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The promoter is a chromosome region that 

determines where the transcription of a particular 

DNA region is initiated. Promoter recognition is 

important in defining the transcription units respon-

sible for specific pathways and gene regulation. 

Initiation of transcription is a dynamic partnership 

between RNA polymerase (RNAP) and promoter. 

In nuclear genomes of eukaryote organisms, 

transcription process is conducted by multiple types 

of RNA polymerases. In particular, all protein 

genes and most noncoding RNA genes, as well  

as DNA regions of unknown functions are tran-

scribed by RNA polymerase II. 30–50 % of all 

known promoters contain a TATA-box located 

from 40 to 18 bp upstream of the TSS. However, 

promoters of many large groups of genes 

(e.g. housekeeping genes) lack the TATA-box; the 

corresponding promoters are referred to as TATA-

less promoters [1-3]. 

In contrast to eukaryotes, bacteria have a sin-

gle form of the RNAP core enzyme [4]. However, 

this RNAP alone is not able to recognize and bind 

to promoters to initialize transcription. Different σ-

factors are required that temporarily binds the 

RNAP core enzyme, determine the RNAP-

promoter binding specificity and transcription start 

site (TSS), depending on nutritional or environmen-

tal conditions or developmental stage [5, 6].  

Bacterial σ factors are classified into two 

families with distinct structure and function, termed 

as σ70 and σ54 in Escherichia coli. While most bac-

teria possess multiple members of the σ70 family, 

they contain a single representative of the σ54 fami-

ly, which is involved in nitrogen metabolism. Cya-

nobacteria lack any σ54-like factors [5, 7, 8].  

Due to the development of advanced experi-

mental technologies a great progress was made in 

analysis of gene regulatory sequences [9–11]. 

However, a detailed experimental exploration of 

transcripts is still a quite expensive and difficult 

procedure. Therefore, in addition to experimental 

efforts, accurate computational identification of 

putative promoter regions remains an important 

task of genomics and post-genomics studies.  

Over the last decade various promoter pre-

diction programs have been developed. Recent stu-

dies indicate that there is often no single TSS, but 

rather a whole transcription start region (TSR) with 

multiple TSSs [12, 13]. However, for genome an-

notation projects predicting TSRs spanning several 

hundred (from 250 up to 1000) nucleotides is less 

useful to identify a gene start point. For such tasks, 

finding the TSSs seems to be more informative.  

To date, various computer programs aimed to 

predict plant promoters have been developed [14–

18]. In particular, previously we developed the 

TSSP-TCM program that showed a quite high accu-

racy of TSS prediction in the test sequences with 

experimentally validated TSSs: 87.5 % and 84 % 

for TATA and TATA-less promoters, respectively.  

The first attempt to predict bacterial promo-

ters was by position weight matrices (PWM), which 

relied on the conservation of the -35 and the -10 

elements for σ70, combined with the distribution of 

the distance between them [19, 20]. Later, more 

accurate bacterial promoter prediction tools have 

been developed [21–28]. Despite these efforts, all 

these tools tend to produce many false positives or 

show poor sensitivity, particularly when they are 

applied to long sequences or whole genomes. 

Another restriction of these tools is that they are 

limited to the prediction of 70 promoters in the 

model organism E. coli, and very rarely can extend 

to other bacterial species. Therefore, novel, more 

accurate and efficient tools are required for the 

computational recognition of different classes of 

promoters in a broader taxonomical scope.  

In this paper, two new computer tools, 

TSSPlant for prediction of plant promoters for 

RNA polymerase II, and and bTSSfinder for pre-

dicting TSSs in E. coli and three cyanobacterial 

species are briefly described. 

 

Materials and methods 

12,467 TSSs assigned to the annotated pro-

tein coding genes of Arabidopsis thaliana and Ory-

za sativa japonica were obtained from the Plant 

Promoter Database (ppdb), version 2.0 [29, 

http://ppdb.agr.gifu-u.ac.jp/ppdb/cgi-bin/index.cgi]. 

Using the genome annotations of Arabidopsis 

http://ppdb.agr.gifu-u.ac.jp/ppdb/cgi-bin/index.cgi
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(https://www.arabidopsis.org/) and rice 

(http://rapdb.dna.affrc.go.jp/) genomes, the promo-

ter set of 251 bp sequences (200 bp upstream and 

51 bp downstream of a TSS) was created. Besides, 

567 plant promoter sequences of 251 bp lengths 

with experimentally validated TSS, including 50 

rice and 106 Arabidopsis promoters, were selected 

from the current release of PlantProm DB 

(http://www.softberry.com/plantprom2016/). With 

merging ppdb and PlantProm DB sets, the final set 

of 12,948 plant promoters was created. Out of 

them, 11893 promoters (including 426 sequences 

from the PlantProm DB) were used as the learning 

set. For testing, we selected 2 sets: Set 1 of 1000 

sequences from ppdb only, and Set 2 of 55 promo-

ters only from PlantProm DB. Length of sequences 

in the Learning set and Test set 1 was 251 bp. Pro-

moter sequences of the Set 2 were extended up to 

1101 bp: 1,000 bp upstream of TSS and 101 bp 

downstream. As a negative dataset, Arabidopsis 

and rice genomic sequences composed of CDSs and 

introns were used. 

Data on plant transcription factor binding 

sites (TFBSs) were obtained from the Regsite DB 

(www.softberry.com; Plant division) that contained 

1,976 TFBSs. 

Bacterial TSS/promoter sets were created for 

E. coli K12 MG1655 (RegulonDB, version v8.0), 

the non-marine cyanobacterium Nostoc sp. PCC 

7120 [30], the freshwater cyanobacterium S. elon-

gatus PCC 6301 [31] and the freshwater cyanobac-

terium Synechocystis sp. PCC 6803 [32]. The final 

TSS count was as follows: 1) E. coli: 1,544 for 70, 

140 for 38, 237 for 32, 135 for 28, 412 for 24; 2) 

Nostoc: 11,386, 3) S. elongatus: 1,471 and 4) Syne-

chocystis: 343. 

Data on the bacterial TFBSs were obtained 

from three sources: 2,953 sites for E. coli from Re-

gulonDB, 30 cyanobacterial sites from CollecTF 

(33), and 63 sites from the literature.  

To compute Nucleotide Frequency Matrices 

(NFM) for the core-promoter elements (TATA-box, 

-35 box, -10 box, etc.), the Expectation Maximiza-

tion (EM) algorithm [34] was utilized. It was ap-

plied also for the promoter classification. 

To distinguish promoter and non-promoter 

sequences, we explored about 30 different sequence 

characteristics of positive and negative learning 

sets. Based on the values of Mahalanobis distances 

[35] of individual characteristics, we selected up to 

21 features for different classes of plant [36] and 

bacterial [37] promoters.  

To get recognition function (classifier) para-

meters giving the best separation of promoter and 

non-promoter sequences, separately for two promo-

ter classes, we applied Neural Network (NN) tech-

nique [36, 37].  

 

Results and discussion 

TSSPlant: the plant promoter prediction 

tool 

The program analyzes each sliding window 

of 251 bp over the query sequence, one nucleotide 

at a time, where position 201 is assigned to be clas-

sified as TSS or non-TSS. The classification is 

based on a threshold that was computed during the 

training. Predictions with the score higher than the 

threshold are marked as putative TSSs. The pro-

gram performs additional filtering by discarding all 

but the highest-scoring TSS in intervals of a user-

specified length (default is 300 bp). TSSPlant is 

available to download as a standalone program at 

http://www.cbrc.kaust.edu.sa/download/.  

We tested our TSS finder on positive and 

negative sets of TATA and TATA-less promoter 

classes. For TATA class, we observed very high 

prediction accuracy, with sensitivity ≃99 %, speci-

ficity ≃98 %, F1 score ≃99 % and Matthews corre-

lation coefficient (MCC) 0.97. In the case of TA-

TA-less promoters, we also achieved quite a good 

performance (with sensitivity ≃82 %, specificity 

≃97 %, F1 score ≃89 % and MCC 0.83).  

We compared our TSSPlant predictor with 

tools available for on-line execution or download-

ing and run locally: NNPP [38], Proscan [39], 

EP3 [40] and TSSP (http://www.softberry.com/ 

berry.phtml). First, we compared NNPP, Proscan, 

TSSP and TSSPlant tools on short (251 bp) se-

quences, randomly chosen from TATA and TATA-

less test sets. For both TATA and TATA-less cases, 

the accuracy data clearly indicate that TSSPlant has 

significantly higher prediction accuracy (results not 

shown). Another tests were performed on long se-

quences of 1,100 bp regions of 55 plant protein 

coding genes with experimentally validated TSS 

collected in PlantProm DB (Table 1). TSSPlant 

produced the best accuracy (Sn ≃ 72 %,  

F1 ≃ 47 %), followed by TSSP (Sn = 63.6 %,  

F1 ≃ 41.2 %), NNPP (Sn = 51 %, F1 ≃ 31 %), EP3 

(Sn ≃ 20 %, F1 ≃ 31 %) and Proscan (Sn ≃ 9 %,  

F1 ≃ 15 %). 

bTSSfinder: the bacterial promoter pre-

diction tool 

The largest collection of experimentally vali-

https://www.arabidopsis.org/
http://rapdb.dna.affrc.go.jp/
http://www.softberry.com/plantprom2016/
http://www.softberry.com/
http://www.cbrc.kaust.edu.sa/download/
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dated promoters of E. coli in RegulonDB was clas-

sified into seven different sigma classes ( 70, 54, 
38, 32, 28, 24 and 19). Unfortunately, no such 

classification exists for cyanobacterial promoters. 

Our preliminary comparison of E. coli and cyano-

bacterial promoters indicate that there is a level of 

conservation, based on which we used E. coli 

PWMs for the classification of cyanobacterial pro-

moters. Based on the inter-phyla orthology (data 

not shown), we propose the classification for cya-

nobacterial promoters into five classes: A (analog-

ous to 70), C (analogous to 38), F (analogous to 
28), G (analogous to 24) and H (analogous to 
32).  

Using a combination of features for each 

promoter class, we built 10 NN classifiers, one for 

each promoter class in E. coli and in cyanobacteria. 

Then, we implemented these models into the 

bTSSfinder program. The program slides a window 

of 251 bp over the query sequence, one nucleotide 

at a time (analogous to TSSPlant tool). bTSSfinder 

is available standalone and online at 

http://www.cbrc.kaust.edu.sa/btssfinder.  

We tested bTSSfinder on sets for every pro-

moter class in E. coli and cyanobacteria (Table 2). 

We observed good performance for all promoter 

classes in E. coli (251 bp, a single search window 

size). In the case of cyanobacteria, we observed the 

highest accuracy in A promoters (F1-score: 0.94).  

 
Table 1. Comparison of four promoter prediction tools assessed on 1,100 bp region of 55 plant pro-

tein coding genes with experimentally validated TSS 

Tool 
Genes with 

≥ 1 TSSpr 

Total number 

of TSSpr 
TP1 FP FN Sn,% F1-score,% 

TSSPlant 54 115 40 75 15 72.7 47.1 

TSSP 45 105 35 80 20 63.6 41.2 

NNPP 47 122 28 97 27 50.9 31.1 

EP32 16 16 11 5 44 20.0 31.0 

Proscan2 10 10 5 5 50 9.1 15.4 
Notes: 1Prediction is considered true, if the distance between annotated TSS and predicted TSS (TSSpr) is 50 bp 

or less. 2EP3 and Proscan programs perform a search for transcription start region (of 250 nt and 400 nt, respectively). 

 
Table 2. Comparison of available promoter prediction programs assessed on the 1,100 bp upstream re-

gion of 200 E. coli 70 promoters with experimentally validated TSSs 
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bTTSSfinder 197 3 143 355 71.5 620 

BPROM 200 0 130 569 65.0 386  

NNPP2 175 25 109 500 54.5 440 

PromPredict 74 126 0 149 0.0 14772 
Notes: TSSan: annotated TSS position 1001), TSSpr: predicted TSS. 1Prediction is true, if distance between an-

notated and predicted TSSs is 50 bp or less. 2But, no any true prediction. 

 
We could only evaluate bTSSfinder against 

previously published promoter prediction tools for 
70 promoter class in E. coli. For fairness, we as-

sessed all tools on a single testing dataset. The fol-

lowing promoter prediction tools were available for 

comparison: BPROM (27), NNPP2 (24), and 

PromPredict (26). All other promoter prediction 

tools that we checked were no longer available. 

Results of the comparison for short (251 bp) se-

quences clearly indicate that bTSSfinder has signif-

icantly higher prediction accuracy (data not shown). 

However, using short sequences to predict TSSs is 

not sufficient in evaluating the accuracy and effi-

ciency (especially the real false positive rate) of a 

prediction tool. It should also be tested on longer 

sequences. We run the four programs on longer 

DNA sequences to search for putative σ70 TSSs in 

200 test sequences of 1,101 bp from E. coli. As pre-

sented in Table 2, bTSSfinder produced the best 
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performance (Sn ≃ 72 %, F1 ≃ 52 %), followed by 

BPROM (Sn = 65 %, F1 ≃ 34 %) and NNPP2 (Sn 

≃ 54 %, F1 ≃ 33 %). Surprisingly, PromPredict 

failed to produce a single true positive prediction 

(Se = 0, F1 = 0). 
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NOVEL TOOLS FOR THE PREDICTION OF PROMOTERS IN PLANTS AND BACTERIA 

Aim. The computational search for promoters remains an attractive problem in bioinformatics. Despite the attention it 

has received for many years, the problem has not been addressed satisfactorily. These studies were aimed to develop 

novel computer tools for prediction of promoters (transcription start sites, TSSs) in plants and bacteria. Results. Two 

novel tools for prediction of RNA polymerase II promoters in plants (TSSPlant) and bacteria (bTSSfinder) have been 

developed. TSSPlant achieves significantly higher accuracy compared to the next best promoter prediction program for 

both TATA and TATA-less promoters; it is available to download as a standalone program at 

http://www.cbrc.kaust.edu.sa/download/. bTSSfinder predicts promoters for five classes of  factors in Cyanobacteria 

( A, C, H, G and F) and for five classes of sigma factors in E. coli ( 70, 38, 32, 28 and 24). Comparing to currently 

available tools, bTSSfinder achieves highest accuracy. bTSSfinder is available standalone and online at 

http://www.cbrc.kaust.edu.sa/btssfinder. Conclusions. To date, TSSPlant and bTSSfinder are most accurate promoter 

predictors in plants and bacteria, respectively.  

Keywords: transcription, RNA polymerase, promoter, TSS, promoter prediction.  
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