z h  , [0, ]zL , 
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In the first approximation we get  
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(28)
 where ,

u
m l  are self-values of ( ) with conditions ( ). 

Further approximations are performed according 
to a similar scheme. Obviously, the application of 
the simplification algorithm leads to errors in the 
solutions of the corresponding boundary value 
problems. But these errors can be offset by 
additional iterations, using relatively simple 
expressions of the form (27) – (28). These iterations 
do not lead to additional complications of a 
computational nature, since they are realized by 
similar algorithms, which enables to automate the 
process of finding approximate solutions of the 
formulated boundary value problem. 

At the next iteration, using the found vorticity 
expressions in the system of equations (18) and (19), 
we proceed to the consideration of the convective 
components. 

Continue these iterations until the required 
accuracy of the solution is achieved. The results of 
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modeling the components of the speed of the fluid in 
the root of the aorta are presented on Figs 1–3. 

After the initial development of the flow at the 
entrance to the aorta there is a tendency to spin it 
with the further formation of vortices.

 

 
Fig. 1. Distribution of the longitudinal component 

of the speed of the liquid 

 
Fig. 2. Distribution of the azimuthal component 

of the fluid velocity 
 

. 

Fig. 3. Distribution of the radial component 
of the fluid velocity 

VI. CONCLUSION 

In this paper, on the basis of existing work 
related to the study of swirling flows in the heart, the 
problem of vortex flows in the left ventricle in a 
moving coordinate system was first formulated as a 

system of nonlinear differential equations in partial 
derivatives. To solve this system of equations, an 
iterative method has been proposed using integral 
transformations in finite limits along the 
corresponding coordinates. 

Further studies are related to obtaining 
numerical-analytical solutions of this system of 
equations. 

VII. DISCUSSION 

The issues discussed in this paper attract the 
attention of numerous researchers all over the world. 
Despite the large number of works devoted to the 
formation of vortex flows in the heart and aorta and 
approaches to their study, there are currently no 
works that suggest approaches to constructive 
solutions to this complex issue. 

The proposed work, too, does not pretend to be a 
final solution to this problem, but it is the first 
attempt to study the edema in the left ventricle of the 
heart and aorta, which, according to the author, 
should contribute to the diagnosis of heart disease 
and the development of recommendations for the 
treatment of these diseases. 
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Є. А. Настенко. Дослідження потоку крові у гирлі аорти 
Досліджуються процеси руху крові в аорті під впливом закручених потоків крові на виході із лівого шлуночка 
серця. Сформульовано задачу моделювання закручених потоків крові у лівому шлуночку як нелінійну крайову 
задачу у вигляді системи диференційних рівнянь у частинних похідних із рухомими межами. Отримано вирази 
для поля швидкості потоку крові та тиску у лівому шлуночку. Рух потоку крові в аорті під впливом закрученого 
потоку на виході із лівого шлуночка описується системою нелінійних рівнянь у частинних похідних. Розв'язок 
цієї крайової задачі відшукується за допомогою ітераційної процедури, що ґрунтується на використанні 
інтегральних перетворень за просторовими змінними та часу. 
Ключові слова: аорта, вихрові потоки; закручені течії; рівняння Нав’є–Стокса; інтегральні перетворення; лівий 
шлуночок. 
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Е. А. Настенко. Исследование потока крови в корне аорты 
Исследуются процессы движения крови в аорте под влиянием закрученных потоков крови на выходе из левого 
желудочка сердца. Сформулирована задача моделирования закрученных потоков крови в левом желудочке как 
нелинейную краевую задачу в виде системы дифференциальных уравнений в частных производных с 
подвижными границами. Получены выражения для поля скорости потока крови и давления в левом желудочке. 
Движение потока крови в аорте под воздействием закрученного потока на выходе из левого желудочка 
описывается системой нелинейных уравнений в частных производных. Решение этой краевой задачи 
отыскивается с помощью итерационной процедуры, основанной на использовании интегральных 
преобразований по пространственным переменным и времени. 
Ключевые слова: аорта; вихревые потоки; закрученные течения; уравнения Навье–Стокса; интегральные 
преобразования; левый желудочек. 
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