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I. INTRODUCTION 
Over the past few years, the use of neural 

networks (NN) for data processing has become quite 
effective and popular. This is not surprising since 
they are universal approximators that can be used in 
various fields: from image classification to decision 
support systems. 

Neural networks have an advantage over classical 
algorithms, which is the ability to dynamically 
adjust the network structure and its parameters. 

A large number of different specific network 
architectures have been proposed, which are better 
adapted to solve certain tasks, but at the same time 
have a number of limitations and shortcomings. 

A new milestone in the development of the NN 
was their combining into ensembles. Such assembly 
allows to compensate for the disadvantages of one 
architecture with the advantages of another, which is 
impossible when using only one network and is an 
undisputable advantage. 

II. PROBLEM STATEMENT 

The goal of this article is to build an ensemble of 
neural networks with an optimal architecture for 
classifying data. 

III. PROBLEM SOLUTION 

To solve the posed classification problem, five 
different neural network architectures and one 
probabilistic classifier were used. They are presented 
in the following list: 

1) Perceptron. 
2) Radial basis function network. 
3) Counter propagation network. 
4) Probabilistic network. 

5) NEFClassM. 
6) Naïve Bayes Classifier. 
Let us consider in detail the topology and 

learning algorithms of each classifier. 
1. Perceptron [1]. 

a) The network topology is shown in Fig. 1. 

 
Fig. 1. Perceptron topology 

The input layer has n neurons and does not 
change the input vectors. The hidden layer has m 
neurons. The input of the hidden layer neurons is 
determined by the following formula 

(1) (1)
1

,n
i ji jj

z w x


  

where (1)
iz  is the input of the ith hidden layer 

neuron; (1)
jiw  is the weight, which connects jth input 

layer neuron and ith hidden layer neuron; jx  is the 
value of the jth input layer neuron. 

The output of the hidden layer neuron is the value 
of the activation function. 
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The output layer has k neurons which is the 
number of classes to be classified. The input of the 
neuron is determined by the following formula: 

 (2) (2) (1)
1

,n
i ji jj

z w f z


  

where (2)
iz  is the input of the ith output layer 

neuron; (2)
jiw  is the weight, which connects jth 

hidden layer neuron and ith outer layer neuron; 
 (1)

jf z  is the value of the jth hidden layer neuron 
activation function. 

If the sample belongs to class i, then the ith 
output neuron should ideally produce 1, and the 
other neurons – 0. 

b) Perceptron learning algorithm. 
As a loss function for multiclass classification, 

cross entropy was used [2]: 

  (2)
1

log ,k
i ii

CE t z


                   (1) 

where  (2)
iz  is the value of ith output neuron 

activation function; ti is the desired output value of 
ith output neuron. 

The backpropagation method was used for 
updating the weights [3]. As an optimization 
algorithm was used the adaptive moment estimation 
optimization algorithm (Adam) [4]. Weights are 
updated according to the following rules: 
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where tg  is the gradient value at time t; 1,t tw w   is 
the weight value at time t and t – 1; 1,t tm m   is the 
moving average gradient values at times t and t – 1 
respectively; 1,t tv v   is the moving average gradient 
square values at times t and t – 1 respectively; ˆ ˆ,t tm v  
is the corrected values of tm  and tv  respectively at 
time t, 1 2, , ,     are configurable hyperparameters. 

Training takes place until the error value 
becomes less than the allowable value or until a 
certain number of iterations is reached. 

2. Radial basis function network [5]. 
a) The network topology is shown in Fig. 2 [6]. 

 
Fig. 2. Radial basis function network topology 

The input layer has n input-intact neurons. The 
hidden network layer is represented by radial basis 
functions. 

   , , , ,i i i ix c x c       

where  , ,i ix c   is the output of the ith hidden 
layer neuron; ic  is the weight vector of the ith 
hidden layer neuron; i  is the parameter of the ith 
hidden layer neuron. 

Examples of such functions  r x c  : 
 Gauss function: 

  2( ) .rr e                             (2) 

 Multiquadric function: 

  21 ( ) .r r     

 Inverse quadratic function: 

  2
1 .
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 Inverse multiquadric function: 
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Each hidden layer neuron has its own weights c 
and  , which are configured during the training 
period. The initial values of the vectors c can be set 
using, for example, cluster analysis. Using the k-
means method, cluster centers can be found [7], the 
values of which initialize weights c of the hidden 
layer neurons. The output layer is represented by the 
usual summing layer of weighted radial basis 
functions: 

0 1
( ),h

i i ij jj
y w w x
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where iy  is the value of ith output neuron; 0iw  is the 
value of bias for ith output neuron, 푤  – value of 
weight connecting ith output layer neuron with jth 
hidden layer neuron; ( )j x  is the value of jth hidden 
layer neuron radial basis function. 

Weights w are adjusted during the training 
period. 

b) Radial basis function network learning 
algorithm. 

The loss function is the cross entropy, that is 
calculated using the formula (1). The weights are 
adjusted using the Adam optimization algorithm 
described earlier in perceptron learning algorithm. 
The difference is in the derivatives of the activation 
functions of the perceptron and the radial basis 
functions. 

The principal formulas for parameters learning: 
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where tg  is the gradient value at time t; 1,t tw w   are 
values of the weight w at times t and t – 1 
respectively; 1,t tc c   are values of weight c at times t 
and t–1 respectively; 1,t t   are values of weight σ 
at times t and t–1 respectively; 1,t tm m   are moving 
average gradient values at times t and t–1 
respectively; 1,t tv v   are moving average gradient 
square values at times t and t–1 respectively; ˆ ˆ,t tm v  
are corrected values of tm  and tv  respectively at 
time t, 1 2, , ,     are configurable hyperparameters. 

The gradient is taken for each of the parameters 
separately, thereafter, each parameter has its own 
values of , ,t t tg m v . 

3. Counter propagation neural network. 
a) The network topology is shown in Fig. 3. 

The network consists of two main parts: the 
Kohonen layer and the Grossberg layer. The 
Kohonen layer neurons have a vector of tunable 
weights  1 2, ,..., ,i i i niw w ww  which are multiplied 

with all input neurons, and the result is transmitted 
to the corresponding ith Kohonen layer neuron. 
Next, the “winner takes all” scheme is implemented 
[8]: the neuron with the highest weighted sum value 
is the “winner” and outputs the value 1, while the 
“losers” neurons output 0. 

 
Fig. 3. Counter propagation network topology 

The neurons of the Grossberg layer are connected 
to the outputs of the previous layer with adjustable 
weights  1 2, ,..., .i i i miv v vv  The output neurons of 
the Grossberg layer take values equal to the vector 
 1 2, ,...,j j jkv v v  associated with the jth neuron 
"winner" of the Kohonen layer. 

The principal formulas [8]: 

, ,i i i i iK y G K  w x v  

where ,i iy G  is the value of ith output neuron; iv  is 
the vector of weights connected to ith output neuron; 
Ki is the value of ith neuron in hidden layer; iw  is 
the vector of weights connected to ith neuron in 
hidden layer; is the input vector. 

b) Counter propagation network learning 
algorithm. 

The first step is to configure the Kohonen layer 
weights. This is the stage of unsupervised learning. 
Before learning, the input vectors x and the weight 
vectors w should be normalized [9]: 

norm
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where jx  is the value of component j of sample x; 
norm
jx  is the normalized value of component j of 

sample x; ijW  is the value of matrix W in the ith row 

and jth column; norm
ijW  is the normalized value of 

matrix W in the ith row and jth column.  
Weights learning algorithm [9]: 

 ( 1) ( ) ( ) ,i i it t x t    w w w  

where ( ), ( 1)i iw t w t   is the weight vector iw  at 
times t and t + 1 respectively; x is the input sample 
vector; η is the learning speed coefficient, which 
decreases over time. 

Having trained the Kohonen layer weights 
throughout the entire training set, we proceed to the 
second stage. 

Learning the weights of the Grossberg layer is 
supervised learning. At a given point in time, only 
those weights that are associated with the “winner” 
of the previous layer are trained. Algorithm [9]: 

 ( 1) ( ) ( ) ,ij ij j ij iv t v t y v t K     

where iK  is the output of the ith neuron of Kohonen 
layer; jy  is the jth component of the required value 

of the output vector; ( ), ( 1)ij ijv t v t   is the value of 
the jth component of the ith vector v at times t and t 
+ 1 respectively. 

4. Probabilistic neural network [10]. 
a) The network topology is shown in Fig. 4. 

 
Fig. 4. Probabilistic network topology 

The first layer of hidden neurons has the number 
of neurons equal to the number of samples in the 
training set. The output of the first hidden layer 
neurons is the value of the kernel function. The 
Gaussian function is used as such a function [10], 
[11]: 

 
2

,jx
jx e    ww                   (5) 

where  jx w   is the output value of jth 

neuron of the first hidden layer; jw  is the weight 
vector of ith neuron of the first hidden layer. 

The second hidden layer has the number of 
neurons equal to the number of predicted classes. 
Each neuron calculates the sum of the values of the 
kernel functions associated with a given class [11]: 

 ,iN
i jj

o x   w  

where 표  – output value of ith neuron of the second 
hidden layer;  jx w  is the output value of jth 

neuron of the first hidden layer; 푁  is a quantity of 
the neurons of the first hidden layer connected to the 
ith neuron of the second hidden layer. 

The last layer has one neuron, which chooses the 
class number, activation value 표  of which is the 
greatest: 

arg max( ),ji
class o  

where 표  is the output value of ith neuron of the 
second hidden layer. 

b)  Probabilistic network learning algorithm 
[10] 

The neural network is trained in one pass. For 
each incoming training sample 풙풊 a new neuron of 
the first hidden layer is created with weight 풘풊 = 풙풊. 
Further, this neuron is connected to the jth neuron-
adder of the second hidden layer, if the training 
sample belongs to class j. 

Having gone through the entire training sample 
by performing the operations described above, the 
network learning can be considered complete. 

5. NEFClassM [12] 
a) The network topology is shown in Fig. 5. 

The input layer has n neurons by the number of 
attributes in the input data. The hidden network layer 
is the rules layer. The relationship between it and the 
input layer are weights, which are the membership 
functions ( )j

i  for the ith term of the jth attribute of 
the input vector 퐱. 

Activation of the rule’s neurons [12]: 

푎( ) =	∏ 푊(푥, 푅)(푥)	∈ , 
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where 푎( ) is the value of activation of pth rules 
neuron; U1 is the set of input layer neurons; 푊(푥, 푅) 
is the membership function that connects the input 
neuron 푥 with the rule 푅. 

 
Fig. 5. NEFClassM network topology 

Each rules neuron is associated with one of the 
output layer neurons with the weight equal to 1. 

Activation of output neurons [12]: 

푎( ) = ∑ 푊(푐, 푅)푎( )
	∈ , 

where 푎( ) is the value of activation of pth output 
layer neuron; U2 is the set of rules layer neurons; 
푊(푐, 푅) is the weight value of the connection 
between given pth output neuron c and the rules 
neuron R. 

b) NEFClassM learning algorithm [12]. 
The number of initial fuzzy sets for each of the 

attributes of the object and the value kmax is the 
maximum number of rules that can be generated in 
the hidden layer are determined. The network uses 
Gaussian membership functions: 

2

2
( )

2( ) ,
x a

bx e



   

where parameters a, b are function parameters, 
which are tuned during learning; x is the value of the 
input layer neuron. 

The training set L = {(풑 , 푡 ), … , (풑푵, 푡 )} is 
given. 

The first stage of training consists of finding the 
rule base ‒ neurons of the hidden layer: 

1) Select the next element (풑, 푡)  from the 
training set  

2) For each input neuron 푥 ∈ 푈  find the 
membership function 휇 , such that 

휇( ) = max ∈ ,…, 휇( )(푥 ) , 

where ( )j
i  is the jth membership function of ith 

input layer neuron. 

If the number of rule nodes k is still less than kmax 
and there is no node R, such that 

푊(푥 , 푅) = 휇 ,… ,푊(푥 , 푅) = 휇 , 

then create such node and connect it to the output 
node	푐 , if 푡 = 1. 

3) If there are still untreated samples in L and 
푘 < 푘 , then go to step 1, else stop. 

The rule base is defined according to the “best for 
each class” procedure [12]: 

Process samples in L and accumulate the 
activation of each rule’s neuron for each sample 
class that have been distributed. If the rules neuron 
for the rule R shows a greater activation 
accumulation for the class 퐶 , than for the class 퐶 , 
that was specified for the rule consequence, then 
change the consequence from R to the input neuron 
퐶 , that is, connect R to the input neuron 푐 . Continue 
processing the samples in L further and calculate the 
following function for each rule’s neuron: 

( ) ,R R pp L
V a p e


  

where 푒 = 1, if	푝	is	classi ied	correctly;
−1, 푒푙푠푒,

� 푎  is the 

activation function of rule R. 
For each class С  leave the best  rules, the 

consequence of which represent the class 퐶  (where 
[x] – integer part of x). 

At the second stage of training, the parameters of 
the membership functions are configured. 

The gradient method was used. Learning criteria 
[12]: 

푒(푊) = ∑ 푡 − 푁퐸푇 (푊) → min, 

where 푡  is the desired value of ith neural network 
output; 푁퐸푇 (푤) is the actual value of ith neural 
network output, for the weight matrix 퐖	 =
	[퐖 ,퐖 ]. 퐖 	= 	퐖(푥, 푅) =	 휇 (푥), 	퐖 	=
	퐖(푅, 퐶). 

Rules neurons activation functions: 

푂 = ∏ 휇( )(푥), 푗 = 1,… , 푞 , 

where 휇( )(푥 ) is the jth activation function of ith 

input neuron. 
Then, using the gradient descent method, the 

parameters of the membership functions can be 
updated as follows [12]: 

푎 (푛 + 1) = 푎 (푛) − 훾 ( ),  푏 (푛 + 1) = 푏 (푛) − 훾′ ( ), 
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( ) = −2∑ 푡 − 푁퐸푇 (푤) ∙ 푊(푅, 퐶 ) ∙ 푂 ∙ ( ) = −2∑ 푡 − 푁퐸푇 (푤) ∙

푊(푅, 퐶 ) ∙ 푂 ∙ ,

where 푎 (푛), 푎 (푛 + 1), 푏 (푛), 푏 (푛 + 1) are 
values of parameters а and b of the jth membership 
function of ith input neuron at iterations n and n+1; 
푡  is the desired output of kth output layer neuron; 
푁퐸푇 (푤) is the actual value of kth output neuron; 
푂  is the value of activation function of rules neuron 
R; x is the input vector; 훾 , 훾′  are configurable 
hyperparameters. 

6. Naïve Bayes Classifier [13]. 
This classifier is not a neural network and is 

taken for diversity purposes. 
a) Classifier topology is shown in Fig. 6. 

The principal formula for classification: 

푐푙푎푠푠푖푓푦(풙) = 푐푙푎푠푠푖푓푦(푥 ,… , 푥 ) 

= 푎푟푔max 푝(퐶 = 푐) 푝(퐹 = 푥 	|	퐶 = 푐). 

 
Fig. 6. Naïve Bayes Classifier topology 

The distribution function is normal distribution: 

푝(퐹 = 푥 	|	퐶 = 푐) = ( )√
푒

( ( ))
( )

.       (6) 

b) Learning algorithm. 
For each class 푐 parameters ( )c

i  and ( )c
i  are 

calculated from training sets as the expected value 
and standard deviation. The parameters are constant, 
network training occurs in a single pass.  

μ( ) = ∑ 푋( )	, 

σ( ) = ∑ 푋( ) − μ( ) , 

where 푋( ) is the matrix of vectors 퐱, which belong 
to class 푐; 푁  is the number of samples in the 
training set which belong to class 푐. 

Up to this point separate classifier architectures 
were described. Now consider the algorithm for the 
synthesis of an ensemble of networks.  

Ensemble has a parallel structure with a union 
layer as shown in Fig. 7. 

 
Fig. 7. Ensemble topology 

A necessary and sufficient condition for building 
an ensemble of networks that has a greater accuracy 
in solving the classification problem (forecasting) 
than each individual network is to include elements 
in its structure that meet the criteria of accuracy and 
diversity. Since the diversity of the ensemble 
decreases with increasing accuracy of the members 
of the ensemble, the solution to the problem of 
creating an effective ensemble comes down to the 
search for a compromise. In most ensemble methods 
diversity and accuracy are achieved by manipulating 
data from a training set. One of the problems 
associated with these approaches is that they tend to 
build overly large ensembles. This requires a lot of 
memory to store learned modules (classifiers). To 
overcome this problem, the simplification procedure 
(Pruning) is used, which provides for the optimal 
choice of a subset of individual modules (classifiers) 
from an already constructed ensemble in terms of 
accuracy, diversity and memory costs. 

Let 퐷 = {푑 ,… , 푑 } be a set of N points of data, 
where 푑 = {(풙풊, 푦 )|푖 ∈ [1, 푁]} couple of input 
features and label that represents ith point of data, 
퐶 = {푐 ,… , 푐 } is the set of classifiers, where 푐 풙풋  
gives the predictions of ith classifier in jth point, 
푉 = {푣( ), … 푣( )|푣( ) = 푣( ),… , 푣( ) , 푖 ∈ [1, 푁]} 

is the set of vectors, where 푣( )are number of 
predictions for jth label ith point of ensemble data 
with majority voting; L is the number of output 
labels. 

Necessary based on accuracy and diversity of 
classifiers 퐶 = {푐 ,… , 푐 } select members for 



72                                                                    ISSN 1990-5548   Electronics and Control Systems  2019. N 1(59): 66-77 
 
ensemble creation, having test data sample and 
considering that networks are previously learned on 
boot-step samples. 

Main idea of is to repeatedly pull out repeated 
samples from the empirical distribution using the 
Monte-Carlo statistical test method: get finite set of 
n members of the initial set 푥 ,  푥 ,  . . . ,  푥 ,  푥 , 
from which on each step of n sequential iterations 
using a random numbers generator, uniformly 
distributed on the interval [1, n], pull arbitrary 
element  푥 , which again returns to the initial set (so 
can be pulled again). 

Therefore, preliminary step of ensemble building 
is the creation of main classifiers that must be 
independent. 

These classifiers are trained on independent sets 
of data. As a result, we have next algorithm: 

1) Given training dataset (х , у ), … , (х , у )	 
with labels 푦 ∈ {1,… , 푘}. 

2) Get t bootstrap-samples 퐷 . 
3) Independently (in parallel) learn t classifiers 

ℎ , each on own sample Dt. 
Consider the concept of diversity. 
Given two classifiers 푐 	 and 푐푗 ,, where 푁( ) 

denotes the number of data points incorrectly 
predicted by 푐푖, but properly predicted 푐 . 푁( ) is 
opposite to 푁( ) denotes the number of points of 
correctly predicted 푐푖, but incorrectly predicted 푐 . 
Diversity of classifier 푐 , relatively to classifier 푐푗, 
which is denoted by 퐷푖푣푖푗 is the ratio between the 
sum of the number of data points correctly predicted 
by one of the classifiers and the total amount of data 
and is determined by the equation: 

(01) (10)

Div .ij
N N

N


  

The contribution of the classifier's 푐   diversity to 
an ensemble, denoted 퐶표푛퐷푖푣 , is the sum of the 
differences between 푐   and each other classifier in 
the ensemble (except 푐  , since, according to the 
equation above, the difference of classifiers is itself 
zero) and is determined by the equation: 

1
Con Div Div .M

i ijj
                  (7)  

In general, the prediction of an ensemble member 
at one data point can be divided into four subsets, in 
which: 

1) separate classifier predicts correctly and is in 
minority group; 

2) separate classifier predicts correctly and is in 
majority group; 

3) separate classifier predicts incorrectly and is 
in minority group; 

4) separate classifier predicts incorrectly and is 
in majority group. 

Defined two next rules for calculating heuristic 
metric for estimating individual contributions of an 
ensemble members:  

1) correct predictions contribute positively, 
incorrect predictions contribute negatively;  

2) correct predictions that are in minority group 
bring more positive contributions than correct 
predictions that are in majority group, but wrong 
predictions that are in minority group bring less 
negative contributions than wrong predictions that 
are in majority group. 

The individual contribution of the classifier 푐  is 
determined as follows: 

퐼퐶 = ∑ 퐼퐶( ),                         (8) 

where 퐼퐶( ) is the contribution of classifier 푐  in jth 
point of data 푑 . 퐼퐶( ) is determined depending on 
which subset the classifier prediction relates to. 

When 푐푖(푥푗) equals 푦푗,, which means that 푐푖 makes 
correct predictions in point 푑푗,, if 푐푖(푥푗) belongs to 
minority group (the first subset), then 퐼퐶( ) is 
defined as 

퐼퐶( ) = 2푣( ) − 푣( ) ,                  (9) 

where 푣( )  – the number of majority votes 
in 푑 ; 푣 ( )

( )  – the number of predictions 푐푖(푥푗), that 
was defined earlier. 

When 푐푖(푥푗) equals 푦푗 and 푐푖(푥푗) belongs to 
majority group (in this case 푣 ( )

( ) = 푣( ) ) (second 

subset), 퐼퐶( )is defined as 

퐼퐶( ) = 푣( ),                       (10) 

where 푣( )  is the second by votes value on 푑푗 labels. 
푉( ) − 푣( )   is an estimate of the “degree of 

positive contribution” in this case. Therefore, if 
majority of classifiers predict correctly with 
classifier on 푑푗, the contribution of this classifier is 
not much valuable, because without its prediction 
the ensemble will still be correct on 푑푗 (if there is no 
connection). We shall notice that (푣( ) − 푣( ) ) is 
negative. According to the rules introduced for the 
development of individual contribution rates, all 
correct projections make a positive 
contribution. Thus, to (푣( ) − 푣( ) ) adds member 
푣( )  for its normalization, so that it is always 
positive, that gives an equation (5). And 푣( )   is 
attached to (푣( ) − 푣( ) ) for maintain its relative 
order, that gives equation (4). 
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When 푐푖(푥푗) is not equal to 푦푗, 퐼퐶
( ) is defined as 

퐼퐶( ) = 푣( ) − 푣( ) − 푣( ) ,         (11) 

where 푣( )  – number of votes for the correct 
label 푑 . Like “the degree of positive contribution”, 
“the degree of negative contribution” is estimated by 
the formula 푣( ) − 푣( ) , that is difference 
between the number of votes on the correct label and 
the number of votes in 푐푖(푥 ). Combining equations 
(9), (10) и (11) with the help of equation (8), the 
individual contribution of the classifier 푐 : 

퐼퐶 = (푎 2푣( ) − 푣( ) +훽 푣( )  

+	휃 (푣( ) − 푣( ) − 푣( ) )),           (12) 

where 
푎 = 1, 푖푓	푐 푥 = 푦 	и	푐 푥 	is	in	minority	group

0, else
� 

훽 = 1, 푖푓	푐 푥 = 푦 	и	푐 푥 	is	in	majority	group
0, else

� 

휃 = 1, 푖푓	푐 푥 ≠ 푦
0, 푒푙푠푒

� 

According to equation (12) a set of classifiers is 
formed that are included in ensemble. This requires 
the development of a procedure for combining 
classifiers. 

We determine the dynamically averaged network 
(DAN) by: 

푓 = ∑ 푤 푓 (푥),	                     (13) 

where  푤 ,  푖 = 	1, 푛 define as 

푤 = ( ( ))
∑ ( ( ))

,                          (14) 

where 푐 푓 (푥) = 푓 (푥), if			푓 (푥) ≥ 0.5
1 − 푓 (푥),			else

�. 

f DAN is the weighted average of the network 
outputs. The weight vector is calculated each time 
the output ensemble is evaluated to get the best 
solution for a particular case, instead of statically 
selecting weights. The contribution of each classifier 
is proportional to its reliability. 

The general algorithm for constructing the 
architecture of neural networks ensembles is as 
follows: 

1) Given set of learning samples  1 1, ,x y  
 ..., ,m mx y  with labels 푦 ∈ {1,… , 푘}. 
2) Get t bootstrap-samples 퐷 . 
3) Independently (in parallel) teach t classifiers 

ℎ , each on its own sample Dt. 

4) Get forecasts of each classifier 푐  by jth point 
of data 푑  on test sample and determine the 
individual contribution. 

4.1 If the prediction ci(xj) is equal to yi,, that is, ci 
makes correct predictions in cj. 

4.1.1. If the prediction ci(xj) belongs to a minority 
group, then the individual contribution is calculated 
by the formula (9). 

4.1.2. If the prediction ci(xj) belongs to a majority 
group, then the individual contribution is calculated 
by the formula (10). 

4.2. If the prediction ci(xj) is not equal to yi, then 
the individual contribution is calculated by the 
formula (11). 

5) Determine the individual contribution of the 
classifier ci by formula (12), where, depending on 
clause 4, the corresponding coefficient is set to one. 

6) Add pair (푐 , 퐼퐶 ) to list OL and sort by 
descending. 

7. Determine the parameter p, that is desired 
percentage of classifiers C, which should be stored 
at the output of the subensemble. This parameter is 
determined on the basis of existing resources, such 
as memory, amount of time and cost. 

8. Knowing the desired resource costs and real, 
remove the first p percent from list as shortened and 
ranked subensemble. 

9. Determine the weight coefficients of the 
combination of the classifiers in the ensemble by the 
formula (14). 

As a result of the algorithm, we obtained the 
ranking of selected neural networks with their 
individual contribution. In practice, in ensembles, a 
classification error usually demonstrates a 
monotonous decrease, as a function of the number of 
elements in the ensemble. 

For large ensemble sizes, these curves reach an 
asymptotic constant error level, which is usually 
considered the best result that can be achieved. 

One of the problems of ensemble approaches is 
that their use leads to the creation of unreasonably 
large ensembles, which requires a significant amount 
of memory to store the trained classifiers and reduce 
the response time for prediction. Ensemble 
simplification or sample ensembles is a method that 
solves this problem by choosing a subset of individual 
networks from a prepared ensemble to form a 
subensemble for prediction. You need to carefully 
select the classifiers in the subassembly to ensure its 
minimum complexity (to reduce memory 
requirements and response time) and the accuracy of 
the prediction is the same or exceeds the accuracy of 
the output ensemble. Thus, the next step in creating 
an effective ensemble is the use of a simplification 
procedure (Pruning). 
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To select the necessary classifiers, such methods 
are commonly used as reduce error-pruning, Kappa 
pruning, marginal distance minimization and 
orientation ordering. But all these approaches are 
based on the selection of networks for accuracy or 
diversity, which have already been considered 
during the ranking by individual contribution. It is 
also known that it is sometimes not enough to take 
into account diversity and accuracy in order to form 
an effective ensemble. It is proposed to use such an 
approach as simplification with the help of a 
complementary measure, which also takes into 
account the interaction between classifiers. 

The pruning algorithm. 
1) Get the predictions of each member of the 

ensemble after running on the test dataset. 
2) Make subensemble Su-1 from members, that 

have prediction 푐 (푥 ), that is not equal to yi (i.e. 
predict wrong). 

3) Select a classifier with the best values of 
diversity and accuracy according to the obtained OL 
list as a result of the previous algorithm and add it to 
the subensemble. 

4) Get Su  which characterizes the impact of the 
classifier with the best results on the subensemble, 
which gives wrong predictions: 

 1
( , )

argmax I ( )  and  ( ) ,
u

sel

u k Sk y Z
s y h H y




  
x

x x
 

where the classifier with the best results belongs to 
the initial ensemble ( )kh x  and 

1uSH


. I(g) is 
indicator function (I(true) = 1, I(false) = 0); S u is the 
amount by which members are selected in shortened 
subensemble. 

5) Set the threshold value for the selection of the 
classifier. That is, if the error made by the 
subensemble Su-1 more than error Su, so the 
difference of their errors exceeds a predetermined 
threshold value, then the classifier is considered an 
addition and is selected in the shortened 
subensemble. Thus, 

 1
( , )

argmax I ( ) ( ) > .
u

sel

u S kk y Z
S y H y h threshold




   
x

x x  

6) Repeat steps 3–5 with each classifier and 
initial subensemble Su-1. 

IV. STUDY OF THE ENSEMBLE ON REAL SET 

To check the accuracy of the classification of 
individual networks and the entire ensemble, we use 
the Wine data set. The number of samples in the set 
– 178. Each object has 13 features, represented by 
real numbers, and one class label. The number of 
classes is 3. For the test sample, 20% of the dataset 
was selected, respectively, 80% for training. 

1) Perceptron. 
The number of neurons in the input layer is 13, in 

the hidden layer is 48. The activation function of the 
hidden layer is logistic sigmoid: 

1( ) .
1 xx

e 


  

The activation function of neurons of the output 
layer is the softmax function: 

1

( ) .
i

k

z

i K z
k

ez
e



 


 

The optimization algorithm, Adam, is described 
in Sec. III. Loss function is cross entropy, which is 
calculated by the formula (1). 

The number of learning epochs is 100, the size of 
a mini-batch is 10. 

Accuracy on the training sample – 88.73%, on 
the test one – 94.44%, on the whole dataset – 
89.88%. 

2) Radial basis function network (RBFN). 
The number of neurons in the input layer is 13, in 

the hidden layer is 6. 
As a radial basis function, a Gaussian function 

was selected, which is calculated by formula (2). 
Weights c of each neuron of the hidden layer is 

initialized by centers of 6 clusters, found using the     
k-means algorithm in the training sample [7]. 

Parameters β initialized by a constant 0.3.  
The optimization algorithm, Adam, is described 

in Sec. III. Loss function is cross entropy, calculated 
by the formula (1). 

Input vectors before the start of the training were 
standardized. 

The number of learning epochs is 100, the size of 
a mini-batch is 30. 

Accuracy on the training sample – 91.55%, on 
the test sample – 94.44%, on the whole dataset –
92.13%. 

3) Counter propagation neural network 
(CPNN). 

The number of neurons in the input layer is 13, in 
the hidden layer is 3. Before the start of training, 
input vectors were standardized and normalized by 
the formula (3). The weights of the Kohonen layer 
were initialized with random values from the 
interval (0, 1) and normalized by the formula (4) 

Accuracy on the training sample – 88.73%, on 
the test – 88.89%, on the whole dataset – 88.76%. 

4) Probabilistic neural network (PNN). 
The number of neurons in the input layer is 13, in 

the first hidden layer is 142, the second hidden layer 
is 3. 

Accuracy on the training sample – 90.84%, on 
the test – 80.55%, on the whole dataset – 88.76%. 
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5) NEFClassM. 
Number of input neurons – 13. For each feature, 

three initial fuzzy sets were defined with the names 
“small”, “medium”, “large”, kmax = 40. In the rule 
layer there are 3 neurons. From the trained rule base, 
one best rule was obtained for each class using the 
algorithm described in Sec. III. Number of output 
neurons – 3. 

The parameters of fuzzy sets were trained by the 
gradient method described in Sec. III. 

The number of learning epochs is 100, the size of 
a mini-batch is 10. 

Accuracy on the training sample – 66.2%, on the 
test one – 75%, on the whole dataset – 68%. 

6) Naïve Bayes Classifier (NBC). 

The following was taken as the prior distribution of 
푝(퐶):	

푝(퐶 = 푐) =
푁
푁
, 

where Nc is the number of samples that have class c; 
N is the total number of samples in the training 
sample. 

Distribution functions are selected according to 
the formula (6) normal distributions. 

Accuracy on the training sample – 95%, on the 
test sample – 94.44%, on the whole dataset – 
94.94%. 

The learning results of all classifiers are 
summarized in the following Table I. 

TABLE I. LEARNING RESULTS OF ALL CLASSIFIERS 

Classifier Train Test Whole 
Naïve Bayes 95% 94.44% 94.94% 
RBFN 91.55% 94.44% 92.13% 
Perceptron 88.73% 94.44% 89.88% 
CPNN 88.73% 88.89% 88.76% 
PNN 90.84% 80.55% 88.76% 
NEFClassM 66.2% 75% 68% 

Applying formulas (7) and (12) to find the 
contribution of diversity and the individual 
contribution of each network on the test set, we 
obtained the results presented in Table II. 

TABLE II. CONTRIBUTION OF DIVERSITY AND THE 
INDIVIDUAL CONTRIBUTION OF EACH NETWORK 

Classifier ConDiv IC 
Naïve Bayes 0.639 21 
RBFN 0.611 21 
Perceptron 0.611 19 
CPNN 0.472 12 
PNN 0.305 6 
NEFClassM 0.305 5 

By combining all the trained networks into one 
ensemble, it was obtained the accuracy results 
presented in Table III. 

At this stage, in the ensemble can be selected 
classifiers with the highest values of the individual 
contribution (IC):  

 Naïve Bayes Classifier. 
 Radial basis function network. 
 Perceptron. 

Counter propagation neural network. 
TABLE III. ACCURACY RESULTS OF ENSEMBLE 

CONSISTING OF ALL CLASSIFIERS 

Classifiers Train Test Whole 
All 91.55% 88.88% 91.01% 

Accuracy results for the architecture described 
above are presented in Table IV. 

TABLE IV. ACCURACY RESULTS OF ENSEMBLE 
CONSISTING OF THE NETWORKS WITH THE HIGHEST IC 

VALUES 

Classifiers Train Test Whole 
NBC, 
RBFN, 
Perceptron, 
CPNN 

94.36% 100% 95.5% 

The next step was the use of the ensemble 
pruning algorithm. The worst-performing networks 
were chosen as elements of the initial ensemble: 
NEFClassM and probability network. 

As a result of applying the ensemble pruning 
algorithm described in Sec. III, the architecture of 
the final ensemble was obtained, including the 
following classifiers: 

 Naïve Bayes Classifier. 
 Radial basis function network. 
 Perceptron. 

The results of the accuracy of this ensemble are 
presented in Table V. 

TABLE V. ACCURACY RESULTS OF PRUNED 
SUBENSEMBLE 

Classifiers Train Test Whole 
NBC, 
RBFN, 
Perceptron 

95.77% 97.22% 96.07% 

V. CONCLUSION 

It is shown that the synthesis of an ensemble of 
classifiers according to the criteria of diversity and 
individual contribution gives an accuracy 
improvement in compare to individual networks one. 

Using the pruning procedure has reduced the 
number of classifiers in the ensemble to three. 

The final composition of ensemble after pruning 
procedure consist of the next NN: Naïve Bayes 
Classifier, Radial basis function network. 
Perceptron. 
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О. І. Чумаченко, К. Д. Рязановський. Cтруктурно-параметричний синтез ансамблю нейронних мереж на 
основі оцінки індивідуального вкладу 
У статті представлено структурно-параметричний синтез ансамблю нейронних мереж різних архітектур на 
основі їх індивідуального вкладу. Розглянуто топології та алгоритми навчання для кожного класифікатора. 
Описано алгоритм розрахунку індивідуального внеску кожної мережі та алгоритм вибору мереж в ансамбль 
відповідно до критеріїв точності та різноманітності. Для спрощення структури ансамблю був застосований 
метод complementary measure. Наведені результати вивчення класифікаторів на навчальних бутстреп-вибірках. 
Отримані результати ансамблю порівняні з відповідними результатами кожної нейронної мережі, включеної в 
ансамбль окремо. 
Ключові слова: структурно-параметричний синтез; нейронні мережі; ансамбль; індивідуальний вклад; 
класифікація. 
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Е. И. Чумаченко, К. Д. Рязановский. Структурно-параметрический синтез ансамбля нейронных сетей на 
основе оценки индивидуального вклада 
В статье рассмотрен структурно-параметрический синтез ансамбля нейронных сетей различных архитектур на 
основе их индивидуального вклада. Описаны топологии и алгоритмы обучения каждого классификатора. 
Рассмотрен алгоритм подсчёта индивидуального вклада каждой сети и алгоритм отбора сетей в ансамбль по 
критериям точности и разнообразия. С целью упрощения структуры ансамбля использован метод 
complementary measure. Представлены результаты обучения классификаторов на тренировочных бутстреп-
выборках. Проведено сравнение полученных результатов ансамбля с соответствующими результатами каждой 
нейронной сети, входящей в ансамбль в отдельности.  
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