Herald of Advanced Information Technology 2019; Vol.2 No.4: 246-258
Design of Information Technologies and Systems

UDC 004.652

Sabine Miillenbach®, Ph.D., Professor of Computer Sciences Faculty,

E-mail: sabine.muellenbach@hs-augsburg.de, ORCID: https://orcid.org/0000-0002-0392-0334

Lore Kern-Bausch®, Ph.D., Professor of Computer Sciences Faculty,

E-mail: lore.kern-bausch@hs-augsburg.de, ORCID https://orcid.org/0000-0003-3401-1333

Matthias Kolonko', Diplom-Wirtschaftsinformatiker (FH), assistant of Faculty of Computer Science,
E-mail: matthias.kolonko@hs-augsburg.de, ORCID: https://orcid.org/0000-0002-8296-1758
!Augsburg University of Applied Sciences (AUAS), An der Hochschule 1, Augsburg, Germany, 86161
Tel. +49 (821) 5586-0

CONCEPTUAL MODELING LANGUAGE AGILA MOD

Abstract. Modeling of data structures has always been an important topic in the discussions of software engineering practice.
Recently, the idea of conceptual modeling has lost importance in these discussions. The fact that research in this area has not been
pushed further a lot for the last decade can be considered as an evidence. However, this concept has great potential. Especially the
idea of creating a paradigm agnostic model depicting facts of the real world — the so called “Universe of Discourse” — instead of
concrete data structures following a certain logical data model makes it so powerful and valuable. Hence, it deserves further re-
search to find best practices to utilize conceptual modeling effectively. The problems that discouraged software engineers from mak-
ing use of conceptual modeling is that the models are hard to understand. Creating them is time-consuming, other stakeholders do
not know what to do with them and creating the final data structures requires an additional process step. After all, it is mostly per-
ceived as too expensive in time and money without creating an appropriate value. In this article, the existing approaches are exam-
ined to find out their weaknesses and the reasons why they did not gain a broader acceptance. Therefore, the important requirements
that a conceptual modeling language has to meet for practical fielding are determined. Furthermore, the concepts of semantic mod-
eling languages are examined. Using semantics instead of mere structural discussions simplifies access and understanding for non-
IT stakeholders. It helps to check the validity of the created data structures against the demands of the real business. In the further
course, the concept of semantically irreducible sentence modeling will be discussed which can act as a bridge between semantic and
conceptual modeling. With the results of these discussions, the conceptual modeling language AGILA MOD is presented. This model-
ing language bases on the idea of depicting semantically irreducible sentences as graphical model. By this, it can act as a common
platform all project participants can agree upon building the bridge between IT implementation and business requirements. The
models can be created from semantically irreducible sentences and they can be read backwards into semantically irreducible sen-
tences making this language easy to understand for all project participants. AGILA MOD is therefore intended to be as easy as
possible to get started without a lot of learning efforts. Hence, it bases on the well-known Entity-Relationship language in a simpli-
fied variant. A few additional constructs are added that also refer to well-known modeling techniques reducing the efforts of learning
new elements nearly to zero. The derivation of AGILA MOD models to a logical model is done by following simple derivation rules
making it less time consuming and hence less cost-intensive. This language shall act as a basis for further research targeting towards
the new logical models of NoSQL as well as creating a comprehensive framework automating the derivation as much as possible.
Additionally, the possibility of making use of polyglot persistence with this approach and the creation of a convenient API shall be
considered in future research.

Keywords: Database; Conceptual Modeling; Domain mode; Semantic data modeling; Entity-Relationship; Paradigm Agnosti-

cism
Introduction structure being highly imperformant and computing-
) intensive.
In the past years, conceptual data modeling as a The idea of this article is not to invent another

general approach has not been evolving a lot further \yheel so users have to learn yet another modeling
any more. Nowadays, modeling basically has settled language, but to find a way to apply the idea of a
on the techniques of Entity-Re_Iationship approaches general conceptual data model as easy as possible
or UML. Current research basically focuses on spe- ang by this make it easily understandable and appli-
cialized scenarios and environments where a general 4pje. Taking into account the concepts of semantic
approach may be inappropriate or they already con- qata modeling as well, this approach shall be eligible

cern the logical level. Practically, it can be experi- g act as an interface between business experts and
enced that creating a comprehensive data model ina |7 experts.

project has become rather unpopular and seldom as The result should be a model both sides can un-
it is perceived as an additional task with no real ben- 4erstand and agree upon on the one hand. On the
efit or even as double work and hence too expensive gther hand, this model should still be formalized in a
and not worth the effort. However, it is often the \yay that it can be easily used as basis to derive its

complexity of the data that lets projects fail or at contents into the correct information structures for
least suffer from heavy delays due the created data the IT.

© Miillenbach, Sabine, Kern-Bausch, Lore,
Kolonko, Matthias, 2019

246 DOI:10.15276/hait.04.2019.1 ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

https://orcid.org/0000-0002-0392-0334
https://orcid.org/0000-0003-3401-1333
https://orcid.org/0000-0002-8296-1758

Herald of Advanced Information Technology

2019; Vol.2 No.4: 246-258

Design of Information Technologies and Systems

Formulation of the problem

The general approach of data modeling like it is
presented in [1] comprises three steps: a conceptual
model which is independent of the technical data
structure, a logical model which depicts the tech-
nical structures due to a selected structural paradigm
[1; e.g. relational or hierarchical structures] and a
physical model that applies the logical structures to a
certain vendor specific instance including all physi-
cal attributes to run the database efficiently. Logical
and physical model shall be derived directly from
the predecessor by a defined ruleset. The real brain-
work remains with the conceptual model.

This general approach is widely accepted and
can be found until today in relevant literature [1; 2;
3]. In the wider context of project execution, a con-
ceptual model is suitable to be used in the develop-
ment process as a common platform to acquire a
common sense on the development topic between
developers and business experts. Such a model could
e.g. then be part of the functional specification doc-
ument customer and contractor agree upon. In addi-
tion to data modeling, it is widely used to create a
single information space for effective enterprise
management [24].

However, to convince the audience to make use
of this approach, the entry should be as simple as
possible and it should be universally applicable to
minimize resistance or even rejection.

Therefore, it is necessary to define a modeling
syntax that meets three goals:

1) Understandable by both, IT and business ex-
perts, so the model can act as a common platform.

2) Easy syntax to avoid learning efforts.

3) Paradigm agnostic to not anticipate the deci-
sion of the target environment.

Analysis of existing scientific achievements
and publications

The desired solution needs to be accepted by IT
experts, i.e. according to the second goal, they need
to be able to master the modeling language quickly
or they are even already familiar with it. We can find
basically two modeling languages that have settled
nowadays: UML and Entity-Relationship.

The development of the Unified Modeling Lan-
guage (UML) started in the 1990s and has developed
until today to the version 2.5 which was published in
2013[4; ch.1.4]. This language is a comprehensive
framework for software modeling containing struc-
tural modeling elements that are of course capable of
solving the task to model data structures. It can also
be considered that UML is widely accepted among
IT experts and hence can be assumed familiar for
them. However, UML runs contrary to the first goal
of being understandable by non IT experts. The vari-

ety of syntax primitives can be confusing at times
and especially the structural elements are inspired by
technical terms of IT[1, e.g. classes, components or
packages] as its main goal is to model “systems” [4;
p.21] and not the real world. Hence, UML is hard to
understand for non IT experts even though one of its
premises is “understandability” [4; p.21]. Further-
more, UML has a strong notion of the object-
oriented paradigm and by this runs contrary to the
third goal as well. In the end, UML seems to be ra-
ther inadequate as a basis for creating the desired
approach.

Entity-Relationship (ER) on the other hand
came up already in 1976 by Peter Chen [5] and was
developed further during the following years by
several researchers (Fig. 1). Various constructs have
been added to the syntax calling the results “EER”,
[1; ch.4] or E3R [6]. Like UML, ER is widely ac-
cepted today for modeling data structures in the IT
business. It can be found in various literature that
concentrate on modeling of data structures. [1; 7; 8].
Hence, ER can be supposed to be familiar among the
IT business. Still, ER and most of its derivate target
on just representing data structures in a more or less
abstract fashion. The notion of a semantic model
was only brought up by Hull and King in 1987 with
“ER (+)” [17]. Furthermore, the syntax primitives of
ER as we know it today are indeed not so numerous
and complex like in UML. Still, it can take non-IT
experts some time to understand an ER model when
they are confronted with one. Though ER has been
brought up in combination with relational structures
and still is considered in conjunction with it by most
people nowadays, ER has become paradigm agnostic
as we can see in [1] where it is used as conceptual
language and several logical models can be derived
from it. Hence, ER in its current forms meets at least
goal two and three.

Of course other approaches have also been de-
veloped, but never gained as much acceptance as
UML or ER. EXPRESS [9] is one example. In the
first place, it was developed as a pure lexical repre-
sentation with a fixed format. It is constructed as a
full description framework including data types and
structural properties capable to describe highly com-
plex structures and dependencies between them. To
ease readability, a graphical representation, “EX-
PRESS-G”, was also created which contains only a
subset of the original possibilities to describe the
structures. But with respect to its powerful abilities it
is again very complex and hard to understand.
Hence, it does not support neither of the formulated
goals except being paradigm agnostic. Another ex-
ample is IDEF1X [10] which suffer from the same
peculiarities as EXPRESS and hence, are also not
applicable to meet the formulated goals.

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

247

Herald of Advanced Information Technology

2019; Vol.2 No.4: 246-258

Design of Information Technologies and Systems

Concerning the first goal, the desired solution
needs to have the ability to be understandable by all
participants, i.e. people who are not necessarily fa-
miliar with the technical terms of IT. The most
common comprehension among humans is of course
natural language. Hence, it seems rather logical to
seek for the solution in the area of semantic models.
The philosophy behind these models goes beyond
the mere representation of structures in a technical
sense. They follow the idea of representing the reali-
ty as it is utilizing natural language in one way or
another [11].

Currently, the Resource Description Framework
(RDF; [12]) and the Web Ontology Language

Semantic
Models

NORM
DeTroyer, Meersman; 1995
FCO-NIAM BRM
Bakema, et al.;1994 Kornatzky, Shoval; 1994

PM
van Bommel; 1991

RMv2
Codd; 1990
FORM
Halpin; 1989
ER(+)
Hull. King; 1987
B-ORM
DeTroyer, et al.; 1986
SBM
Rishe; 1985
NIAM
Verheijen, van Bekkum; 1982
-
RMIT I A
Codd, 1979 |=*~°
e Lo

T EnALM
Nijssen; 1977

BDM

Abrial; 1674

Kent; 1077

DIAM
Astrahan, Senko, etal.; 1972

Data Oriented
Models

Relational Model
Codd, et al.; 1970

Graphically
Oriented
Models

SOM IDEFIX
Ferstl, Sinz; 1980

SERM
Sinz; 1988

N Kern-Bausch, Wenzel; 1980
- A

(OWL,; [13]), both developed under the W3C organ-
ization, are the most known representatives concern-
ing semantic description languages and have re-
ceived already a very high recognition in the IT
world. However, these languages have a very tech-
nical background and are not meant to be read by
some non-IT audience. They are rather an approach
to encode semantic meaning from natural language
using facilities like XML and URIs so that machines
can utilize it, e.g. for artificial intelligence. It is not
their intention to act as a link to normal humans.
Hence, these technologies are way too technical for
meeting the first goal.

AGILA MOD ER
Mullenbach; 2003 Jeckle; 2003
AR

Informationsanalyse(+)
Kemn-Bausch, Jeckle; 1997
-

EXPRESS
IS0 10303-11; 1994

EER
Imasri, Navathe; 1994
h

PERM

Loos; 1992 \
US Air Force;
1980

HERM
Thalheim; 1989

Informationsanalyse(+)
Kemn-Bausch, et el.; 1986
T ECR
- Elmasri, et al.; 1985

EER
Chen; 1983

|~

" EER
Atzeni, Chen; 1983

Informationsanalyse

EER
| » Smith, Smith; 1977

Entity Relationship ~

Chen; 1876

.

Data Structure Diagrams
Bachmann; 1969

Fig. 1. Development lines of data modeling techniques Solid edges represent direct derivations,
dashed edges represent influences on the development (adapted from [6]; ch.3.1.3; p.74)

A similar example for semantic languages is
Gellish [14]. From its basic idea, it is very similar to
OWL, but focuses much more on the idea of being a

usable not only by IT experts. The basic idea is to
describe everything in most simple sentences of the
form “subject predicate object” (e.g. “Augsburg lies

248

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2019; Vol.2 No.4: 246-258

Design of Information Technologies and Systems

in Bavaria”). In Gellish it is defined as “left-hand
term”, “relation type” and “right-hand term”. Gellish
comes with a predefined and comprehensive set of
elements containing natural language terms under-
standable by every human. Still, it allows adding
additional elements as necessary at any time. The
built sentences are saved as so called “facts”.

All elements are represented in natural lan-
guage, but get assigned a unique 1D simultaneously.
By this, Gellish allows to create dictionaries in every
language to translate these facts without effort. At
the same time facts get assigned a unique ID them-
selves enabling them to become part of other facts as
well. This makes Gellish extremely powerful and
still comprehensible by non-IT experts.

The idea of building simple sentences that are
comprehensible by everyone is charming and can be
a step towards the desired approach. Still, Gellish
does not meet the needs completely as the vast set of
elements makes it again complicated which contra-
dicts the second goal.The former professor for data-
bases and data modeling of Augsburg University of
Applied Sciences (AUAS), Lore Kern-Bausch, de-
veloped with Bernd Wenzel in 1980 her own ap-
proach simply called “Informationsanalyse” (i.e.
“information analysis”) [18]. It was inspired by the
original Entity Relationship approach [5] and got
further developed in 1986 and 1997 [19; 20]. In fact,
this approach introduces another graphical modeling
syntax aside from the already well-known ER nota-
tion. This is definitely objectionable and contradicts
the first and the second goal of finding an appropri-
ate approach. But during its development, this ap-
proach received a very fascinating notion of seman-
tic modeling. The authors introduced the method of
semantically irreducible sentence building to their
syntax. The idea behind this is — similar to Gellish —
to build the simple most sentences in natural lan-
guage that can't be divided into several single sen-
tences without losing parts or all of the semantical
meaning behind the original sentence. Every of these
semantically irreducible sentences shall then be ex-
pressed graphically in the conceptual model with the
syntax primitives of the approach of
“Informationsanalyse”. By doing so, the graphical
model can be created from natural language and
natural language can be read from this model re-
versely. It enables IT experts to just talk to the busi-
ness experts and make them “read” the model to
double check if the model is correct by simply
checking the proposition of every sentence. This
concept is eligible to meet the first and the second
goal as it becomes possible to communicate between
IT and business experts and it is paradigm agnostic
as the sentences that are translated to graphical nota-

tion simply represent facts of the real world inde-
pendently of any target system environment.

The survey shows that many approaches al-
ready exist dealing with the problem of conceptual
modeling more or less. All of them have benefits to
some of the defined goals for the desired approach.
But still, all of them run short in at least one of these
goals.

Research methods

AGILA MOD as it is taught today at Augsburg
University of Applied Sciences is a resumption of
the work of Bernd G. Wenzel and Lore Kern-Bausch
titled “Informationsanalyse” [18; 19]. The develop-
ment has been continued during the teaching period
of Lore Kern-Bausch and subsequently Sabine
Muillenbach incorporating the experience of working
with student teachings and bachelor, master and PhD
thesis (Fig. 1).

Presentation of the main research material

The presented approach is called AGILA MOD.
Though the name resembles the concepts of “agile
development” (cf. [15]), it is more a coincidence in
the first place. AGILA stands for “Automatic Gen-
erators for Information representation, Logical DB
structures and Applications” MOD simply stands for
“modeling language”. AGILA is supposed to be a
whole framework enabling to create data structures
in a generic fashion based on a conceptual model. In
this article, the developed modeling language as the
absolute basis shall be presented.

The idea of AGILA MOD is to recombine cer-
tain elements from the before mentioned approaches
to meet the stipulated goals. The starting point builds
the concept of the “Informationsanalyse” approach
creating a conceptual model by translating natural
language as semantically irreducible sentences into
graphical notation. This concept aligns perfectly
with the first goal of understandability and also with
the third goal of paradigm agnostic. But instead of
creating a new syntax, the basis of AGILA MOD
syntax is ER which aligns to some extent the second
goal as the learning efforts are quite low due to the
fact that ER is widely known by IT experts. To fully
support this goal, the decision was made to reduce
the syntax primitives as much as possible. Hence,
AGILA MOD uses a subset of the syntax primitives
of ER. To support the third goal even more, the
wording is slightly changed to set the focus more on
the idea of modeling the real world or at least a part
of it.(the so called “Universe of Discourse” (UoD))
This philosophy shall be kept in mind by all partici-
pants of the modeling process when creating a data
model.

Starting from this minimal subset, a few addi-
tional elements have been added or adapted from the

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

249

Herald of Advanced Information Technology

2019; Vol.2 No.4: 246-258

Design of Information Technologies and Systems

before mentioned approaches, basically to illustrate
certain aspects more in detail than it could be with
the base syntax.

Basic syntax elements

The first syntax primitive of AGILA MOD is
the “Object Type”. It represents a group of real
world objects of the same type and is represented by
a rectangle with a solid border and the name of the
object type inside. In ER it is called an Entity. It was
renamed as the term “Object Type” is easier to un-
derstand for non-IT experts. There is a distinction
between lexical and non-lexical object types. Lexical
object types can be represented directly as data in an
IT system while non-lexical object types cannot.
This distinction depends on semantics in the first
place and does not reflect in the model or notation
immediately. Examples for non-lexical object types
are “Person”, “Car” or “Room” whereas lexical ob-
ject types might by “Name”, “Salary” or “Birthday”.
The concept of lexical and non-lexical object types
is adapted from the NIAM modeling language where
“LOT” and “NOLOT” are explicitly described [23;
ch.4.5].

The second syntax primitive is the “Association
Type”. It comprises all associations between two or
more object types under a certain premise. It is rep-
resented by a rhombus with a solid border and the
name of the association type inside denoting the
premise of the association. An association type must
not stand alone it needs at least two participating
object types which are connected to the association
type via a straight solid edge. Each of these edges
needs to be annotated with the role that the instances
of the connected object type play in every associa-
tion. The roles used must be unique for that associa-
tion type (i.e. there must not be two participants for
an association type using the same role name). Fur-
thermore, the edge must be annotated with a cardi-
nality stating how often every instance of the con-
nected object type has to be part of an association at
the minimum and maximum. For the boundaries
applies: {minmax | min € No A max € N A
0<min<+oo A 0<max<+oo A min<max}. The bound-
aries of the cardinality are notated “<min>:<max>".
A maximum boundary of +co will be notated as an
asterisk (“*”). This differs slightly from
Elmasri/Navathe (cf. [1, p.113 bottom]) where the
notation is “(<min>:<max>)" and +oo is represented
by the letter “N”. The brackets have been omitted
for simplicity reasons during modeling while using
an asterisk instead of “N” prevents confusions. In
the past, students experienced that when using paper
and pencil for their models, a badly written ‘n’ could
be misinterpreted as “1” which leads to completely
wrong assertions in the model (especially during

examinations). An asterisk does not cause such ef-
fects. Mentioning a role may be omitted if the role is
identical to the name of the object type. It is recom-
mended however to always mention a role for clear
expression and the deliberate decision for using the
object type in this role.

With these two syntax primitives sentences can
already be graphically represented like in

Fig. 2.
o:* 1
Person Atte ndee Course

Fig. 2: Association type

Person Course

This model can be read backwards: “A person
can participate in arbitrary courses (but does not
have to participate in any)”. It also states: “A course
needs to be attended by at least one person”. Hence,
it becomes clear that every association type contains
as many facts as participants because it needs to be
read from the perspective of every participant.

For association types, there exists only one re-
striction: If there is a participant with a maximum
boundary of “1”, the association type must only have
exactly two participants. If there were more than two
participants, the model would not be semantically
irreducible anymore.

Fig. 3 shows such a problematic association
type. Reading this backwards results in: “A person
has a mobile phone and an office phone”. But this
sentence can be split into two sentences without
losing any information in it: “A person has a mobile
phone. A person has an office phone”. Hence, the
original sentence is semantically reducible and can
be equivalently modeled as in [14]

Person

Office
Phone

Mobile
Phone

mabile phone office phone

Fig. 3. Erroneous association type. Resulting
sentences are not semantically irreducible

Perso 1* Mobile
N ohile mobile phonel Phone
RS
e.‘r’c
Person
) N
st _
% erso 1* Office
office office phone Phone

Fig. 4. Correct model

250

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2019; Vol.2 No.4: 246-258

Design of Information Technologies and Systems

The association type does not impose any fur-
ther restrictions. It is especially not of relevance
what participants are used. For example, it is al-
lowed to let the same object type participate more
than once in an association type.

Fig. 5 shows a simple example illustrating that
this is not a special case and can occur quite often:
The boss of an employee is an employee himself. An
employee can have a boss (“can” because the CEO
on top won’t have one.). And an employee can be
boss of arbitrary employees. This example also clari-
fies why the roles of the participants are vital. An
employee must not participate more than once with
the same role in this association type.

0:1
Employe® mp-
0:* Boss
Boss

Fig. 5. An object type participating twice in an
association type

Naming conventions

Moreover, a special kind of association type
was introduced. It has only two participants, both
having an upper boundary of “1” (Fig. 6). It implies
that for every instance of the first object type there is
at most one instance of the second object type as-
signed and vice versa. This describes the state of a
mutual identification between these object types. For
this, a simplified association type element was added
called a “naming convention”. It simply has no label
inside, roles of the participants are omitted and the
cardinality is only written when it should be “0:1”
(otherwise it is “1:1” by default). This abbreviated
form of an association type eases the recognition of
such identifying connections on first sight by any
reader of an AGILA MOD model. The experience
with students over the last two decades also showed
that it enables modelers to realize an identification
more quickly, because an association type having
“1:1” on both sides is salient in the model making
the modeler reconsider if this identification is really
on purpose. Hence, using this abbreviation conse-
quently improves the quality of the model.

N
N

Fig. 6: Naming convention

Employee

Course CourseName

Objectification

One of the most powerful, still simple con-
structs of AGILA MOD is the concept of objectifi-
cation. It enables the modeler to elevate any associa-
tion type to an object type. By this, a so called

“structured object type” is created that can be used
like any other object type to describe the universe of
discourse.

Fig. 7 shows the example of

Fig. 2 enhanced by an application date using
objectification. As in the original example already
suggested, the combination of a person and a course
can be considered an attendee. From a semantic
point of view, it is pretty obvious that an attendee
can be perceived as an object type as well. Hence,
objectifying this association type enables the model-
er to reuse that association type as an object type to
model further semantically irreducible sentences
where the attendee acts as an object type. In this
example the new sentence is: “An attendee has an
application date”. An association type should only
be objectified if needed as an object type. Otherwise,
the objectification is redundant.

o 1
Person 5 Attendee Course
erson Course

-
-

Pl

Application
Date

Fig. 7. Objectification

g
Appl-Date \gi?/ Attendes

Syntactically, it is important to note that the line
of the inner association type must not touch or cross
the line of the objectification rectangle. This is im-
portant to have a clear distinction where an edge
leads to in this combined structure and prevent mis-
takes when modeling. Like before, objectification is
not a newly invented concept, but adopted from
existing modeling languages. The origins can be
found in the IDEF1X language [10] as well as in
existing dialects of ER [23; ch.4.2]

Base and system types

With these rather simple syntax primitives a
modeler is already able to depict highly complex
situations of the real world. However, the link be-
tween this real world model and the technical level
is missing at this point. AGILA MOD therefore pro-
vides the modeling elements of base types and sys-
tem types. Both of these types can be perceived as a
special form of object type. A system type represents
a data type that IT systems use for representing data
like e.g. “String”, “Integer” or “Boolean”. Semanti-
cally, it represents all possible data values that a
target system can utilize for the particular definition.
The concept of a system type is not new. It can be
found in other modeling languages like e.g. Step

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

251

Herald of Advanced Information Technology

2019; Vol.2 No.4: 246-258

Design of Information Technologies and Systems

EXPRESS [9] and was adopted into AGILA MOD
for offering the connection point to the technical
representation.

Additionally, the concept of a base type was in-
troduced. A base type generalizes the concept of a
system type to any type of data which by itself has
no immediate reference to the real world. A plausi-
ble example is the base type “money”. Money is
more of a general unit that objects of the real world
are applied to. A salary is paid in money for exam-
ple, but money itself has no meaning whatsoever.
Base types can be perceived as an intermediate ele-
ment of the syntax between an object type and a
system type. It is by this best described as a fully
formalized lexical object type as it can be found in
the NIAM syntax [23; ch.4.5]. As such an interme-
diate element, it was adopted to AGILA MOD being
notated and used the same way as a system type.

In AGILA MOD base and system types are rep-
resented as rectangles showing their resemblance to
object types, but the border is drawn as a dashed line
for easier distinction when reading a model. Graph-
ically, there is no difference between base and sys-
tem types because they are both used in the same
way while modeling. The difference is only of tech-
nical nature: while system types have an immediate
relation to the data types for implementation, base
types need a onetime declaration of how they get
mapped to real system types. The advantage of base
types is that they regularly have a semantic notion.
Furthermore, using a base type several times in a
model ensures that the representation keeps unigque
as the onetime mapping applies for all appearances
in the model. Using a system type instead might lead
to different representations of the same type of data
(like e.g. “money” being represented as numeric
value and somewhere else as a float).

Base and system types can be participants of
association types like a regular object type. Howev-
er, when doing so the minimum boundary of this
participation basically needs to be “0”.

This becomes obvious when thinking the ex-
ample in Fig, 8 through: The system type “String”
that is used for the association type “Person Name”
can analogously to an object type be interpreted as
container of all possible strings as arbitrary combi-
nations of characters. Using a lower boundary of “1”
would imply that every possible string has to be used
at least in one association. This is obviously non-
sense and the lower boundary must be “0”.

L1 erso o+

Person Name Name

Person

Fig, 8: System type as part of an association type

Base and system types can also be used to ex-
press a representation of a lexical object type. A
semantically irreducible sentence for this could be:
“A salary is represented by money”. In AGILA
MOD, a representation like this is depicted as a di-
rected edge with a dashed line leading from a base
or system type to the object type that should be rep-
resented.

As a matter of fact, lexical object type always
need to have representation as shown in Fig. 9, while
non-lexical object types always need to have an
identification (like a naming convention or a struc-
turing via an objectified association type) which is
also the distinguishing feature between those two
kinds of object types.

Salary

<
o
=]
1]
<

Fig. 9. Base type representing a lexical object type

A “represented by” edge has always its origin in
a system or base type and targets to an object type or
a base type. The target of a representation must not
be represented more than once. With the latter, base
types can be represented them by system or other
base types to declare their mapping immediately in
the model. In some situations, this approach is more
useful than leaving the mapping to the derivation. If
a base type itself is not represented by a system type,
which is explicitly valid, the mapping of a base type
to a system type is left to the derivation process
where this decision needs to be made once and get
documented.

Ancillary elements

Additionally, AGILA MOD introduced two an-
cillary elements to facilitate the expression of certain
real-world conditions in the model that sometimes
occur.

An enumeration is a supporting construct that
shall explicate the restriction of a basic type to cer-
tain values from the beginning, i.e. on the conceptual
level. An enumeration acts like a basic type, but its
values are restricted to a fixed list of values. In terms
of graphical representation, an enumeration is de-
fined as rectangle with a double border on the right
side. The border lines are dashed as it is a special
form of a basic type. The name of the enumeration is
mentioned inside the rectangle. The possible values
for the enumeration can be written as textual meta
information at the edge of the model. Enumerations
should be used in cases where the allowed values for
this type are defined permanently from the begin-
ning as a fixed list of unique unordered values
(Fig.10).

252

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2019; Vol.2 No.4: 246-258

Design of Information Technologies and Systems

Fig. 10: Enumeration type

As stipulated for the definition of AGILA
MOD, the concept of enumeration types is also not
new but borrowed in syntax and meaning from the
EXPRESS language [22; p. 240]

Similarly borrowed from EXPRESS for AGILA
MOD is a set type. It is meant to ease the solution in
certain situations that might occur during the model-
ing phase. A set is an order less collection, free of
duplicates, comprising object instances of arbitrary
object types. This differs slightly from the set defini-
tion in EXPRESS where a set is an order less collec-
tion of homogeneous objects.

Graphically, a set is represented as a rectangle
with a double border on the left side. Due to the fact
that a set is not representing a certain type of object,
but is merely a container with arbitrary objects in it,
the border lines are dashed. The object types that
shall contribute their objects to the set have a di-
rected edge from object type to the set. The set is
meant to enable a modeler to associate the contain-
ing instances that have no common hierarchy with
other object types. This case is pretty seldom. But as
Fig. 11 shows, they can occur. In these cases, sets
present an easy way out of that problem. The only
alternative would be to create an abstract super type
from which all participants would have to inherit.
This is rather inconvenient and creates an artificially
constructed and complex super type structure with
no meaning at all that even makes nonsense of the
idea of inheritance. One could argument that the set
is nothing else then the definition of an artificial
super type. However, the meaning is a different one
which is an important point for a modeling tech-
nique based on semantical formulations. Further-
more, other than a super type, a set does not hand
down any properties to the contributing object types.

' Elements |

Building

Faculty

Fig. 11. Set type

Using set types in an association type is subject
to certain restrictions. A set type may only be part of
an association type with the cardinality of “0:*”. At

the same time, the counterpart in this association
type may only participate with an upper boundary of
“1” (i.e. “x:1” with x € {0, 1). Due to the before
mentioned rules concerning association type partici-
pants, this restriction implies that a set type can only
be part of an association type comprising two partic-
ipants.

The reason for this restriction lies in the fact
that a set type represents merely a lose collection of
arbitrary objects. It is only intended to act as a con-
tainer other object types can refer to. Any other use
of this construct results in heavy complications when
derivation to logical structures. Fig. 12 shows a viv-
id example for using a set type for an association

type.

Student

. Project
v Achievement:

/N

Research
Assistance

Project
Work

Fig. 12: Using a set type for an association type
underlies restrictions

Inheritance

With these syntax primitives at hand, compre-
hensive conceptual models based on semantically
irreducible sentences are possible that also include a
bridge to the technical implementation using system
types. However, when creating larger models there
will be another issue coming up pretty fast. Having a
model of a university for example, there will exist
students and lecturers. These two object types have
something in common in real life: they both repre-
sent humans and therefore share quite many facts —
both have: first name, surname, birth date, phone
numbers, addresses etc. Until now, a modeler would
be forced to write down these facts twice (Fig. 13).
It is pretty obvious that this is not very efficient and
moreover makes a model very soon a lot bigger and
confusing. These considerations clearly lead to the
concept of inheritance which has its origins in the
object-oriented development (cf. [16]).

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

253

Herald of Advanced Information Technology

2019; Vol.2 No.4: 246-258

Design of Information Technologies and Systems

Person

-

| Student || Lecturer |‘ Student

‘ Lecturer

Fig. 13. Utilizing AND in a type hierarchy

Similarly, it has already been introduced into
the EER language of Elmasri/Navathe ([1; ch.4]).
Syntactically, AGILA MOD follows this concept of
EER giving the possibility to express whether the
members of the subtypes of a supertype “must be
disjoint sets” of “overlapping” ([1; p. 144f.]). For the
notation, AGILA MOD uses syntax similar to what
is known from UML where a directed solid edge
leads from the subtype to the super type. Multiple
inheritances with one subtype inheriting from more
than one super type are valid. While the concept of
multiple inheritance tends to be a problem for pro-
gramming languages mostly due to behavioral issues
of an object, it is controllable in this case as the topic
of AGILA MOD is defining data structures, i.e. state
and not behavior. Unlike the EER notation, this no-
tation is already familiar for IT experts being used to
UML and also comprehensible pretty fast by busi-
ness experts.

To add the EER concept of disjoint and over-
lapping subtypes, AGILA MOD was amended by a
circle notation set in between the super type and its
subtypes which carries a boolean operator. “OR”
refers to an overlapping, “XOR” to a disjointed set.
This notation also adheres to the idea of semantical-
ly irreducible sentences: “A person is either a stu-
dent or a lecturer” resembles directly an “XOR”
inheritance. AGILA MOD also allows the use of the
“AND” operator in the circle which can be helpful
for more complicated hierarchies like in Fig. 13. It is
possible to omit the circle and connect the subtypes
directly with the super type. This notation is equiva-
lent with the circle notation using an “OR” operator
(Fig. 14; Fig. 16).

Person

Student

Lecturer

Fig. 14. Subtypes inheriting from a supertype

AGILA MOD also covers the topic which is
known both in object-orientation and EER concern-

ing the question if a super type must always be spe-
cialized to at least one subtype or not. In [1; ch.4.3,
p.145], EER uses the “completeness™ constraint for
this, where a super type can be totally or only par-
tially member of a subtype. In object-orientation an
abstract class can be defined which can't be instanti-
ated on its own. As this concept is again familiar to
IT experts and easier to understand by business ex-
perts, AGILA MOD adopted this concept to meet
the originally stated goals. Any object type can be
declared abstract. This also applies for structured
object types (i.e. objectified association types). An
abstract object type is denoted by drawing the rec-
tangle with a thick line (Fig. 15; Fig. 16).

Person

Student

Lecturer

Fig. 15. Using an abstract object type for
completeness

Model2 J

Person
Modell.Person

Model1 J

Person

Fig. 16. Object type “Person” of Modell is used in
Model2

Final notes

With these syntax primitives, AGILA MOD en-
ables a modeler to define highly complex conceptual
data models creating a truly detailed model of the
real world. Finally, two points need to be considered
when using AGILA MOD:

— All names of object types and association
types need to be unique. Otherwise, it becomes un-
clear if both object types shall represent the same
real-world element or different ones. This does not
apply for system and base types as these clearly
represent the same thing (A string will always be a
string and money will always be money).

— As it is common in software engineering dis-
ciplines, elements of a model may be re-used in oth-
er models. To be able to reference this element
uniquely, the model itself needs to receive a unique
identifier for referenciation reasons (A possibility
would be the use of an URI).

Approbation of the research material
AGILA MOD has been part of the curricula for
computer science and business informatics studies at

the faculty of computer science at AUAS for over 15
years. The lessons contain teaching the idea of se-

254

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Herald of Advanced Information Technology

2019; Vol.2 No.4: 246-258

Design of Information Technologies and Systems

mantically irreducible conceptual modeling, intro-
ducing the syntax of AGILA MOD and accomplish-
ing a self-imposed project task as part of the practi-
cal training. The experiences made here are consist-
ently positive. As intended by the mentioned goals,
the students are able to understand the philosophy
and the basics of this modeling technique pretty fast
even if they had no prior experience in this field of
activity. This has also been acknowledged regularly
in evaluations and feedback talks with students visit-
ing the lectures and tutors that support the students
during their practical training. The results in the
examinations additionally prove this observation:
The number of students failing is to a great extent
very low.

As a matter of fact, the courses have been put
very early in the curriculum nowadays, i.e. to the
second semester for business informatics and the
third semester for computer science studies. The
faculty council decided to do so after other profes-
sors acknowledged that this approach enables stu-
dents to think through data structures thoroughly and
systematically. They can build their teaching upon
that basis and facilitates their work.

Furthermore, AGILA MOD has been utilized
successfully in several theses of diploma, bachelor
and master students. Currently, there is another mas-
ter thesis in progress using AGILA MOD for creat-
ing a conceptual data model acting as basis to derive
relational structures from it. AGILA MOD has also
been utilized successfully for several projects. The
experiences here working on the models together
with business experts were as positive as the experi-
ences made with the students during lectures.

Hence, AGILA MOD proves to be eligible to
be a modeling language that meets the originally
stated goals.

Conclusions and prospects for further re-
search

The presented modeling language AGILA
MOD is a good approach to reach the goals formu-
lated at the beginning of this article. It has proven
itself in many years of teaching at the faculty of
computer science at AUAS and in productive use for
several projects and thesis'.

The idea of phrasing semantically irreducible
sentences all concerned parties can agree upon
which then can be depicted as a simple conceptual
model is amazingly simple and easy to grasp for
everyone.

By using only a minimum of syntax primitives,
the learning efforts that may be necessary to create
and read models is minimized. Especially, the con-
cepts described at the end of the main part are only
optional and not necessary to start right away.

Learning efforts are further minimized by using
syntax elements IT experts are familiar with as they
are not newly invented but adopted from widely
known and accepted modeling techniques (i.e. basi-
cally Entity-Relationship Modeling and UML). Only
small adaptations and amendments have been added
to enable a more precise distinction of semantic
meaning or help solving some seldom and complex
situations (e.g. base and system types as a special
form of object types or sets as a simplification).

By adding the notion of representing semanti-
cally irreducible sentences representing the world
itself as it is an AGILA MOD model can be under-
standable for all participants: IT experts (not only
database specialists) and business experts. There-
fore, AGILA MOD can act as a common platform
with IT experts creating the model with their experi-
ence and enabling business experts to read the syn-
tax backwards into semantically irreducible sentenc-
es and check these against their experience and per-
ceptions.

Furthermore, the idea of semantically irreduci-
ble sentence modeling is representing the world or a
part of it as “Universe of Discourse”. This leads to
the fact that this modelling language is no longer
bound to any implementation conditions. It is truly
paradigm agnostic and can be derived to any chosen
logical data model by applying the according deriva-
tion rules.

Further research on AGILA MOD will now be
done on the question how the language is already
applicable for the newer logical data structures com-
ing up with NoSQL. Hereby, amendments which
may be necessary shall be kept minimal to keep the
number of syntax primitives still as low as possible.
Moreover, there will be research concerning the
derivation to logical and physical models. Currently,
the ruleset for deriving to relational structures is
complete. Hence, rulesets for the other current logi-
cal models (like document or graph models) need to
be defined. In parallel to this, a development will be
started to automate the derivation process to the
maximum possible extent.

The goal of this future research is to get a com-
prehensive framework that receives a conceptual
model and produces a logical and physical model by
applying the particular ruleset more or less automat-
ically.

References

1. Elmasri, R. & Navathe, S. (2016). “Funda-
mentals of Database Systems”, Harlow: Pearson
Education, 1172 p.

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

255

Herald of Advanced Information Technology

2019; Vol.2 No.4: 246-258

Design of Information Technologies and Systems

2. Kern-Bausch, L & Jeckle, M. (2001). ,,Da-
tenbanken®, ch.14 in Schneider U. et al. (eds.).
“Taschenbuch der Informatik™, Miinchen:
Fachbuchverlag Leipzig, Germany, 2001, pp.80-88.

3.(2015). KudraB T. et al. (eds.). ,,Taschenbuch
Daten-banken, Miinchen: Fachbuchverlag Leipzig,
Germany, 577 p.

4. Kecher, C. & Salvanos, A. (2015). ,,UML 2.5
- Das umfassende Handbuch*, Bonn: Rheinwerk
Verlag.

5. Chen, P. (1976). “The Entity-Relationship
Model — Toward a Unied View of Data”, ACM
Transactions on Database Systems, 1976, 1.1, pp. 9-
36. DOI1>10.1145/320434.320440.

6. Jeckle, M. (2004). ,,Ableitung Objektorien-
tierter Strukturen aus Konzeptuellen Schemata“,
PhD. thesis. Augsburg University of Applied Scienc-
es, Germany, Ulm University, Germany, (May
2004), 375 p.

7. Kastens, U. & Kleine Biining, H. (2018).
,Modellierung - Grundlagen und Formale Metho-
den‘, Minchen: Carl Hanser Verlag,

8. (1992). Batini, C. et al. “Conceptual Data-
base Design — An Entity-Relationship Approach”,
Redwood City: The Benjamin/Cummings Publishing
Company, 492 p. DOI.org/10.1016/S0065-
2458(08)60593-8.

9. ISO/IEC 10303-11: 2004: “Industrial Auto-
mation Systems and Integration — Product Data Rep-
resentation and Exchange”, Part 11: Description
Methods: The EXPRESS Language Reference Man-
ual, International Organization for Standardization,
Geneva, Switzerland and Internet source
https://www.sis.se/api/document/preview/905433/.

10. ISO/IEC 31320-2:2012: “Information Tech-
nology — Modeling Languages”, Part 2: “Syntax and
Semantics for IDEF1X97 (IDEFOBJECT)”, Interna-
tional Organization for Standardization, Geneva:
Switzerland and Internet source
https://www.iso.org/obp/ui/#iso:std:iso-iec-
ieee:31320:-2:ed-1:v1:en.

11. Klas, W. & Schrefl, M. (1995).”Semantic
data Modeling ”, Berlin: Publ. Springer Verlag.

12. Becket, D. (2004). “RDF/XML Syntax
Specification (Revised”). World Wide Web Consor-
tium and Internet source
https://www.w3.0rg/TR/2003/WD-rdf-syntax-
grammar-20030905/.

13. Dean, M., & Schreiber, G. (2004). “OWL
Web Ontology Language”, World Wide Web Con-
sortium, 2004. Antoniou G., van Harmelen F.
(2004). “Web Ontology Language: OWL”. In: Staab
S., Studer R. (eds) Handbook on Ontologies. Inter-

national Handbooks on Information Systems. Publ.
Springer, Berlin: Heidelberg. DOI 10.1007/978-3-
540-24750-0_4.

14. Van Renssen, A. (2003). “Gellish: an Infor-

mation Representation Language, Knowledge base
and Ontology”, ESSDERC 2003, Proceedings of the
33rd European Solid-State Device Research,
ESSDERC '03 (IEEE Cat. No. 03EX704), IEEE,
2003 and Internet source
https://www.academia.edu/7201584/Gellish_an_info
rmation_representation_language_knowledge base
and_ontology?auto=download.

15. Stellman, A. (2015). “Learning Agile — Bei-
jing: O'Reilly”, Internet source
https://www.oreilly.com/library/view/learning-
agile/9781449363819/#toc-start.

16. Meyer, B. (1997). “Object Oriented Soft-
ware Construction”, Upper Saddle River, NJ: Pren-
tice Hall, 1225 p.

17. Hull, R. & King, R. (1987). “Semantic Data
Modeling: Survey, Application and Research Is-
sues”, ACM Computing Surveys, 19.3, pp. 201-260,
ACM Computing Surveys, Vol. 19, No. 3, (Septem-
ber 1987), doi>10.1145/45072.45073.

18. Kern-Bausch, L. & Wenzel, B. (1980). ,,In-
formationsanalyse. Technical Report®, Miinchen:
Germany, Leibnitz Rechenzentrum.

19. Kern-Bausch, L. & Wenzel, B. (1986). “Da-
tabase Design for Relational Systems: Why, Who,
How?”. European ORACLE Users Group Newslet-
ter, No. 10, doi.org/10.1007/978-3-642-48673-9_3.

20. Kern-Bausch, L. & Jeckle, M. (1998).
“From a Semantically Irreducible Formulated Con-
ceptual Schema to an UML Model”, Kern-Bausch,
L., Jeckle, M. (1998).” “From a Semantically Irre-
ducible Formulated Conceptual Schema to an UML
Model”. In: Schader, M., Korthaus, A. (eds) The
Unified Modeling Language. Physica-Verlag, pp.
32-44, Part of the book.

21.(1997) .Schader, M. & Korthaus, A. (eds.)

,» The Unified Modeling Language — Technical As-
pects and Applications”, Wirzburg, Wien: Physica-
Verlag, 281 p.

22. Schenck, D. & Wilson, P. (1994). “Infor-
mation Modeling the EXPRESS Way”, New York:
Oxford: Oxford University press, 388 p.

23. Loos, P. (1992). ,,Datenstrukturierung in der
Fertigung®, Minchen, Wien: R., Oldenburg Verlag,
219 p.

256

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

https://doi.org/10.1145/320434.320440
https://www.sis.se/api/document/preview/905433/
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:31320:-2:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:31320:-2:ed-1:v1:en
https://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20030905/
https://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20030905/
https://www.academia.edu/7201584/Gellish_an_information_representation_language_knowledge_base_and_ontology?auto=download
https://www.academia.edu/7201584/Gellish_an_information_representation_language_knowledge_base_and_ontology?auto=download
https://www.academia.edu/7201584/Gellish_an_information_representation_language_knowledge_base_and_ontology?auto=download
https://www.oreilly.com/library/view/learning-agile/9781449363819/#toc-start
https://www.oreilly.com/library/view/learning-agile/9781449363819/#toc-start

Herald of Advanced Information Technology 2019; Vol.2 No.4: 246-258
Design of Information Technologies and Systems

24. Glava, M. G., Malakhov, E. V., Arsiri, O. Technology, Vol. 2 No. 1, pp.29-44.

0. & Trofymov, B. F. (2019). “Information Tech- DOI://10.15276/aait.02.2019.3.
nology for Combining the Relational Heterogeneous
Databases using Integration Models of Different Received 05.09.2019

Subject Domains?”, Applied Aspects of Information Received after revision 15.10.2019
Accepted 30.11.2019

VIIK 004.652

"Mionen6ax, Caéune, Ph.D., mpodecop (akyasTeTy KOMITFOTEPHUX HayK,

E-mail: sabine.muellenbach@hs-augsburg.de, ORCID: https://orcid.org/0000-0002-0392-0334
'Kepu-Baym, Jlope, Ph.D., npodecop hakyabTeTy KOMII'IOTEpPHHX HAYK,

E-mail: lore.kern-bausch@hs-augsburg.de, ORCID https://orcid.org/0000-0003-3401-1333

'Kostonko, Marruac, Jurom-Wirtschaftsinformatiker (FH), acucTenT (akysibTeTy KOMII'IOTEPHHX Hayk,
E-mail: matthias.kolonko@hs-augsburg.de, ORCID: https://orcid.org/0000-0002-8296-1758

'VuiBepcurer npuknaguux Hayk, An der Hochschule, 1, m. Ayrc6ypr, Himeuunna, 86161

Tel. +49 (821)55860

MOBA KOHIENTYJIbHOT'O MOJAEJIIOBAHHS AGILA MOD

Anomauia. Y cmammi po3enadaromvca icHyoui nioxoou 00 po3podxu mooenell npedmemnux ooiacmeti 3 Memoi 3'9Cy8anHs
npudunH ix c1abKo20 NPAKMUYHO20 3acmocy8ans. Busnaueno easicausi umoeu, AKuM NOBUHHA GiON0BIOAMU MOBA KOHYENMYaIbHO20
MOOeniogants 01 il Oiibul WUPOKO20 NPAKMUYHO20 3acmocyéants. Kpim moeo, poszensdaiomvcs kKoHyenyii Mo8 ceMaHmuyHo2o
MoOeniosanHs. Bukopucmanus cemanmuxu 3amicmes npocmux cmpyKmypHux KOHCMpPYKYil CRpowye 00Cmyn i po3yMinHs 3ayikasie-
Hux cmopin, sxi ne nog'sizani 3 IT. Ile donomazae nepegipumu 6aniOHiCnb CMEOPEHUX CIPYKMYP OAHUX HA 6IONOGIOHICTNb BUMO2AM
peanvrozo bOiznecy. Haoani 6yde 062060prosamucs KOHYenyis CeMaHmMU4HO HenPUBOOUMO20 MOOETIO8ANHS PeUeHb, AKA MOdce ClLy-
JUCUMU MOCIOM MINC CeMAHMUYHUM | KOHYENnmyanbHuM MoO0enoeantam.3a pesynemamamu yux 062080pensb npeocmasiena Moea
KOHyenmyanvHozo mooentoeants AGILA MOD. L]a moga mooentoeanns 3aCHO8AHA HA [0ei 300paiCeH s, CeMAHMUYHO HENPUEOOUMUX
peuens 6 axocmi epagiunoi moodeni. Taxum yurom, AGILA MOD moorce sucmynamu 6 axocmi 3azanvHoi naamgopmu, 3 AKoi 8ci
VUACHUKU NPOEKNTY MOHCYMb OOMOBUMIUCS PO CMBOPenH s Mocma midc enposadcentsm IT ma 6iznec-eumozamu. Mooeni modcymo
Oymu cmeopeni 3 CeMaHmMuyHO HeNPUBOOUMUX PEYeHb, | iX MOJCHA YUMAMU HA3A0 6 CEMAHMUUHO HENPUBOOUMI peUeHHs, Wo pooumy
Y10 MO8y J1eck0io OJisk pO3YMIHHA ycima yuacHuxamu npoekmy. Mosa AGILA MOD 3acnosana na eioomiit mogi Entity-Relationship 3
86C0CHHAM 0esKUX cnpoujeHs. /00ano 0eKintbka 000amKosux KOHCMPYKYIl, KL MAKoic iOHOCAMbCS 00 000pe GI00MUX MemOo0i6
MOOEN08AHHS, WO 38600UMb 3VCULIA 00 BUBYEHHA HOBUX elemenmis matiice 00 Hyas. [epusayia modeneii AGILA MOD 6 noziuny
MOOeNb BUKOHYEMBCA 3a NPOCMUMU NPABULAMU 0epudayii, wo pobums ii MeHw mpyooMiCmKuUM i, omoice, MeHw eumpamuum. s
M08a Ma€ OYMuU OCHOBOI 0151 NOOATLUUX OOCTIONCEHD, CHPAMOBAHUX HA HOGI N02iuHi Modeni NoSQL, a makoa Ha cmeopenus y3a-
2aNbHEHOI CMPYKmMypu, AKa 003801UMb MAKCUMATILHO agmomamusysamu npoyedypy oepusayii . Kpinm mozo, moscaugicms euxopuc-
manns KoHyenyii 6acamosapianmnoi nepcucmenmuocmi ¢ noeonanni 3 AGILA MOD i cmeopenns 3pyunoco APl noeunni 6ymu
PO32TAHYMI 8 MAUOYMHIX O0CTIONCEHHAX

Knwuosi cnosa: basu danux, konyenmyaibHe MoOENO8AHH NPEOMEMHUX 00aACmell, ceMaHmuite MoOeno8anHs OaHUX, MO-
delb cymHicmuv-36'a30K

YK 004.652

"Mionnen6ax, Cabune Ph.D., mpodeccop pakybTeTa KOMIBIOTEPHHX HAYK,

E-mail: sabine.muellenbach@hs-augsburg.de, ORCID: https://orcid.org/0000-0002-0392-0334
'Kepn-Baym, Jlope, Ph.D., mpodeccop daxynprera KOMIIBIOTEPHUX HayK,

E-mail: lore.kern-bausch@hs-augsburg.de, ORCID https://orcid.org/0000-0003-3401-1333

"Kostonko, Marruac, Turom-Wirtschaftsinformatiker (FH), accicrtenT (akymnpreTa KOMIBIOTEPHHX Hayk,
E-mail: matthias.kolonko@hs-augsburg.de, ORCID: https://orcid.org/0000-0002-8296-1758

'Vuusepcuter npuxiaguux vHayk An der Hochschule 1, r. Ayre6ypr, ['epmanus, 86161 Tel. +49 (821)55860

ISSN 2663-0176 (Print) 257
ISSN 2663-7731 (Online)

https://orcid.org/0000-0002-0392-0334
https://orcid.org/0000-0003-3401-1333
https://orcid.org/0000-0002-8296-1758
https://orcid.org/0000-0002-0392-0334
https://orcid.org/0000-0003-3401-1333
https://orcid.org/0000-0002-8296-1758

Herald of Advanced Information Technology 2019; Vol.2 No.4: 246-258
Design of Information Technologies and Systems

A3bIK KOHUENTYJbHOI'O MOAEJIUPOBAHUSA AGILA MOD

Annomauusa. B 3moii cmamve paccmampusaomcs cywecmsyiouue nooxoosl K paspabomke mooenel npeomemusix obracmei
C Yenbio BbIACHEHUS NPUYUH UX c1ab020 npakmuyecko2o npumenenus. Onpeoenensl 6axicHble MpedoBaKUs, KOMOPLIM O0NNCEH COOM-
6€MCME06ams A3bIK KOHYENMYaibHO20 MOOEIUPOBAHUs 0Nl NPAKMu4ecko2o npumenenus. Kpome moeo, paccmampusaiomes koH-
Yenyuu A3bIK08 CeMAHMUIEcKo20 MoOenuposanus. Mcnonb3osanue ceManmuku 6Mecno npoCMmblX CMPYKIMYPHBIX 00Cylcoenutl yn-
powaem 00CMyn U NOHUMAHUE 3AUHMEPECOBAHHBIX CMOPOH, He ceA3anubix ¢ UT. Imo nomozaem nposepums 6anuoHOCHb CO30aH-
HbIX CMPYKMYp OQHHLIX HA COOMEemcmeue mpebosanusm peanvHo2o busHeca. B danvheiiuiem 6ydem 06cysicoamvpcs KOHYenyus
CEeMAHMUYECKU HenpugoOUMO20 MOOETUPOBAHUA NPEOTONHCEH UL, KOMOPAS MOICEM CLYHCUMb MOCHIOM MENCOY CeMAHMUYECKUM U
KOHYenmyanbHolm mooeauposanuem. Ilo pesyromamam smux oOCyHcOeHuti npedcmagier KOHYenmyanbHoill A36lK MOOEIUPOSAHUA
AGILA MOD. mom a3v1k MOOeNUpOo8aHUs OCHOBAH HA UOee U300PANHCEHUA CeMAHMUYECKU HENPUBOOUMBIX NPEOIOHCEHUTI 8 KAYeCH-
6e epaguueckou moodenu. Taxum obpazom, o mModxcem GbICIYNamyv 6 Kavecmee odujell naam@opmsi, ¢ KOMOPOU 8ce YUaACMHUKU
NPOEKma Mo2ym 002080PUMbCsL 0 CO30aHUuU Mocma medxncoy eneopenuem UT u 6usnec-mpebosanusimu. Moodenu mocym dvims co30a-
Hbl U3 CeMAHMUYECKU HENPUBOOUMBIX NPEOLONCEHUN, U UX MOICHO YUMAMb 0OPAMHO 8 CeMAHMUYECKU HeNnpUEoOUMble NPEONodlCe-
HUsl, umo Oeiaem 3Mom A3bIK JeeKUM Ol NOHUMAaHUs. ecemu yuacmuuxamu npoexma. Hzvik AGILA MOD ocrosan na uzeecmuom
asvike Entity-Relationship ¢ esedenuem nekomopwix ynpowenuil. /[06a6ieno HeCKOIbKO OONONHUMENbHIX KOHCIMPYKYUL, KOMopbie
MAK#ce OMHOCAMCS K XOPOULO U3BECHHBIM MEMOOAM MOOCTUPOBAHUS, CEBOOAUUM YCUTUSL K USYHEHUIO HOBBIX dNEMEHIM08 Noumu 00
Hyas. Bvieoo mooeneti AGILA MOD 6 noeuueckyro Mooens 8bINOIHAEMCSA NO NPOCMbIM NPAGUILAM 0epUsayuul, Ymo oenaem e2o0 MeHee
MpyOoemMKUM U, C1e008AMeNbHO, MeHee 3ampamubim. Dmom A3bIK OO0MHCEH CAYHCUMb OCHOB0U OJid OANbHeUUUX UCCIe008aHUl,
HANPAGIEHHbIX HA Hosble nocuyecKue modenu NoSQOL, a makowce Ha co30aHue 6ceobvemouell Cmpykmypbl, MAKCUMAIbHO A8MoMd-
musupyloweil 6b1600. Kpome mozo, 603M0x4cHOCMb UCHONIL306AHUA KOHYENYUU MHO208APUAHMHON NEPCUCIENIMHOCIU 68 COYemMaHUU
¢ AGILA MOD u co30anue yoobHo2o API 0onchbl 6bims paccmomperst 6 6yOyuux uccie008aHusx

Knrouesnle cnosa: 6aszvl Oanubix, KOHYENMyaibHOe MOOEIUPOBAHUE NPEOMEMHBIX 001ACmell; CEMAHMUYECKOe MOOETUPOBAHUE
OaHHBIX, MOOEb CYUHOCTNb-CBA3b

Millenbach, Sabine Ph.D., Professor
Research field: Information systems design, database development, conceptual
modeling of subject areas, semantic data modeling

Kern-Bausch, Lore, Ph.D., Professor
Research field: Database development, conceptual, logical and physical data models

Kolonko, Matthias, assistant
Research field: Database development for applied information systems, conceptual
modeling of subject areas, semantic data modeling

258 ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

