Анализ связанных сейсмических событий методами теории орграфов

© В. Б. Спиртус, 2013

Институт геофизики НАН Украины, Киев, Украина Поступила 31 мая 2012 г. Представлено членом редколлегии Б. Г. Пустовитенко

Для вибірок з каталогів землетрусів, що містять великі сейсмічні події, досліджено компоненти односторонньої зв'язності відповідних орграфів. Запропоновано визначення нової математичної характеристики — спрут-індексу вершин орграфа. Динаміка зміни цієї величини може бути використана в алгоритмах середньострокового прогнозу. Наведено тестові приклади і результати пробних розрахунків для землетрусів Північної Каліфорнії і Кримсько-Чорноморського регіону.

For samples from the earthquakes catalogues with large seismic events the components of unilateral relatedness of corresponding orgraphs are studied. Definition of new mathematical adjectives is proposed — octopus-index of orgraph vertexes. Dynamics of this value changes can be used in algorithms of medium-term forecast. Test examples and results of test calculations for the earthquakes of North California and the Crimean-Black Sea region have been given.

Введение. При анализе пространственновременной динамики сейсмичности традиционно используются понятия форшока, афтершока и роя [Арефьев, 2002], а также подразделение сейсмичности на скученную и рассеянную компоненту [Арефьев, Шебалин, 1990]. В определенной степени альтернативой этому подходу, вероятно может стать понятие связанных сейсмических событий (ССС). В работах российских авторов, например [Шебалин, 2006; Шевцов, Сагитова, 2009], тем или иным способом вводилось понятие соседних землетрясений. Критерий соседства при этом определяется совместными требованиями к промежуткам времени и расстояниям между событиями:

$\delta T < T_{cr}$, $\delta R < R_{cr}$

или условиями *T*-связанности и *R*-связанности [Спиртус, 2013]. В среднесрочных алгоритмах прогноза землетрясений часто существенную роль играют цепочки событий, которые явно [Шебалин, 2006] или неявно [Пустовитенко, Поречнова, 2008] конструируются из связанных землетрясений.

В последнее время к сейсмологическим данным стали применяться методы нейросетевого анализа [Baiesi, Paczuski, 2004; Davidsen et al., 2008; Zaliapin et al., 2008; Vasudevan et al., 2010]. Ключевой идеей данного подхода является использование теории графов [Емеличев, 1990; Харари, 2003]. При формализации определения соседних землетрясений для каждой (упорядоченной по времени) выборки каталога землетрясений можно построить отражающий связанность событий соответствующий орграф. Все события а; представляются вершинами орграфа, причем землетрясения с номерами *i* и *j*>1 связаны дугой *e*_{ii} (стрелка от первой вершины ко второй), если они «соседи». Заметим, что в силу упорядоченности событий по времени для *j*>*i* только *e*_{*ii*} может существовать, т. е. орграф бесконтурный. Для задания такого орграфа достаточно сформировать наддиагональную матрицу смежности вершин из единиц и нулей. Это — в общепринятом варианте. Для анализа сейсмичности удобнее, однако, ввести некоторую дифференциацию: (+1) присваивать для связанных пар событий с последовательным возрастанием энергии (up-соседства), (-1) — для событий с понижением энергетического класса (или магнитуды). Нуль соответствует отсутствию связи.

Теория графов со своим кругом понятий становится источником свежих идей и в поиске среднесрочных предвестников землетрясений. Для этой цели наиболее перспективен, по нашему мнению, анализ орграфов и цепочек ССС, построенных на основе up-связей. Данную точку зрения подтверждает, в частности, один из результатов работы [Шевцов, Сагитова, 2009]: цепочки, допускающие понижение энергии в паре соседей, как правило, прерываются.

В работе [Спиртус, 2013] были рассмотрены методические аспекты выделения ССС с помощью теории графов. Проведено предварительное исследование этого вопроса для наиболее заметных землетрясений центральной части Крымско-Черноморского региона. Показано, что в матрицах смежности орграфов для периодов повышенной сейсмической активности выделяются агломерации связанных форшоков и афтершоков.

В настоящей статье центральное место занимает понятие компонент односторонней связности орграфа. Автором для их вычисления разработана оригинальная компьютерная программа в системе МАТLAB. Предлагается определение новой математической характеристики: *спрут-индекса* вершин орграфа. Этот параметр может быть использован в алгоритмах среднесрочного прогноза крупных сейсмических событий. Приведены тестовые примеры и результаты пробных расчетов для землетрясений Северной Калифорнии и Крымско-Черноморского региона.

Краткое описание терминов теории графов и новых определений. Пусть V — множество вершин графа. Граф, содержащий ориентированные ребра (дуги), называется орграфом. Формально, орграф D=(V, E) есть множество E упорядоченных пар вершин $\upsilon \in V$. Маршрутом в орграфе называют чередующуюся последовательность вершин и дуг. Путь есть маршрут в орграфе без повторяющихся дуг, простой путь — без повторяющихся вершин. Если существует путь из одной вершины в другую, то вторая вершина достижима из первой.

Орграф сильно связный, если все его вершины взаимно достижимы; односторонне связный, если для любых двух вершин по крайней мере одна из них достижима из другой. Максимальный сильный (односторонний) подграф называется соответствующей, т. е. сильной или односторонней компонентой.

Число входящих в вершину *v* орграфа дуг обозначается id(*v*) (от английского слова indegree) и называется полустепенью захода вершины. В дополнение к этому понятию предлагается рассмотреть новую характеристику: *cnpym-ungekc* вершины орграфа. Определение 1. Вершина j имеет вход из компоненты L односторонней связности подграфа 1...j, если соединена с некоторой вершиной $V \in L$ путем, содержащим не общую дугу. Множество компонент, имеющих вход в вершину j, — inp(j).

Определение 2. Общая вершина подграфа 1...*j* это w⊂con(*j*), если она связана с *j* и

$$w \notin L_j \cup \operatorname{inp}(j), \tag{1}$$

где L_j — компонента(ы), содержащая вершину *j*. Если множество con(*j*) непусто, соответствующие вершины назовем коннективными *j*-узлами.

Определение 3. Спрут-индексом назовем суммарное число входов вершины *j* и коннективных *j*-узлов:

$$\operatorname{sp}(j) = \operatorname{length}(\operatorname{inp}(j)) + \operatorname{length}(\operatorname{con}(j)). \quad (2)$$

Неформальный смысл введенных определений применительно к анализу пространственно-временной динамики сейсмичности состоит в следующем. В рамках представлений о литосфере как сложной динамической системе [Bak,1996] легко находит объяснение возрастание радиуса корреляции сейсмичности по мере приближения момента критического явления — сильного землетрясения [Шебалин, 2006]. При этом условия Т-связанности и R-связанности начинают выполняться для большого числа событий — вершин орграфа. (Заметим, что не предусматривается какаялибо предварительная фильтрация сейсмических каталогов, кроме как по уровню энергии.) В матрицах смежности орграфов для периодов повышенной сейсмической активности резко увеличивается плотность их заполнения (относительная доля ненулевых элементов), выделяются агломерации связанных форшоков и афтершоков [Спиртус, 2013]. Хотя часть сейсмических событий являются одиночными, в целом процент их, видимо, не столь велик, как по оценкам статьи [Шевцов, Сагитова, 2009]. Разбиение неизолированных событий на цепочки в случае полного покрытия выборки представляет собой разложение на компоненты односторонней связности. Последние допускают наглядную интерпретацию, как улицы города, связанные односторонним движением.

Наиболее сильным событиям часто, хотя и не обязательно, отвечает максимальное число входящих дуг id(v) в соответствующей вершине орграфа. Крупные события, таким образом, являются своеобразными «аттракто-

рами». Естественно, кажется, посмотреть на возможности ретропрогноза землетрясений с использованием этой величины. Однако, по нашему мнению, такие попытки вряд ли будут иметь успех в силу камуфлирующего влияния однокомпонентных связей. Ныне достоверно установлен эффект стягивания событий низкого ранга к месту будущего крупного [Пустовитенко, Поречнова, 2008]. Но, по нашему мнению, весьма вероятно, что дополнительно к тому происходит еще и эффект замыкания на сильном событии разных цепочек землетрясений (односторонних компонент). Для исследования этого вопроса определение 1 вводит в рассмотрение производную от id(v)величину inp(i): факторизованную по отношению эквивалентности «принадлежность вершин к одной компоненте». Характеристика sp(j), которую можно испытать как элемент ретропрогноза сейсмических событий, включает также добавку за счет коннективных *i*-узлов (определение 2).

Некоторые результаты расчетов. Для первого теста использован орграф с 13 вершинами и 22 дугами (рис. 1, *a*) без изолированных вершин. В данном случае выделяется три компоненты. Вершины 1, 4, 5 — общие для первой и третьей компоненты. Если смотреть на динамику увеличинения орграфа, то вторая компонента возникает при значении *j*=3, третья — при *j*=9. Спрут-индекс шести вершин орграфа равен 2 (рис. 1, *б*), коннективных *j*-узлов нет.

Для второго теста использован орграф с 13 вершинами и 13 дугами без изолированных вершин (рис. 2, *a*). Здесь также выделяется три компоненты, а вершины 1, 4, 5 — общие для первой и третьей компоненты. Теперь спрут-индекс четырех вершин орграфа равен 2 (рис. 2, *б*). При этом вершины 6, 8, 10 имеют вход из первой и второй компоненты, а вершина 12 — только из второй. Однако в значение sp(12)=2 вносит вклад общая вершина 5 первой и третьей компоненты, являющаяся коннективным узлом.

Относительно введенного нового понятия (спрут-индекса вершин орграфа) можно, видимо, доказать ряд чисто математических утверждений или теорем, но эта задача выходит за рамки данной статьи.

На рис. 3, 4 приведены расчеты для выборки событий из каталога землетрясений Се-

Рис. 1. Визуальное представление орграфа, имеющего 13 вершин (*a*); расчетные компоненты односторонней связности, динамика увеличения числа компонент и спрут-индекс вершин орграфа (*б*).

Рис. 2. То же, что на рис. 1, для другого орграфа.

Рис. 3. Пример исследования выборки событий из каталога землетрясений Северной Калифорнии. Визуальное представление орграфа up-связей для 38 сейсмических событий 1992 г., его увеличенный фрагмент (*a*), ненулевые элементы матрицы смежности *M*_{ij} (*б*) и динамика увеличения числа компонент орграфа up-связей (*b*). Светло-серым цветом выделены элементы матрицы *M*_{ij} для событий с *K*_i≤*K*_i.

Рис. 4. Число входящих в вершины орграфа дуг (*a*) и спрут-индекс вершин орграфа для событий из каталога землетрясений Северной Калифорнии (*б*).

верной Калифорнии: Northern California Seismic Network (NCSN) data (табл. 1). В выборку попали 38 землетрясений 1992 г. с $M_d \ge 4,0.$ (Это широко распространенный в последние годы тип магнитуды для локальных событий. В оценке магнитуды используются кода волны на короткопериодных вертикальных сейсмографах.)

Отметим, что события с 14 по 38 происходили в интервале времени менее суток. Причем эти землетрясения, за исключением события 32 с широтой $\varphi=33,94^\circ N$ и долготой $\lambda=-116,32^\circ E$, локализованы в узкой области, ограниченной координатами $\varphi=40,3\pm0,1^\circ N$, $\lambda=-124,4\pm0,2^\circ E$. Наиболее крупные из них — 8, 14, 33, 35.

Для определения связанности землетрясений в этом примере использовался подход работы [Шебалин, 2006], где рассматривались цепочки событий и для Северной Калифорнии. Согласно упомянутому подходу максимально допустимое расстояние в паре между «соседями» ∆≤*r* таковы:

$$r = r_0 10^{c(M_{\min} - 2,5)}$$
(3)

где $M_{\rm min}$ — минимальная магнитуда в паре. Условие *Т*-связанности $\delta t < \tau_0$. Принятые П. Шебалиным для Северной Калифорнии значения параметров c=0,35, $r_0=50$ км, $\tau_0=45$ дней использованы и в данной статье.

Дуги, соединяющие вершины на рис. 3, *а*, соответствуют up-связям, общее число их 168.

Первые шесть вершин в орграфе являются изолированными, так как данные события не удовлетворяют совместным требованиям для «соседей»: ∆≤r и δt<τ₀ при возрастании магнитуды в паре. В силу этого вершина, отвечающая достаточно сильному событию 8 с магнитудой М_д=6,26 имеет только одну входящую дугу. Эпицентры землетрясений 7, 8, 10-13 близки друг к другу и к месту возникновения события 32, поэтому между ними наблюдаются связи в орграфе. Для события 12 с магнитудой М_=4,63 имеется уже 4 входящих дуги, т. е. id(12)=4. Крупное землетрясение 14 с магнитудой М =6,69, открывающее серию афтершоков в упомянутой выше узкой области (см. темно-серого цвета элементы 14 ряда матрицы M_{ii} на рис. 3, б) имеет up-связь только с 8-м событием. В возникающих агломерациях связанных форшоков и афтершоков светло-серые ряды матрицы на рис. 3, б соответствуют событиям с наименьшими магнитудами, например 16-му, 18-му, 19-му, 22-му. Большое число выходящих дуг наблюдается и в орграфе для этих вершин (см. рис. 3, а).

В данном случае расчеты дают 12 компонент односторонней связности, в числе которых две пары и две триады (табл. 2). Интересно, что динамика увеличения компонент орграфа имеет пологий участок, включающий крупные события (см. рис. 3, в). Многочисленные светло-серые элементы в колонках матрицы на рис. 3, б соответствуют большому количеству ир-связей и высоким значениям id(v) для вершин 23, 24, 30, 31, 33, 35 (см. рис. 4). Безусловные лидеры — крупные события 33 и 35 с магнитудами М_w=6,45 и М_w=6,57 соответственно. Но и менее значимые по энергетическим характеристикам землетрясения, образующие несколько новых ир-связей, проявляются всплесками на графиках id(j) и sp(j). Несмотря на достаточно высокую корреляцию графиков настоящих величин

Номер события	Время возникнове- ния землетрясения	Дата, ч, мин, с	Координаты эпицентра φ° <i>N</i> —λ° <i>E</i>	Глубина очага, км	М	Тип М
1	1992/01/03	04:59:21,29	40,7995—125,0788	6,97	4,10	M _d
2	1992/02/15	14:36:19,65	37,6785—121,6093	16,55	4,00	M_d
3	1992/02/19	11:19:24,85	36,0212—117,8835	9,83	4,07	M_d
4	1992/03/08	03:43:04,05	40,2327—124,2625	10,21	5,32	M_d
5	1992/03/09	04:51:15,86	40,5737—123,3735	34,92	4,43	M_d
6	1992/04/06	04:01:30,22	39,6460—119,8863	10,49	4,10	M_d
7	1992/04/23	02:25:34,43	34,2030—116,7133	5,00	4,36	M_d
8	1992/04/23	04:50:22,61	33,9410—116,3868	12,16	6,26	M_d
9	1992/04/23	04:53:27,16	35,4445—119,2633	10,06	4,57	M_d
10	1992/04/23	05:22:37,94	34,7657—117,2942	4,71	4,21	M_d
11	1992/04/23	09:58:34,02	34,8915—118,1017	42,15	4,06	M_d
12	1992/04/23	22:56:16,86	34,8503—117,6315	74,81	4,63	M_d
13	1992/04/24	12:36:25,00	34,8952—117,3282	19,42	4,29	M_d
14	1992/04/25	18:06:05,18	40,3353—124,2287	10,55	6,69	M_w
15	1992/04/25	18:20:12,84	40,4407—124,4060	0,03	4,53	M_d
16	1992/04/25	18:28:58,26	40,3753—124,4165	13,03	4,12	M_d
17	1992/04/25	18:31:51,36	40,3057—124,5280	4,96	4,44	M_d
18	1992/04/25	18:42:15,19	40,3055—124,5380	5,60	4,01	M_d
19	1992/04/25	18:45:18,11	40,3015—124,5125	7,76	4,05	M_d
20	1992/04/25	18:47:03,85	40,3158—124,4863	0,21	4,56	M_d
21	1992/04/25	18:53:18,19	40,2765—124,4595	7,88	4,20	M_d
22	1992/04/25	18:53:32,29	40,2518—124,3555	8,67	4,10	M_d
23	1992/04/25	19:14:51,14	40,3095—124,5730	0,93	4,74	M_d
24	1992/04/25	19:15:31,30	40,2995—124,5602	6,48	4,63	M_d
25	1992/04/25	19:41:59,65	40,3387—124,3812	5,74	4,14	M_d
26	1992/04/25	19:50:41,81	40,2913—124,4510	5,98	4,13	M_d
27	1992/04/25	20:12:35,82	40,4248—124,4338	9,80	4,11	M_d
28	1992/04/26	01:00:57,99	40,3657—124,5023	6,68	4,12	M_d
29	1992/04/26	01:33:36,36	40,3153—124,4163	17,83	4,13	M_d
30	1992/04/26	02:07:06,22	40,3087—124,4002	18,37	4,16	M_d
31	1992/04/26	02:08:09,34	40,2967—124,4073	18,54	4,16	M_d
32	1992/04/26	06:26:08,61	33,9433—116,3248	2,99	4,37	M_d
33	1992/04/26	07:41:40,09	40,4325—124,5660	19,57	6,45	M_w
34	1992/04/26	07:45:47,14	40,3912—124,5910	21,02	4,26	M_{χ}
35	1992/04/26	11:18:25,98	40,3828—124,5550	22,62	6,57	M_w
36	1992/04/26	11:28:49,81	40,4125—124,5878	6,40	4,33	M_d
37	1992/04/26	11:29:07,95	40,4380—124,5550	11,33	4,29	M_d
38	1992/04/26	12:04:29,94	40,4083—124,4142	11,23	4,16	M_d

Таблица 1

на рис. 4, а, б, они несут разную информацию.

К обработке землетрясений Крыма применяется техника выделения связанных событий, предложенная в работе [Baiesi, Paczuski, 2004]. Используются два каталога землетрясений Крымско-Черноморского региона из базы данных Б.Г. Пустовитенко. Каталог А содержит 88 событий с 1982 по 2009 г. с *K*>8,5, относящихся к центральной сейсмической зоне Крыма. Каталог Б содержит 1137 событий с 1955 по 2004 г. с *К*>7.

Расчеты проводились с теми же параметрами, что и в статье [Спиртус, 2013], только для выборки из каталога А взято значение η_c =0,001, а для выборки из каталога Б — η_c =0,01.

Таблица 2

й	Номер компонент											
и односторонней связност а землетрясений Северноі ифорнии за 1992 г.	1	2	3	4	5	6	7	8	9	10	11	12
	7	9	10	11	15	16	18	18	18	18	18	18
	8	12	13	12	20	17	19	19	19	19	19	19
	14		32		23	20	21	22	22	22	22	22
					33	23	24	25	26	27	27	27
					35	33	33	30	29	28	28	28
						35	35	31	31	29	29	29
энть оркі Кал								33	31	30	30	30
IOH6								35	33	31	31	31
OMI AA B									35	34	34	38
XX										36	37	

Таблица 3

Номер внутри	I	Зремя воз	никнове	Координаты эпицентра		Энергети- ческий класс			
выборки	год	месяц	число	час	мин	С	φ°N	$\lambda^{\circ}E$	K
1	1996	3	15	3	3	50,4	44,32	34,35	9,9
2	1996	11	22	11	17	41,4	44,51	34,16	9,1
3	1996	11	23	18	24	29,9	44,31	34,27	9,5
4	1997	2	27	7	17	56,5	44,21	33,40	9,2
5	1997	10	19	1	56	33,1	44,34	34,22	11,5
6	1997	10	19	1	57	13,4	44,31	34,21	9,4
7	1998	9	21	14	1	15,8	44,33	34,07	9,2
8	1998	10	4	13	42	50,6	44,31	34,11	9,3
9	1998	10	16	15	24	9	44,03	33,71	10,5
10	1998	10	16	15	25	5,1	44,09	33,61	9,3
11	1998	10	16	15	27	53,9	44	33,67	9,5
12	1998	10	16	15	31	36,9	44,08	33,63	10,1
13	1998	10	16	22	51	47,5	44,23	33,78	8,9
14	1998	10	18	1	57	47,5	44,05	33,65	9,8
15	1998	10	18	5	22	10	44,05	33,68	12,0
16	1998	10	18	5	27	34,9	44,1	33,72	8,9
17	1998	10	25	15	30	11,5	43,84	33,55	8,8
18	1999	2	17	23	3	38,6	44,20	33,03	8,7
19	1999	6	2	15	43	55,2	44,55	34,50	9,9
20	1999	6	2	16	40	58,9	44,59	34,48	10,9

Выборка из 20 сейсмических событий 45— 64 каталога А с 15.03.1996 по 2.06.1999 г. представлена в табл. З. Для крымского региона — это довольно активный период, в который попадает 59-е событие: ощутимое землетрясение 18.10.1998 г. в Севастопольском районе с энергетическим классом *K*>12. Как отмечается в работе [Пустовитенко, Поречнова, 2000], землетрясение сопровождалось сложной серией форшоков и афтершоков, поле которых покрыло зону размером около 450 км².

Насыщенность данного орграфа связями значительно меньше, чем на рис. 3. Всего имеется 51 связь, но на долю up-связей, показанных на рис. 5, *a*, приходится только 21 из них. Семь из них отражают количество связанных

Рис. 5. Пример исследования выборки событий 45—64 из каталога землетрясений А центральной части Крымско-Черноморского региона (см. Приложение 1 работы [Спиртус, 2013]). Визуальное представление орграфа для 20 сейсмических событий с 15.03.1996 по 2.06.1999 гг., расчетные компоненты односторонней связности (*a*), ненулевые элементы матрицы смежности M_{ij} (б) и спрут-индекс вершин подграфа (*b*). Светло-серым цветом выделены элементы матрицы M_{ij} для событий с $K_i \leq K_i$.

с главным событием форшоков. Они соответствуют числу входящих в 15-ю вершину орграфа дуг — *id*(15) или, на матричном языке, числу единичных элементов 15-го столбца матрицы смежности (рис. 5, б). Конкретно, связанными с главным землетрясением в данной выборке являются события 51—58 каталога А, т. е. начиная с землетрясения 21.09.1998 г. Девять вершин орграфа не имеют входящих дуг.

Число компонент орграфа равно 7, причем цепочки имеют сравнительно небольшую длину. Первые две из них ведут к событию 49. Таким образом, землетрясение 19.10.1997 г. с энергетическим классом *K*=11,5 имеет форшоки: события 15 марта и 23 ноября 1996 г. с *K*=9,9 и 9,5 соответственно. Из рис. 5, *a*, *б* видно также, что форшок 16.10.1998 г. имеет свои форшоки, а как и афтершоки, продолжающиеся до главного толчка.

Форшоко-афтершоковый кластер крупнейшего землетрясения выборки 59 содержит события 53—62, т. е. от первого крупного форшока 16.10.1998 г. с *K*=10,5 и до афтершока 17.02.1999 г. с *K*=8,7 (рис. 5, *б*). Кластер всех связей в матрице компактен, в отличие от построенного только по up-связям.

Нетрудно видеть, что в орграфе для данной выборки нет коннективных узлов. Поэтому спрут-индекс здесь отражает число входов в вершины из разных компонент (рис. 5, в). Событие 59 имеет вход из трех компонент, к нему сходятся три цепочки землетрясений. По два входа имеют события 49 и 58. Землетрясение 19.10.1997 г. нуждается в более детальном исследовании. Возможно, оно проявится рельефнее при другом выборе временного окна и порога обрезания по энергетическому классу.

Хотя вершины 9 и 12 орграфа, соответствующие событиям 53, 56 с *K*=10,5 и *K*=10,1, выделяются числом входящих дуг, однако sp(12)=sp(9)=1. Короткие цепочки для каждого из этих землетрясений лежат в пределах одной своей компоненты. В другой серии расчетов использованы землетрясения 480—510 каталога Б с 15.04.1984 по 5.07.1984 г. Эта выборка из 31 сейсмического события избирательно представлена в табл. 4. Известный период активизации сейсмичности в 1984 г. включает 506 событие (27 внутри выборки): ощутимое землетрясение 5 июля с *К*=11,4, проявившееся на побережье толчками 3—4 балла. Серия землетрясений была приурочена к очаговой

Таблица 4

Номер внутри	I	Зремя воз	никнове	Координаты эпицентра		Энергети- ческий класс			
выборки	год	месяц	число	Ч	МИН	С	φ°N	$\lambda^{\circ}E$	K
1	1984	04	15	20	05	01	44,5	34,47	7,9
9	1984	06	26	14	10	26,6	44,49	34,38	9,5
15	1984	07	1	2	5	58,5	44,51	34,35	8,8
27	1984	07	5	3	7	16,9	44,49	34,46	11,4
28	1984	07	5	3	8	23,5	44,5	34,47	10,7
29	1984	07	5	3	8	52,2	44,5	34,48	10,6
30	1984	07	5	3	11	6,4	44,5	34,47	9,5
31	1984	07	5	3	13	54	44,5	34,47	9,3

Рис. 6. Пример исследования выборки событий 480—510 из каталога землетрясений Б Крымско-Черноморского региона. Визуальное представление орграфа up-связей для 31 сейсмического события 1984 г. и его увеличенный фрагмент, расчетные компоненты односторонней связности (*a*) ненулевые элементы матрицы смежности *M*_{ij} (*б*) и спрут-индекс вершин подграфа (*b*). Светло-серым цветом выделены элементы матрицы *M*_{ij} для событий с *K*_i≤*K*_i.

зоне событий 1927 г. в Ялтинско- Таблица 5 Алуштинском районе и имела тот же сложный тип последовательности: форшоки — основной толчок — афтершоки [Кульчицкий, Пустовитенко, 2008].

Насыщенность орграфа связями на рис. 6, *а* значительно выше, чем на рис. 5, *а*. Имеется 137 ирсвязей, большая часть которых приходится на вспышку форшоков после 18 события с *K*=7,0. Число компонент орграфа равно 10 (см. табл. 5). Вершины 1—3, 12, 17 являются изолированными, поскольку их эпицентры удалены друг от друга и места основных событий. При этом между двумя обособленными частями орграфа

имеется небольшое число ир-связей. Вершины 7, 8, соответствующие двум сейсмическим событиям с К=7,1, общие для 4-х компонент. Девятое внутри выборки землетрясение с К=9,5 связано с событиями 4—8 и имеет спрутиндекс два (рис. 6, б, в). Более слабые последующие события, кроме изолированных, являются его афтершоками. В пятнадцатую вершину, отвечающую сейсмическому событию с К=8,8, входит и выходит много дуг орграфа. Ее спрутиндекс равен четырем. Восемнадцатое землетрясение выборки с К=7,0 является форшоком 12 последующих толчков. Сравнительно сильные форшоки 22, 23 с энергетическим классом К=9,4 имеют высокую полустепень захода вершин и спрут-индекс 6. То же самое относится и к 25-му землетрясению выборки с К=9,6. После главного 27-го события 5 июля с К=11,4 последовал ряд сильных афтершоков, спрут-индекс всех этих событий равен семи (рис. 6, в).

Заключение. Коллективные черты сейсмического процесса в сейсмоопасных регионах проявляются в том, что одно землетрясение может индуцировать другое или быть триггером многочисленных дальнейших, т. е. значительная часть событий являются взаимосвязанными [Davidsen et al., 2008]. Формализация понятия ССС и построение на этой основе орграфов (или нейросетей) являются крупным шагом вперед в теории сейсмичности, предоставляют в распоряжение исследователя новые инструменты анализа структуры сейсмического поля.

И	Номер компонент											
ност í	1	2	3	4	5	6	7	8	9	10		
связ	4	7	7	7	18	7	18	18	18	18		
ей ()ясе 1.	5	8	8	8	19	8	26	26	26	26		
онн летр 984	6	10	11	11	21	20	28	29	30	31		
Top sem/ sa 1	9	15	13	14	22	24						
нос ки з ма з	25	22	15	16	23	25						
I od бор Хры		23	22	21	25	27						
Bbl		25	23	22	27							
оне для		27	25	23								
IIWO			27	25								
Х				27								

Уже достаточно давно известна иерархичность процесса подготовки землетрясений: «Землетрясения более низких энергетических уровней, являясь фоном при формировании зон сильных событий, сами становятся событиями, т. е. главными землетрясениями по отношению к еще более слабым сейсмическим толчкам» [Пустовитенко, 2003]. Некоторые землетрясения имеют афтершоки и, в то же время, являются форшоками последующих более сильных толчков и т.п. Анализ матриц смежности орграфов для периодов повышенной сейсмической активности дает возможность разобраться в этих сложных взаимосвязях.

Разработанная компьютерная программа в системе МАТLАВ позволяет рассчитать компоненты односторонней связности и новую математическую характеристику: спрутиндекс вершин орграфа. Изменение этой величины с течением времени, а также динамика роста числа компонент могут служить среднесрочному прогнозу землетрясений. Проведенные расчеты для сейсмических событий Северной Калифорнии и Крымско-Черноморского региона дают основания для определенного оптимизма в этом отношении.

В будущих работах ССС и *R*-окрестности цепочек [Шебалин, 2006], «натянутые» на компоненты, по нашему мнению, естественно использовать также для уточнения границ между различными очаговыми зонами регионов. Преимущество такого подхода в том, что это логически совершенный и чисто сейсмологический критерий.

Список литературы

- Арефьев С. С. Форшоки, афтершоки и рои землетрясений // Физика Земли. — 2002. — № 1. — С. 60—77.
- Арефьев С. С., Шебалин Н. В. Оценка уровня скученности (кластеризации землетрясений) Кавказа // Докл. АН СССР. — 1990. — **298**, № 6. — С. 1349—1352.
- *Емеличев В. А., Мельников О. И.* Лекции по теории графов. Москва: Наука, 1990. 384 с.
- Кульчицкий В. Е., Пустовитенко Б. Г. 80 лет инструментальным сейсмическим наблюдениям в Крыму: история, итоги и перспективы // Геофиз. журн. — 2008. — **30**, № 5. — С. 9—49.
- Пустовитенко Б. Г. Сейсмические процессы в Черноморском регионе и сейсмическая опасность Крыма: Автореф. дис. ... д-ра физ.-мат. наук. — Киев, 2003. — 41 с.
- Пустовитенко Б. Г., Поречнова Е. И. О процессах формирования очаговых зон сильных землетрясений // Геофиз. журн. 2008. **30**, № 5. С. 73—90.
- Пустовитенко Б. Г., Поречнова Е. И. Особенности сейсмических процессов в очаговой зоне землетрясения в Крыму 18 октября 1998 года // Сейсмологический бюллетень Украины за 1998 г. — Симферополь, 2000. — С. 64—73.
- Спиртус В. Б. Применение теории графов для оценки связанности землетрясений Крымско-Черноморского региона // Геофиз. журн. — 2013. — **34**, № 1. — С. 130—141.

- *Харари Ф.* Теория графов. Москва: УРСС, 2003. — 300 с.
- Шебалин П. Н. Цепочки землетрясений как индикатор возрастания радиуса корреляции сейсмичности. Гл. 2 // Алгоритмы прогноза землетрясений. — Москва: ГЕОС, 2006. (Вычислительная сейсмология; Вып. 37). — С. 37—90.
- Шевцов Б. М., Сагитова Р. Н. Статистический анализ сейсмических процессов на основе диффузионного подхода // Докл. РАН. — 2009. — **426**, № 2. — С. 254—256.
- Baiesi M., Paczuski M. Scale-free networks of earthquakes and aftershocks // Phys. Rev. E. — 2004. — 69. — P. 066106-1—066106-8.
- Bak P. How nature works: the science of self-organized criticality. — New-York: Springer-Verlag. Inc., 1996. — 205 p.
- Davidsen J., Grassberger P., Paczuski M. Networks of recurrent events, a theory of records, and an application to finding causal signatures in seismicity // Phys. Rev. E. — 2008. — 77. — P. 066104-1— 066104-17.
- Vasudevan K., Eaton D. W., Davidsen J. Interplate seismicity in Canada: a graph theoretic approach to data analysis and interpretation // Nonlin. Proc. Geophys. — 2010. — 17. — P. 513—527.
- Zaliapin I., Gabrielov A., Keilis-Borok V., Wong H. Clustering analysis of seismicity and aftershock identification // Phys. Rev. Let. — 2008. — 101. — P. 018501.