УДК [622.648.22:622.693.4].001.57

Е.В. Семененко, д-р техн. наук, Е.С. Лапшин, д-р техн. наук, С.Н. Киричко (Украина, г. Днепропетровск, Институт геотехнической механики НАН Украины)

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ КАРТЫ НАМЫВА ПРИ СКЛАДИРОВАНИИ ОТХОДОВ ОБОГАЩЕНИЯ С КОНЦЕНТРАЦИЕЙ ПАСТЫ

Введение. Отходы обогащения полезных ископаемых, транспортируемые гидравлическим способом, требуют значительных площадей для складирования. Капитальные вложения на строительство современного крупного намывного сооружения для складирования отходов достигают от 5 до 35 % сметной стоимости горно-обогатительного комбината, а эксплуатационные затраты составляют до 30 % от себестоимости концентрата [1].

Невозможность выделения земли под новые хранилища и повышение требований к экологической безопасности производства вызывают необходимость поиска новых технологий складирования отходов. В мире наметилась тенденция повышения концентрации отходов до состояния пасты, что позволяет комплексно решать большую часть технологических, экологических и, в конечном счете, экономических проблем для технологий обогащения минерального сырья. Это подтверждается внедрением рассматриваемых технологий на горных предприятиях Канады, России, США, ЮАР и др.

При формировании карт для складирования отходов обогащения в виде пульпы с концентрацией пасты (ПКП) необходимо учитывать ряд особенностей ее течения по склону хранилища:

 паста при течении не расслаивается, поэтому для таких потоков отсутствует понятие критической скорости гидротранспортирования;

 с понижением скорости потока реализуется структурный режим течения, при котором часть потока движется как недеформируемое твердое тело;

 при напряжениях, не превышающих начальное касательное напряжение (НКН), паста является недеформируемым твердым телом и не растекается по наклонной поверхности. Традиционные методы [2–4] расчета параметров хранилищ отходов мокрого обогащения не учитывают возможность прекращения течения ПКП, обусловленного наличием НКН.

Цель работы – определить расстояние, на которое произойдет перемещение фронта ПКП по склону хранилища и массу складируемых отходов.

Предположим, что склон хранилища отходов – плоскость (рис. 1). Слой ПКП 1 стекает по плоскости 2, наклоненной к горизонту 3 под углом α . Будем считать, что пульпа – среда Бингама-Шведова и реализуется режим с поверхностью скольжения 4. Введем декартову систему координат *хуz*. Ось *х* направим по линии ската, ось *у* – перпендикулярно плоскости рисунка, а ось *z* – к свободной поверхности пульпы. Примем, что длина потока ПКП в направлении оси *у* настолько велика, что краевыми эффектами можно пренебречь, т. е. изменениями толщины потока по этой координате пренебрегаем.

С учетом принятых предположений уравнения движения ПКП и уравнение неразрывности могут быть записаны в следующем виде [4, 5]:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial x} + g \sin \alpha + \frac{1}{\rho} \left(\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial x} \right), \tag{1}$$

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial x} - g \sin \alpha + \frac{1}{\rho} \left(\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{zz}}{\partial z} \right), \tag{2}$$

$$\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0, \qquad (3)$$

где *и* и *w* – скорости, направленные вдоль осей *x* и *z*; ρ – плотность; *P* – давление; *g* – ускорение свободного падения; τ_{xx} , τ_{xz} , τ_{zx} и τ_{zz} – касательные напряжения; *t* – время. Индексы при τ – обозначают оси координат.

Напряжения для среды Бингама-Шведова рассчитывают так [4, 5]:

$$\tau_{ij} = \begin{cases} \left(\eta + \frac{\tau_0}{\dot{\gamma}} \right) \dot{\gamma}_{ij} & \tau \ge \tau_0, \\ 0 & \tau < \tau_0, \end{cases} \quad \dot{\gamma}_{ij} = \frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} ; \quad \tau = \sqrt{0.5 \tau_{jk} \tau_{jk}} ; \quad \dot{\gamma} = \sqrt{4 \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)^2} \end{cases} ,$$

где τ_0 – предел текучести или НКН; η – вязкость ПКП; $\dot{\gamma}_{ij}$ – скорость изменения тензора деформации; τ и $\dot{\gamma}_{ij}$ – вторые инварианты τ_{ij} и $\dot{\gamma}_{ij}$.

Рис. 1. Расчетная схема для безнапорного течения пульпы по склону хранилища отходов: 1 – пульпа; 2 – плоскость; 3 – горизонт; 4 – поверхность скольжения

Граничные условия на дне потока, т.е. на плоскости при z = 0, соответствуют условию прилипания потока

$$u(z=0)=0;$$
 $w(z=0)=0.$

А граничные условия на свободной поверхности (z = h) имеют вид следующей системы уравнений:

$$\frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} = w; \qquad \qquad \tau_{xz} = \frac{\partial h}{\partial x} (\tau_{xx} - p); \qquad \qquad \tau_{zz} - p = \frac{\partial h}{\partial x} \tau_{zx}.$$

Для определения высоты и длины слоя пульпы вдоль координаты *x* перейдем к безразмерным переменным

$$\widetilde{x} = \frac{x}{L}; \quad \widetilde{z} = \frac{z}{H}; \quad \widetilde{u} = \frac{u}{U}; \quad \widetilde{h} = \frac{h}{H}; \quad \widetilde{w} = \frac{wL}{UH}; \quad \widetilde{t} = \frac{tU}{L}; \quad \widetilde{p} = \frac{p}{\rho g H \cos \alpha},$$

где H – характерная высота слоя пульпы; L – характерная длина слоя пульпы вдоль координаты x; U – характеристическая скорость.

После их подстановки и незначительных преобразований уравнения (1) – (3) и граничные условия могут быть записаны так [4, 5]:

$$\varepsilon^{2} Re\left(\frac{\partial \widetilde{u}}{\partial \widetilde{t}} + \widetilde{u} \frac{\partial \widetilde{u}}{\partial \widetilde{x}} + \widetilde{w} \frac{\partial \widetilde{u}}{\partial \widetilde{z}}\right) = -\frac{\partial \widetilde{p}}{\partial \widetilde{x}} + S + \varepsilon^{2} \left(\frac{\partial \tau_{xx}}{\partial \widetilde{x}} + \frac{\partial \tau_{xz}}{\partial \widetilde{z}}\right), \tag{4}$$

$$\varepsilon^{4} Re\left(\frac{\partial \widetilde{w}}{\partial \widetilde{t}} + \widetilde{u} \frac{\partial \widetilde{w}}{\partial \widetilde{x}} + \widetilde{w} \frac{\partial \widetilde{w}}{\partial \widetilde{z}}\right) = -\frac{\partial \widetilde{p}}{\partial \widetilde{z}} + 1 + \varepsilon^{2} \left(\frac{\partial \tau_{zx}}{\partial \widetilde{x}} + \frac{\partial \tau_{zz}}{\partial \widetilde{z}}\right),$$
(5)

$$\frac{\partial \tilde{u}}{\partial \tilde{x}} + \frac{\partial \tilde{w}}{\partial \tilde{z}} = 0, \qquad (6)$$

$$\begin{aligned} \tau_{xx} &= 2 \left(1 + \frac{B}{E} \right) \frac{\partial \tilde{u}}{\partial \tilde{x}} \,, \ \tau_{zz} &= 2 \left(1 + \frac{B}{E} \right) \frac{\partial \tilde{w}}{\partial \tilde{z}} \,, \ \tau_{xz} &= 2 \left(1 + \frac{B}{E} \right) \left(\frac{\partial \tilde{u}}{\partial \tilde{z}} + \varepsilon^2 \frac{\partial \tilde{w}}{\partial \tilde{x}} \right) \,, \ \varepsilon &= \frac{H}{L} \,, \qquad S = \frac{L}{H} tg\alpha \,, \\ Re &= \frac{U^2}{gH\cos\alpha} \left(\frac{H}{L} \right)^{-2} \,, \ U = \frac{\rho g H^3}{\eta L} \cos\alpha \,, \ B = \frac{\tau_0 L}{\rho g H^2 \cos\alpha} \,, \ E = \sqrt{\left(\frac{\partial \tilde{u}}{\partial \tilde{z}} + \varepsilon^2 \frac{\partial \tilde{w}}{\partial \tilde{x}} \right)^2 + 4\varepsilon^2 \left(\frac{\partial \tilde{u}}{\partial \tilde{x}} \right)^2} \,, \end{aligned}$$

где ε – геометрическая характеристика безнапорного потока; *Re* – число Рейнольдса; *S* – геометрический комплекс; μ – динамическая вязкость; *B* – число Бингама.

В работах [4, 5] из системы (4) – (6) при $\varepsilon \to 0$ получено уравнение, описывающее эволюцию толщины \tilde{h} потока

$$\frac{\partial \tilde{h}}{\partial \tilde{t}} + \frac{1}{6} \frac{\partial}{\partial \tilde{x}} \left[Z^2 \left(3\tilde{h} - Z \left(S - \frac{\partial \tilde{h}}{\partial \tilde{x}} \right) \right] = 0, \qquad \qquad Z = \tilde{h} - \frac{B}{\left| S - \frac{\partial \tilde{h}}{\partial \tilde{x}} \right|}, \tag{7}$$

где Z – координата поверхности скольжения (см. рис. 1).

Будем считать движение установившимся, т. е.

$$\frac{\partial \widetilde{h}}{\partial \widetilde{t}} = 0$$

Тогда уравнение (7) примет следующий вид

$$\frac{1}{6} \frac{\partial}{\partial \tilde{x}} \left[Z^2 \left(3\tilde{h} - Z \left(S - \frac{\partial \tilde{h}}{\partial \tilde{x}} \right) \right] = 0.$$
(8)

В качестве характерных размеров H и L выберем начальную высоту подачи пульпы и заданную длину растекания (длина карты намыва). Из выражений (1) – (8) следует, что течение пульпы зависит от реологических (τ_0 , η , ρ) и геометрических (H, α) параметров, которые характеризуются числом Бингама B и комплексом S. Только при определенном соотношении между ними достигается заданная длина растекания. Рациональные значения величин B и S определялись следующим образом. Задавался набор значений чисел Бингама B_r (r = 1, 2, ...n). Для каждого из них варьировался геометрический комплекс $S_{r,s}$. Здесь первый индекс указывает на то, что вычисления выполнены для B_r , а второй – для s-

го значения S. Уравнение (8) решалось численно методом Рунге-Кутта-Фелберга 4 – 5 порядка и определялось значение $x_{r,s}$, при котором h = 0. Проверялось выполнение условия

$$\left|L - x_{r,s}\right| < \Delta \,, \tag{9}$$

где Δ – допустимая погрешность в определении величины L.

Рис. 2. Кривая значений геометрического комплекса *S*, при которых обеспечивается заданная длина растекания ПКП *L* с числом Бингама *B* : ● – расчетные значения; — – аппроксимация расчетных значений

При справедливости условия (9) прекращалось варьирование $S_{r,s}$ и осуществлялся переход к следующему значению B_r . По результатам вычислений, при $\Delta = 0.02$, был построен соответствующий график (рис. 2). Аппроксимация расчетных значений с погрешностью менее 1 % выполнена при помощи полинома

$$S = -0.0221B^2 + 0.9702B + 4.9247.$$
⁽¹⁰⁾

Таким образом, получена формула (10), позволяющая определить значение геометрического комплекса *S*, при котором обеспечивается заданная длина растекания ПКП с числом Бингама *B*.

Результаты моделирования изменения высоты \tilde{h} слоя пульпы вдоль координаты \tilde{x} (рис. 3), позволяют сделать вывод о том, что, несмотря на варьирование рациональных значений числа Бингама и геометрического комплекса S, вид функции $\tilde{h}(\tilde{x})$ сохраняется.

При этом площадь сечения слоя ПКП \tilde{F} (в плоскости x0z), которая определялась численным интегрированием зависимости $\tilde{h}(\tilde{x})$ в пределах изменения \tilde{x} от 0 до 1 (таблица 1), также можно считать неизменной, поскольку с вероятностью 0,95 справедлива статистическая гипотеза, что все значения \tilde{F} принадлежат одной генеральной совокупности со средним значением 0,9633.

Рис. 3. Кривая изменения высоты слоя пульпы \tilde{h} по координате \tilde{x} при B = 0,2 и S = 5,1 (О) и B = 10 и S = 12,38 (×)

Переходя к размерным величинам, получим, что

$$F = LH\tilde{F} , \qquad (11)$$

S

где \tilde{F} – безразмерная площадь, которую примем равной 0,96 (см. табл. 1).

Таблица 1

Плошаль сечения слоя ПКП	Ē	при различных значениях В и	r
площадь сечения слоя шкп	1	при различных значениях D и	

Число Бингама В	Комплекс S	Площадь \widetilde{F}
0,2	5,100	0,9660
0,5	5,400	0,9659
1,0	5,890	0,9657
2,0	6,790	0,9657
3,0	7,660	0,9646
4,0	8,440	0,9644
5,0	9,200	0,9633
6,0	9,920	0,9624
7,0	10,620	0,9609
8,0	11,310	0,9588
9,0	11,908	0,9592
10,0	12,380	0,9627

Масса отходов, приходящаяся на один погонный метр по координате *y*, с учетом выражения (11) определяется так:

$$m = 0.96\rho CLH \,, \tag{12}$$

где С – массовая концентрация пульпы.

Следует акцентировать внимание на том, что формула (12) справедлива при рациональных значениях числа Бингама и геометрического комплекса S, при которых обеспечивается течение пульпы с начальной высотой H на расстояние L.

Время, необходимое для намыва карты длиною L, определим по характеристической скорости U, т.е. как

$$t_L = \frac{L}{U} = \frac{\eta}{\rho g H \varepsilon^2 \cos \alpha} \,.$$

Выводы. Растекание пульпы с концентрацией пасты по склону хранилища отходов моделировалось ползущим течением среды Бингама-Шведова. С использованием этой модели на основе метода возмущений определена длина карты намыва и масса отходов, зависящие от числа Бингама и значения геометрического комплекса. Показано, что течение пульпы по склону зависит от реологических и геометрических параметров, которые характеризуются числом Бингама и введенным геометрическим комплексом.

Полученные результаты планируется использовать при разработке перспективных технологий транспортирования и складирования отходов обогащения в виде пасты.

Список литературы

1. Шевцов, Н.С. Разработка методики обоснования параметров горнотехнических систем с намывными сооружениями при освоении железорудных месторождений: дис. канд. техн. наук: 25.00.22; 25.00.21 / Шевцов Н.С. – Магнитогорск: МГТУ им. Г.И. Носова, 2013. – 120 с.

2. Зверевич, В.В. Водовоздушное хозяйство обогатительных фабрик / В.В. Зверевич, В.А. Перов. – М.: Недра, 1976. – 199 с.

3. Чуянов, Г.Г. Хвостохранилища и очистка сточных вод / Г.Г. Чуянов. – Екатеринбург: УГГТА, 1998. – 246 с.

4. Воронов, Ю.В. Водоотведение и очистка сточных вод / Ю.В. Воронов, С.В. Яковлев. – М.: ACB, 2006. – 704 с.

5. Balmforth, N.J. A consistent thin-layer theory for Bingham plastics / N.J. Balmforth, R.V. Craster // J. Non Newtonian Fluid Mech. – 1999. – Vol. 84. – P. 65–81.

6. Liu, J. Stability of viscoplastic flow / J. Liu, [Электронный ресурс]. – Режим доступа: https://www.whoi.edu/page. do?pid=13016.

Рекомендовано до друку: д-ром техн. наук, проф. Шкрабцем Ф.П.