
66 ISSN 1990-5548 Electronics and Control Systems 2019. N 1(59): 66-77

©National Aviation University, 2019
http://jrnl.nau.edu.ua/index.php/ESU, http://ecs.in.ua

UDC 681.327.12(045)
DOI 10.18372/1990-5548.59.13642:

1O. I. Chumachenko,
2K. D. Riazanovskiy

STRUCTURAL-PARAMETRIC SYNTHESIS OF NEURAL NETWORK ENSEMBLE BASED
ON THE ESTIMATION OF INDIVIDUAL CONTRIBUTION

1,2National Technical University of Ukraine “Ihor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine
E-mails: 1chumachenko@tk.kpi.ua ORCID 0000-0003-3006-7460, 2abrkdbr384@gmail.com

Abstract—The article presents the structural-parametric synthesis of an ensemble of neural networks of
various architectures based on their individual contribution. Topologies and learning algorithms for each
classifier are considered. It is described the algorithm for calculating the individual contribution of each
network and the algorithm for selecting networks in the ensemble according to the criteria of accuracy
and diversity. In order to simplify the structure of the ensemble, the Complementary Measure method was
used. The results of learning of classifiers on training bootstrap samples are presented. The obtained
results of the ensemble are compared with the corresponding results of each neural network included in
the ensemble separately.

Index Terms—Structural-parametric synthesis; neural networks; ensemble; individual contribution;
classification.

I. INTRODUCTION
Over the past few years, the use of neural

networks (NN) for data processing has become quite
effective and popular. This is not surprising since
they are universal approximators that can be used in
various fields: from image classification to decision
support systems.

Neural networks have an advantage over classical
algorithms, which is the ability to dynamically
adjust the network structure and its parameters.

A large number of different specific network
architectures have been proposed, which are better
adapted to solve certain tasks, but at the same time
have a number of limitations and shortcomings.

A new milestone in the development of the NN
was their combining into ensembles. Such assembly
allows to compensate for the disadvantages of one
architecture with the advantages of another, which is
impossible when using only one network and is an
undisputable advantage.

II. PROBLEM STATEMENT

The goal of this article is to build an ensemble of
neural networks with an optimal architecture for
classifying data.

III. PROBLEM SOLUTION

To solve the posed classification problem, five
different neural network architectures and one
probabilistic classifier were used. They are presented
in the following list:

1) Perceptron.
2) Radial basis function network.
3) Counter propagation network.
4) Probabilistic network.

5) NEFClassM.
6) Naïve Bayes Classifier.
Let us consider in detail the topology and

learning algorithms of each classifier.
1. Perceptron [1].

a) The network topology is shown in Fig. 1.

Fig. 1. Perceptron topology

The input layer has n neurons and does not
change the input vectors. The hidden layer has m
neurons. The input of the hidden layer neurons is
determined by the following formula

(1) (1)
1

,n
i ji jj

z w x

where (1)
iz is the input of the ith hidden layer

neuron; (1)
jiw is the weight, which connects jth input

layer neuron and ith hidden layer neuron; jx is the
value of the jth input layer neuron.

The output of the hidden layer neuron is the value
of the activation function.

O.I. Chumachenko, K.D. Riazanovskiy Structural-Parametric Synthesis of Neural Network Ensemble Based 67

The output layer has k neurons which is the
number of classes to be classified. The input of the
neuron is determined by the following formula:

 (2) (2) (1)
1

,n
i ji jj

z w f z

where (2)
iz is the input of the ith output layer

neuron; (2)
jiw is the weight, which connects jth

hidden layer neuron and ith outer layer neuron;
 (1)

jf z is the value of the jth hidden layer neuron
activation function.

If the sample belongs to class i, then the ith
output neuron should ideally produce 1, and the
other neurons – 0.

b) Perceptron learning algorithm.
As a loss function for multiclass classification,

cross entropy was used [2]:

 (2)
1

log ,k
i ii

CE t z

 (1)

where (2)
iz is the value of ith output neuron

activation function; ti is the desired output value of
ith output neuron.

The backpropagation method was used for
updating the weights [3]. As an optimization
algorithm was used the adaptive moment estimation
optimization algorithm (Adam) [4]. Weights are
updated according to the following rules:

1 1 1

2
2 1 2

1 2

1

1 ,

1 ,

ˆ ˆ, ,
1 1

ˆ ,
ˆ

t t t

t t t

t t
t tt t

t t t
t

m m g

v v g
m vm v

w w m
v

where tg is the gradient value at time t; 1,t tw w is
the weight value at time t and t – 1; 1,t tm m is the
moving average gradient values at times t and t – 1
respectively; 1,t tv v is the moving average gradient
square values at times t and t – 1 respectively; ˆ ˆ,t tm v
is the corrected values of tm and tv respectively at
time t, 1 2, , , are configurable hyperparameters.

Training takes place until the error value
becomes less than the allowable value or until a
certain number of iterations is reached.

2. Radial basis function network [5].
a) The network topology is shown in Fig. 2 [6].

Fig. 2. Radial basis function network topology

The input layer has n input-intact neurons. The
hidden network layer is represented by radial basis
functions.

 , , , ,i i i ix c x c

where , ,i ix c is the output of the ith hidden
layer neuron; ic is the weight vector of the ith
hidden layer neuron; i is the parameter of the ith
hidden layer neuron.

Examples of such functions r x c :
 Gauss function:

 2() .rr e (2)

 Multiquadric function:

 21 () .r r

 Inverse quadratic function:

 2
1 .

1 ()
r

r

 Inverse multiquadric function:

2

1 .
1 ()

r
r

Each hidden layer neuron has its own weights c
and , which are configured during the training
period. The initial values of the vectors c can be set
using, for example, cluster analysis. Using the k-
means method, cluster centers can be found [7], the
values of which initialize weights c of the hidden
layer neurons. The output layer is represented by the
usual summing layer of weighted radial basis
functions:

0 1
(),h

i i ij jj
y w w x

68 ISSN 1990-5548 Electronics and Control Systems 2019. N 1(59): 66-77

where iy is the value of ith output neuron; 0iw is the
value of bias for ith output neuron, 푤 – value of
weight connecting ith output layer neuron with jth
hidden layer neuron; ()j x is the value of jth hidden
layer neuron radial basis function.

Weights w are adjusted during the training
period.

b) Radial basis function network learning
algorithm.

The loss function is the cross entropy, that is
calculated using the formula (1). The weights are
adjusted using the Adam optimization algorithm
described earlier in perceptron learning algorithm.
The difference is in the derivatives of the activation
functions of the perceptron and the radial basis
functions.

The principal formulas for parameters learning:

1 1 1

2
2 1 2

1 2

1

1

1

1 ,

1 ,

ˆ ˆ, ,
1 1

ˆ ,
ˆ

ˆ ,
ˆ

ˆ ,
ˆ

t t t

t t t

t t
t tt t

t t t
t

t t t
t

t t t
t

m m g

v v g
m vm v

c c m
v

m
v

w w m
v

where tg is the gradient value at time t; 1,t tw w are
values of the weight w at times t and t – 1
respectively; 1,t tc c are values of weight c at times t
and t–1 respectively; 1,t t are values of weight σ
at times t and t–1 respectively; 1,t tm m are moving
average gradient values at times t and t–1
respectively; 1,t tv v are moving average gradient
square values at times t and t–1 respectively; ˆ ˆ,t tm v
are corrected values of tm and tv respectively at
time t, 1 2, , , are configurable hyperparameters.

The gradient is taken for each of the parameters
separately, thereafter, each parameter has its own
values of , ,t t tg m v .

3. Counter propagation neural network.
a) The network topology is shown in Fig. 3.

The network consists of two main parts: the
Kohonen layer and the Grossberg layer. The
Kohonen layer neurons have a vector of tunable
weights 1 2, ,..., ,i i i niw w ww which are multiplied

with all input neurons, and the result is transmitted
to the corresponding ith Kohonen layer neuron.
Next, the “winner takes all” scheme is implemented
[8]: the neuron with the highest weighted sum value
is the “winner” and outputs the value 1, while the
“losers” neurons output 0.

Fig. 3. Counter propagation network topology

The neurons of the Grossberg layer are connected
to the outputs of the previous layer with adjustable
weights 1 2, ,..., .i i i miv v vv The output neurons of
the Grossberg layer take values equal to the vector
 1 2, ,...,j j jkv v v associated with the jth neuron
"winner" of the Kohonen layer.

The principal formulas [8]:

, ,i i i i iK y G K w x v

where ,i iy G is the value of ith output neuron; iv is
the vector of weights connected to ith output neuron;
Ki is the value of ith neuron in hidden layer; iw is
the vector of weights connected to ith neuron in
hidden layer; is the input vector.

b) Counter propagation network learning
algorithm.

The first step is to configure the Kohonen layer
weights. This is the stage of unsupervised learning.
Before learning, the input vectors x and the weight
vectors w should be normalized [9]:

norm

2 2 2 2
1 2

,
... ...

j j
j

j n

x x
x

x x x x

 x
 (3)

norm

2 2 2 2
1 2

,
... ...

ij ij
ij

ij j ij nj

w w
W

ww w w w

 (4)

O.I. Chumachenko, K.D. Riazanovskiy Structural-Parametric Synthesis of Neural Network Ensemble Based 69

where jx is the value of component j of sample x;
norm
jx is the normalized value of component j of

sample x; ijW is the value of matrix W in the ith row

and jth column; norm
ijW is the normalized value of

matrix W in the ith row and jth column.
Weights learning algorithm [9]:

 (1) () () ,i i it t x t w w w

where (), (1)i iw t w t is the weight vector iw at
times t and t + 1 respectively; x is the input sample
vector; η is the learning speed coefficient, which
decreases over time.

Having trained the Kohonen layer weights
throughout the entire training set, we proceed to the
second stage.

Learning the weights of the Grossberg layer is
supervised learning. At a given point in time, only
those weights that are associated with the “winner”
of the previous layer are trained. Algorithm [9]:

 (1) () () ,ij ij j ij iv t v t y v t K

where iK is the output of the ith neuron of Kohonen
layer; jy is the jth component of the required value

of the output vector; (), (1)ij ijv t v t is the value of
the jth component of the ith vector v at times t and t
+ 1 respectively.

4. Probabilistic neural network [10].
a) The network topology is shown in Fig. 4.

Fig. 4. Probabilistic network topology

The first layer of hidden neurons has the number
of neurons equal to the number of samples in the
training set. The output of the first hidden layer
neurons is the value of the kernel function. The
Gaussian function is used as such a function [10],
[11]:

2

,jx
jx e ww (5)

where jx w is the output value of jth

neuron of the first hidden layer; jw is the weight
vector of ith neuron of the first hidden layer.

The second hidden layer has the number of
neurons equal to the number of predicted classes.
Each neuron calculates the sum of the values of the
kernel functions associated with a given class [11]:

 ,iN
i jj

o x w

where 표 – output value of ith neuron of the second
hidden layer; jx w is the output value of jth

neuron of the first hidden layer; 푁 is a quantity of
the neurons of the first hidden layer connected to the
ith neuron of the second hidden layer.

The last layer has one neuron, which chooses the
class number, activation value 표 of which is the
greatest:

arg max(),ji
class o

where 표 is the output value of ith neuron of the
second hidden layer.

b) Probabilistic network learning algorithm
[10]

The neural network is trained in one pass. For
each incoming training sample 풙풊 a new neuron of
the first hidden layer is created with weight 풘풊 = 풙풊.
Further, this neuron is connected to the jth neuron-
adder of the second hidden layer, if the training
sample belongs to class j.

Having gone through the entire training sample
by performing the operations described above, the
network learning can be considered complete.

5. NEFClassM [12]
a) The network topology is shown in Fig. 5.

The input layer has n neurons by the number of
attributes in the input data. The hidden network layer
is the rules layer. The relationship between it and the
input layer are weights, which are the membership
functions ()j

i for the ith term of the jth attribute of
the input vector 퐱.

Activation of the rule’s neurons [12]:

푎() =	∏ 푊(푥, 푅)(푥)	∈ ,

70 ISSN 1990-5548 Electronics and Control Systems 2019. N 1(59): 66-77

where 푎() is the value of activation of pth rules
neuron; U1 is the set of input layer neurons; 푊(푥, 푅)
is the membership function that connects the input
neuron 푥 with the rule 푅.

Fig. 5. NEFClassM network topology

Each rules neuron is associated with one of the
output layer neurons with the weight equal to 1.

Activation of output neurons [12]:

푎() = ∑ 푊(푐, 푅)푎()
	∈ ,

where 푎() is the value of activation of pth output
layer neuron; U2 is the set of rules layer neurons;
푊(푐, 푅) is the weight value of the connection
between given pth output neuron c and the rules
neuron R.

b) NEFClassM learning algorithm [12].
The number of initial fuzzy sets for each of the

attributes of the object and the value kmax is the
maximum number of rules that can be generated in
the hidden layer are determined. The network uses
Gaussian membership functions:

2

2
()

2() ,
x a

bx e

where parameters a, b are function parameters,
which are tuned during learning; x is the value of the
input layer neuron.

The training set L = {(풑 , 푡), … , (풑푵, 푡)} is
given.

The first stage of training consists of finding the
rule base ‒ neurons of the hidden layer:

1) Select the next element (풑, 푡) from the
training set

2) For each input neuron 푥 ∈ 푈 find the
membership function 휇 , such that

휇() = max ∈ ,…, 휇()(푥) ,

where ()j
i is the jth membership function of ith

input layer neuron.

If the number of rule nodes k is still less than kmax
and there is no node R, such that

푊(푥 , 푅) = 휇 ,… ,푊(푥 , 푅) = 휇 ,

then create such node and connect it to the output
node	푐 , if 푡 = 1.

3) If there are still untreated samples in L and
푘 < 푘 , then go to step 1, else stop.

The rule base is defined according to the “best for
each class” procedure [12]:

Process samples in L and accumulate the
activation of each rule’s neuron for each sample
class that have been distributed. If the rules neuron
for the rule R shows a greater activation
accumulation for the class 퐶 , than for the class 퐶 ,
that was specified for the rule consequence, then
change the consequence from R to the input neuron
퐶 , that is, connect R to the input neuron 푐 . Continue
processing the samples in L further and calculate the
following function for each rule’s neuron:

() ,R R pp L
V a p e

where 푒 = 1, if	푝	is	classi ied	correctly;
−1, 푒푙푠푒,

� 푎 is the

activation function of rule R.
For each class С leave the best rules, the

consequence of which represent the class 퐶 (where
[x] – integer part of x).

At the second stage of training, the parameters of
the membership functions are configured.

The gradient method was used. Learning criteria
[12]:

푒(푊) = ∑ 푡 − 푁퐸푇 (푊) → min,

where 푡 is the desired value of ith neural network
output; 푁퐸푇 (푤) is the actual value of ith neural
network output, for the weight matrix 퐖	 =
	[퐖 ,퐖]. 퐖 	= 	퐖(푥, 푅) =	 휇 (푥), 	퐖 	=
	퐖(푅, 퐶).

Rules neurons activation functions:

푂 = ∏ 휇()(푥), 푗 = 1,… , 푞 ,

where 휇()(푥) is the jth activation function of ith

input neuron.
Then, using the gradient descent method, the

parameters of the membership functions can be
updated as follows [12]:

푎 (푛 + 1) = 푎 (푛) − 훾 (), 푏 (푛 + 1) = 푏 (푛) − 훾′ (),

O.I. Chumachenko, K.D. Riazanovskiy Structural-Parametric Synthesis of Neural Network Ensemble Based 71

() = −2∑ 푡 − 푁퐸푇 (푤) ∙ 푊(푅, 퐶) ∙ 푂 ∙ () = −2∑ 푡 − 푁퐸푇 (푤) ∙

푊(푅, 퐶) ∙ 푂 ∙ ,

where 푎 (푛), 푎 (푛 + 1), 푏 (푛), 푏 (푛 + 1) are
values of parameters а and b of the jth membership
function of ith input neuron at iterations n and n+1;
푡 is the desired output of kth output layer neuron;
푁퐸푇 (푤) is the actual value of kth output neuron;
푂 is the value of activation function of rules neuron
R; x is the input vector; 훾 , 훾′ are configurable
hyperparameters.

6. Naïve Bayes Classifier [13].
This classifier is not a neural network and is

taken for diversity purposes.
a) Classifier topology is shown in Fig. 6.

The principal formula for classification:

푐푙푎푠푠푖푓푦(풙) = 푐푙푎푠푠푖푓푦(푥 ,… , 푥)

= 푎푟푔max 푝(퐶 = 푐) 푝(퐹 = 푥 	|	퐶 = 푐).

Fig. 6. Naïve Bayes Classifier topology

The distribution function is normal distribution:

푝(퐹 = 푥 	|	퐶 = 푐) = ()√
푒

(())
()

. (6)

b) Learning algorithm.
For each class 푐 parameters ()c

i and ()c
i are

calculated from training sets as the expected value
and standard deviation. The parameters are constant,
network training occurs in a single pass.

μ() = ∑ 푋()	,

σ() = ∑ 푋() − μ() ,

where 푋() is the matrix of vectors 퐱, which belong
to class 푐; 푁 is the number of samples in the
training set which belong to class 푐.

Up to this point separate classifier architectures
were described. Now consider the algorithm for the
synthesis of an ensemble of networks.

Ensemble has a parallel structure with a union
layer as shown in Fig. 7.

Fig. 7. Ensemble topology

A necessary and sufficient condition for building
an ensemble of networks that has a greater accuracy
in solving the classification problem (forecasting)
than each individual network is to include elements
in its structure that meet the criteria of accuracy and
diversity. Since the diversity of the ensemble
decreases with increasing accuracy of the members
of the ensemble, the solution to the problem of
creating an effective ensemble comes down to the
search for a compromise. In most ensemble methods
diversity and accuracy are achieved by manipulating
data from a training set. One of the problems
associated with these approaches is that they tend to
build overly large ensembles. This requires a lot of
memory to store learned modules (classifiers). To
overcome this problem, the simplification procedure
(Pruning) is used, which provides for the optimal
choice of a subset of individual modules (classifiers)
from an already constructed ensemble in terms of
accuracy, diversity and memory costs.

Let 퐷 = {푑 ,… , 푑 } be a set of N points of data,
where 푑 = {(풙풊, 푦)|푖 ∈ [1, 푁]} couple of input
features and label that represents ith point of data,
퐶 = {푐 ,… , 푐 } is the set of classifiers, where 푐 풙풋
gives the predictions of ith classifier in jth point,
푉 = {푣(), … 푣()|푣() = 푣(),… , 푣() , 푖 ∈ [1, 푁]}

is the set of vectors, where 푣()are number of
predictions for jth label ith point of ensemble data
with majority voting; L is the number of output
labels.

Necessary based on accuracy and diversity of
classifiers 퐶 = {푐 ,… , 푐 } select members for

72 ISSN 1990-5548 Electronics and Control Systems 2019. N 1(59): 66-77

ensemble creation, having test data sample and
considering that networks are previously learned on
boot-step samples.

Main idea of is to repeatedly pull out repeated
samples from the empirical distribution using the
Monte-Carlo statistical test method: get finite set of
n members of the initial set 푥 , 푥 , . . . , 푥 , 푥 ,
from which on each step of n sequential iterations
using a random numbers generator, uniformly
distributed on the interval [1, n], pull arbitrary
element 푥 , which again returns to the initial set (so
can be pulled again).

Therefore, preliminary step of ensemble building
is the creation of main classifiers that must be
independent.

These classifiers are trained on independent sets
of data. As a result, we have next algorithm:

1) Given training dataset (х , у), … , (х , у)	
with labels 푦 ∈ {1,… , 푘}.

2) Get t bootstrap-samples 퐷 .
3) Independently (in parallel) learn t classifiers

ℎ , each on own sample Dt.
Consider the concept of diversity.
Given two classifiers 푐 	 and 푐푗 ,, where 푁()

denotes the number of data points incorrectly
predicted by 푐푖, but properly predicted 푐 . 푁() is
opposite to 푁() denotes the number of points of
correctly predicted 푐푖, but incorrectly predicted 푐 .
Diversity of classifier 푐 , relatively to classifier 푐푗,
which is denoted by 퐷푖푣푖푗 is the ratio between the
sum of the number of data points correctly predicted
by one of the classifiers and the total amount of data
and is determined by the equation:

(01) (10)

Div .ij
N N

N

The contribution of the classifier's 푐 diversity to
an ensemble, denoted 퐶표푛퐷푖푣 , is the sum of the
differences between 푐 and each other classifier in
the ensemble (except 푐 , since, according to the
equation above, the difference of classifiers is itself
zero) and is determined by the equation:

1
Con Div Div .M

i ijj
 (7)

In general, the prediction of an ensemble member
at one data point can be divided into four subsets, in
which:

1) separate classifier predicts correctly and is in
minority group;

2) separate classifier predicts correctly and is in
majority group;

3) separate classifier predicts incorrectly and is
in minority group;

4) separate classifier predicts incorrectly and is
in majority group.

Defined two next rules for calculating heuristic
metric for estimating individual contributions of an
ensemble members:

1) correct predictions contribute positively,
incorrect predictions contribute negatively;

2) correct predictions that are in minority group
bring more positive contributions than correct
predictions that are in majority group, but wrong
predictions that are in minority group bring less
negative contributions than wrong predictions that
are in majority group.

The individual contribution of the classifier 푐 is
determined as follows:

퐼퐶 = ∑ 퐼퐶(), (8)

where 퐼퐶() is the contribution of classifier 푐 in jth
point of data 푑 . 퐼퐶() is determined depending on
which subset the classifier prediction relates to.

When 푐푖(푥푗) equals 푦푗,, which means that 푐푖 makes
correct predictions in point 푑푗,, if 푐푖(푥푗) belongs to
minority group (the first subset), then 퐼퐶() is
defined as

퐼퐶() = 2푣() − 푣() , (9)

where 푣() – the number of majority votes
in 푑 ; 푣 ()

() – the number of predictions 푐푖(푥푗), that
was defined earlier.

When 푐푖(푥푗) equals 푦푗 and 푐푖(푥푗) belongs to
majority group (in this case 푣 ()

() = 푣()) (second

subset), 퐼퐶()is defined as

퐼퐶() = 푣(), (10)

where 푣() is the second by votes value on 푑푗 labels.
푉() − 푣() is an estimate of the “degree of

positive contribution” in this case. Therefore, if
majority of classifiers predict correctly with
classifier on 푑푗, the contribution of this classifier is
not much valuable, because without its prediction
the ensemble will still be correct on 푑푗 (if there is no
connection). We shall notice that (푣() − 푣()) is
negative. According to the rules introduced for the
development of individual contribution rates, all
correct projections make a positive
contribution. Thus, to (푣() − 푣()) adds member
푣() for its normalization, so that it is always
positive, that gives an equation (5). And 푣() is
attached to (푣() − 푣()) for maintain its relative
order, that gives equation (4).

O.I. Chumachenko, K.D. Riazanovskiy Structural-Parametric Synthesis of Neural Network Ensemble Based 73

When 푐푖(푥푗) is not equal to 푦푗, 퐼퐶
() is defined as

퐼퐶() = 푣() − 푣() − 푣() , (11)

where 푣() – number of votes for the correct
label 푑 . Like “the degree of positive contribution”,
“the degree of negative contribution” is estimated by
the formula 푣() − 푣() , that is difference
between the number of votes on the correct label and
the number of votes in 푐푖(푥). Combining equations
(9), (10) и (11) with the help of equation (8), the
individual contribution of the classifier 푐 :

퐼퐶 = (푎 2푣() − 푣() +훽 푣()

+	휃 (푣() − 푣() − 푣())), (12)

where
푎 = 1, 푖푓	푐 푥 = 푦 	и	푐 푥 	is	in	minority	group

0, else
�

훽 = 1, 푖푓	푐 푥 = 푦 	и	푐 푥 	is	in	majority	group
0, else

�

휃 = 1, 푖푓	푐 푥 ≠ 푦
0, 푒푙푠푒

�

According to equation (12) a set of classifiers is
formed that are included in ensemble. This requires
the development of a procedure for combining
classifiers.

We determine the dynamically averaged network
(DAN) by:

푓 = ∑ 푤 푓 (푥),	 (13)

where 푤 , 푖 = 	1, 푛 define as

푤 = (())
∑ (())

, (14)

where 푐 푓 (푥) = 푓 (푥), if			푓 (푥) ≥ 0.5
1 − 푓 (푥),			else

�.

f DAN is the weighted average of the network
outputs. The weight vector is calculated each time
the output ensemble is evaluated to get the best
solution for a particular case, instead of statically
selecting weights. The contribution of each classifier
is proportional to its reliability.

The general algorithm for constructing the
architecture of neural networks ensembles is as
follows:

1) Given set of learning samples 1 1, ,x y
 ..., ,m mx y with labels 푦 ∈ {1,… , 푘}.
2) Get t bootstrap-samples 퐷 .
3) Independently (in parallel) teach t classifiers

ℎ , each on its own sample Dt.

4) Get forecasts of each classifier 푐 by jth point
of data 푑 on test sample and determine the
individual contribution.

4.1 If the prediction ci(xj) is equal to yi,, that is, ci
makes correct predictions in cj.

4.1.1. If the prediction ci(xj) belongs to a minority
group, then the individual contribution is calculated
by the formula (9).

4.1.2. If the prediction ci(xj) belongs to a majority
group, then the individual contribution is calculated
by the formula (10).

4.2. If the prediction ci(xj) is not equal to yi, then
the individual contribution is calculated by the
formula (11).

5) Determine the individual contribution of the
classifier ci by formula (12), where, depending on
clause 4, the corresponding coefficient is set to one.

6) Add pair (푐 , 퐼퐶) to list OL and sort by
descending.

7. Determine the parameter p, that is desired
percentage of classifiers C, which should be stored
at the output of the subensemble. This parameter is
determined on the basis of existing resources, such
as memory, amount of time and cost.

8. Knowing the desired resource costs and real,
remove the first p percent from list as shortened and
ranked subensemble.

9. Determine the weight coefficients of the
combination of the classifiers in the ensemble by the
formula (14).

As a result of the algorithm, we obtained the
ranking of selected neural networks with their
individual contribution. In practice, in ensembles, a
classification error usually demonstrates a
monotonous decrease, as a function of the number of
elements in the ensemble.

For large ensemble sizes, these curves reach an
asymptotic constant error level, which is usually
considered the best result that can be achieved.

One of the problems of ensemble approaches is
that their use leads to the creation of unreasonably
large ensembles, which requires a significant amount
of memory to store the trained classifiers and reduce
the response time for prediction. Ensemble
simplification or sample ensembles is a method that
solves this problem by choosing a subset of individual
networks from a prepared ensemble to form a
subensemble for prediction. You need to carefully
select the classifiers in the subassembly to ensure its
minimum complexity (to reduce memory
requirements and response time) and the accuracy of
the prediction is the same or exceeds the accuracy of
the output ensemble. Thus, the next step in creating
an effective ensemble is the use of a simplification
procedure (Pruning).

74 ISSN 1990-5548 Electronics and Control Systems 2019. N 1(59): 66-77

To select the necessary classifiers, such methods
are commonly used as reduce error-pruning, Kappa
pruning, marginal distance minimization and
orientation ordering. But all these approaches are
based on the selection of networks for accuracy or
diversity, which have already been considered
during the ranking by individual contribution. It is
also known that it is sometimes not enough to take
into account diversity and accuracy in order to form
an effective ensemble. It is proposed to use such an
approach as simplification with the help of a
complementary measure, which also takes into
account the interaction between classifiers.

The pruning algorithm.
1) Get the predictions of each member of the

ensemble after running on the test dataset.
2) Make subensemble Su-1 from members, that

have prediction 푐 (푥), that is not equal to yi (i.e.
predict wrong).

3) Select a classifier with the best values of
diversity and accuracy according to the obtained OL
list as a result of the previous algorithm and add it to
the subensemble.

4) Get Su which characterizes the impact of the
classifier with the best results on the subensemble,
which gives wrong predictions:

 1
(,)

argmax I () and () ,
u

sel

u k Sk y Z
s y h H y

x

x x

where the classifier with the best results belongs to
the initial ensemble ()kh x and

1uSH

. I(g) is
indicator function (I(true) = 1, I(false) = 0); S u is the
amount by which members are selected in shortened
subensemble.

5) Set the threshold value for the selection of the
classifier. That is, if the error made by the
subensemble Su-1 more than error Su, so the
difference of their errors exceeds a predetermined
threshold value, then the classifier is considered an
addition and is selected in the shortened
subensemble. Thus,

 1
(,)

argmax I () () > .
u

sel

u S kk y Z
S y H y h threshold

x

x x

6) Repeat steps 3–5 with each classifier and
initial subensemble Su-1.

IV. STUDY OF THE ENSEMBLE ON REAL SET

To check the accuracy of the classification of
individual networks and the entire ensemble, we use
the Wine data set. The number of samples in the set
– 178. Each object has 13 features, represented by
real numbers, and one class label. The number of
classes is 3. For the test sample, 20% of the dataset
was selected, respectively, 80% for training.

1) Perceptron.
The number of neurons in the input layer is 13, in

the hidden layer is 48. The activation function of the
hidden layer is logistic sigmoid:

1() .
1 xx

e

The activation function of neurons of the output
layer is the softmax function:

1

() .
i

k

z

i K z
k

ez
e

The optimization algorithm, Adam, is described
in Sec. III. Loss function is cross entropy, which is
calculated by the formula (1).

The number of learning epochs is 100, the size of
a mini-batch is 10.

Accuracy on the training sample – 88.73%, on
the test one – 94.44%, on the whole dataset –
89.88%.

2) Radial basis function network (RBFN).
The number of neurons in the input layer is 13, in

the hidden layer is 6.
As a radial basis function, a Gaussian function

was selected, which is calculated by formula (2).
Weights c of each neuron of the hidden layer is

initialized by centers of 6 clusters, found using the
k-means algorithm in the training sample [7].

Parameters β initialized by a constant 0.3.
The optimization algorithm, Adam, is described

in Sec. III. Loss function is cross entropy, calculated
by the formula (1).

Input vectors before the start of the training were
standardized.

The number of learning epochs is 100, the size of
a mini-batch is 30.

Accuracy on the training sample – 91.55%, on
the test sample – 94.44%, on the whole dataset –
92.13%.

3) Counter propagation neural network
(CPNN).

The number of neurons in the input layer is 13, in
the hidden layer is 3. Before the start of training,
input vectors were standardized and normalized by
the formula (3). The weights of the Kohonen layer
were initialized with random values from the
interval (0, 1) and normalized by the formula (4)

Accuracy on the training sample – 88.73%, on
the test – 88.89%, on the whole dataset – 88.76%.

4) Probabilistic neural network (PNN).
The number of neurons in the input layer is 13, in

the first hidden layer is 142, the second hidden layer
is 3.

Accuracy on the training sample – 90.84%, on
the test – 80.55%, on the whole dataset – 88.76%.

O.I. Chumachenko, K.D. Riazanovskiy Structural-Parametric Synthesis of Neural Network Ensemble Based 75

5) NEFClassM.
Number of input neurons – 13. For each feature,

three initial fuzzy sets were defined with the names
“small”, “medium”, “large”, kmax = 40. In the rule
layer there are 3 neurons. From the trained rule base,
one best rule was obtained for each class using the
algorithm described in Sec. III. Number of output
neurons – 3.

The parameters of fuzzy sets were trained by the
gradient method described in Sec. III.

The number of learning epochs is 100, the size of
a mini-batch is 10.

Accuracy on the training sample – 66.2%, on the
test one – 75%, on the whole dataset – 68%.

6) Naïve Bayes Classifier (NBC).

The following was taken as the prior distribution of
푝(퐶):	

푝(퐶 = 푐) =
푁
푁
,

where Nc is the number of samples that have class c;
N is the total number of samples in the training
sample.

Distribution functions are selected according to
the formula (6) normal distributions.

Accuracy on the training sample – 95%, on the
test sample – 94.44%, on the whole dataset –
94.94%.

The learning results of all classifiers are
summarized in the following Table I.

TABLE I. LEARNING RESULTS OF ALL CLASSIFIERS

Classifier Train Test Whole
Naïve Bayes 95% 94.44% 94.94%
RBFN 91.55% 94.44% 92.13%
Perceptron 88.73% 94.44% 89.88%
CPNN 88.73% 88.89% 88.76%
PNN 90.84% 80.55% 88.76%
NEFClassM 66.2% 75% 68%

Applying formulas (7) and (12) to find the
contribution of diversity and the individual
contribution of each network on the test set, we
obtained the results presented in Table II.

TABLE II. CONTRIBUTION OF DIVERSITY AND THE
INDIVIDUAL CONTRIBUTION OF EACH NETWORK

Classifier ConDiv IC
Naïve Bayes 0.639 21
RBFN 0.611 21
Perceptron 0.611 19
CPNN 0.472 12
PNN 0.305 6
NEFClassM 0.305 5

By combining all the trained networks into one
ensemble, it was obtained the accuracy results
presented in Table III.

At this stage, in the ensemble can be selected
classifiers with the highest values of the individual
contribution (IC):

 Naïve Bayes Classifier.
 Radial basis function network.
 Perceptron.

Counter propagation neural network.
TABLE III. ACCURACY RESULTS OF ENSEMBLE

CONSISTING OF ALL CLASSIFIERS

Classifiers Train Test Whole
All 91.55% 88.88% 91.01%

Accuracy results for the architecture described
above are presented in Table IV.

TABLE IV. ACCURACY RESULTS OF ENSEMBLE
CONSISTING OF THE NETWORKS WITH THE HIGHEST IC

VALUES

Classifiers Train Test Whole
NBC,
RBFN,
Perceptron,
CPNN

94.36% 100% 95.5%

The next step was the use of the ensemble
pruning algorithm. The worst-performing networks
were chosen as elements of the initial ensemble:
NEFClassM and probability network.

As a result of applying the ensemble pruning
algorithm described in Sec. III, the architecture of
the final ensemble was obtained, including the
following classifiers:

 Naïve Bayes Classifier.
 Radial basis function network.
 Perceptron.

The results of the accuracy of this ensemble are
presented in Table V.

TABLE V. ACCURACY RESULTS OF PRUNED
SUBENSEMBLE

Classifiers Train Test Whole
NBC,
RBFN,
Perceptron

95.77% 97.22% 96.07%

V. CONCLUSION

It is shown that the synthesis of an ensemble of
classifiers according to the criteria of diversity and
individual contribution gives an accuracy
improvement in compare to individual networks one.

Using the pruning procedure has reduced the
number of classifiers in the ensemble to three.

The final composition of ensemble after pruning
procedure consist of the next NN: Naïve Bayes
Classifier, Radial basis function network.
Perceptron.

76 ISSN 1990-5548 Electronics and Control Systems 2019. N 1(59): 66-77

REFERENCES

[1] Christopher M. Bishop, “Feed-forward Network
Functions,” in Pattern Recognition and Machine
Learning, Springer, 2006, pp. 227–232.

[2] S. Nikolenko, A. Kadurin, and E. Archangelskaya,
"Preliminaries, or the course of the young fighter," in
Deep Learning, SPB.: Piter, 2018, ch. 2.3, pp. 63–69.

[3] D. Rumelhart, G. Hinton, and R. Williams, "Learning
representations by back-propagating errors," Nature,
1986, vol. 323, pp. 533–536.

[4] Diederik P. Kingma, and Ba Jimmy, Adam: A
Method for Stochastic Optimization. [Online].
Available: https://arxiv.org/abs/1412.6980.

[5] D. S. Broomhead and David Lowe, “Radial basis
functions, multi-variable functional interpolation and
adaptive networks,” Royal signals and radar
establishment, United Kingdom, 1988.

[6] Е. V. Bodyanskiy and О. G. Rudenko, "Radial basis
networks," in Artificial neural networks:
architecture, training, applications, pp. 35–40.

[7] David MacKay, “Chapter 20. An Example Inference
Task: Clustering” in Information Theory, Inference

and Learning Algorithms, Cambridge University
Press, 2003, pp. 284–292.

[8] Е. V. Bodyanskiy and О. G. Rudenko, "Counter
propagatiton neural networks," in Artificial neural
networks: architecture, training, applications,
pp. 275–281.

[9] V. V Kruglov and V. V. Borisov, "Basic concepts of
neural networks," in Artificial neural networks.
Theory and practice. 2d ed., 2002, ch. 2.3, pp. 58–63.

[10] D. F. Specht, "Probabilistic neural networks,"
in Neural Networks, vol. 3, pp. 109–118.

[11] Е. V. Bodyanskiy and О. G. Rudenko, "Probabilistic
neural networks," in Artificial neural networks:
architecture, training, applications, pp. 176–179.

[12] Y. P. Zaychenko, "Fuzzy neural networks in
classification tasks," in Fuzzy models and methods in
intelligent systems. Кyiv: Izdatelskiy dom "Slovo",
2008, pp 156–194.

[13] Domingos Pedro, Michael Pazzani, “On the
optimality of the simple Bayesian classifier under
zero-one loss,” in Machine Learning, 1997,
pp. 103–137.

Received October 12, 2018

Chumachenko Olena. orcid.org/0000-0003-3006-7460
Candidate of Science (Engineering). Assosiate Professor.
Technical Cybernetic Department, National Technical University of Ukraine “Ihor Sikorsky Kyiv Polytechnic
Institute,” Kyiv, Ukraine.
Education: Georgian Politechnic Institute, Tbilisi, Georgia, (1980).
Research area: system analysis, artificial neuron networks.
Publications: mοrе thаn 80 papers.
E-mail: chumachenko@tk.kpi.ua

Riazanovskiy Kirill. Undergraduate student.
Technical Cybernetic Department, National Technical University of Ukraine “Ihor Sikorsky Kyiv Polytechnic
Institute,” Kyiv, Ukraine.
Education: National Technical University of Ukraine “Ihor Sikorsky Kyiv Polytechnic Institute” (2020).
Research area: deep learning, artificial neural networks.
E-mail: abrkdbr384@gmail.com

О. І. Чумаченко, К. Д. Рязановський. Cтруктурно-параметричний синтез ансамблю нейронних мереж на
основі оцінки індивідуального вкладу
У статті представлено структурно-параметричний синтез ансамблю нейронних мереж різних архітектур на
основі їх індивідуального вкладу. Розглянуто топології та алгоритми навчання для кожного класифікатора.
Описано алгоритм розрахунку індивідуального внеску кожної мережі та алгоритм вибору мереж в ансамбль
відповідно до критеріїв точності та різноманітності. Для спрощення структури ансамблю був застосований
метод complementary measure. Наведені результати вивчення класифікаторів на навчальних бутстреп-вибірках.
Отримані результати ансамблю порівняні з відповідними результатами кожної нейронної мережі, включеної в
ансамбль окремо.
Ключові слова: структурно-параметричний синтез; нейронні мережі; ансамбль; індивідуальний вклад;
класифікація.

Чумаченко Олена Іллівна. orcid.org/0000-0003-3006-7460
Кандидат технічних наук. Доцент.
Кафедра технічної кібернетики, Національний технічний університет України «Київський політехнічний
інститут ім. Ігоря Сікорського», Київ, Україна.

O.I. Chumachenko, K.D. Riazanovskiy Structural-Parametric Synthesis of Neural Network Ensemble Based 77

Освіта: Грузинський політехнічний інститут, Тбілісі, Грузія, (1980).
Напрям наукової діяльності: системний аналіз, штучні нейронні мережі.
Кількість публікацій: більше 80 наукових робіт.
E-mail: chumachenko@tk.kpi.ua

Рязановський Кирило Денисович. Студент бакалаврiату.
Кафедра технічної кібернетики, Національний технічний університет України «Київський політехнічний
інститут ім. Ігоря Сікорського», Київ, Україна.
Освіта: Національний технічний університет України «Київський політехнічний інститут ім. Ігоря
Сікорського», Київ, Україна, (2020).
Напрям наукової діяльності: глибоке навчання, штучні нейронні мережі.
E-mail: abrkdbr384@gmail.com

Е. И. Чумаченко, К. Д. Рязановский. Структурно-параметрический синтез ансамбля нейронных сетей на
основе оценки индивидуального вклада
В статье рассмотрен структурно-параметрический синтез ансамбля нейронных сетей различных архитектур на
основе их индивидуального вклада. Описаны топологии и алгоритмы обучения каждого классификатора.
Рассмотрен алгоритм подсчёта индивидуального вклада каждой сети и алгоритм отбора сетей в ансамбль по
критериям точности и разнообразия. С целью упрощения структуры ансамбля использован метод
complementary measure. Представлены результаты обучения классификаторов на тренировочных бутстреп-
выборках. Проведено сравнение полученных результатов ансамбля с соответствующими результатами каждой
нейронной сети, входящей в ансамбль в отдельности.
Ключевые слова: структурно-параметрический синтез; нейронные сети; ансамбль; индивидуальный вклад;
классификация.

Чумаченко Елена Ильинична. orcid.org/0000-0003-3006-7460
Кандидат технических наук. Доцент.
Кафедра технической кибернетики, Национальный технический университет Украины «Киевский
политехнический институт им. Игоря Сикорского», Киев, Украина.
Образование: Грузинский политехнический институт, Тбилиси, Грузия, (1980).
Направление научной деятельности: системный анализ, искусственные нейронные сети.
Количество публикаций: более 80 научных работ.
E-mail: chumachenko@tk.kpi.ua

Рязановский Кирилл Денисович. Студент бакалавриата.
Кафедра технической кибернетики, Национальный технический университет Украины «Киевский
политехнический институт им. Игоря Сикорского», Киев, Украина.
Образование: Национальный технический университет Украины «Киевский политехнический институт им.
Игоря Сикорского», Киев, Украина, (2020).
Направление научной деятельности: глубокое обучение, искусственные нейронные сети.
E-mail: abrkdbr384@gmail.com

