
Herald of Advanced Information Technology 2019; Vol.2 No.4: 246–258

 Design of Information Technologies and Systems

246 DOI:10.15276/hait.04.2019.1 ISSN 2663-0176 (Print)

 ISSN 2663-7731 (Online)

UDC 004. 652

Sabine Müllenbach
1
, Ph.D., Professor of Computer Sciences Faculty,

E-mail: sabine.muellenbach@hs-augsburg.de, ORCID: https://orcid.org/0000-0002-0392-0334

Lore Kern-Bausch
1
, Ph.D., Professor of Computer Sciences Faculty,

E-mail: lore.kern-bausch@hs-augsburg.de, ORCID https://orcid.org/0000-0003-3401-1333

Matthias Kolonko
1
, Diplom-Wirtschaftsinformatiker (FH), assistant of Faculty of Computer Science,

E-mail: matthias.kolonko@hs-augsburg.de, ORCID: https://orcid.org/0000-0002-8296-1758
1
Augsburg University of Applied Sciences (AUAS), An der Hochschule 1, Augsburg, Germany, 86161

Tel. +49 (821) 5586-0

CONCEPTUAL MODELING LANGUAGE AGILA MOD

Abstract. Modeling of data structures has always been an important topic in the discussions of software engineering practice.

Recently, the idea of conceptual modeling has lost importance in these discussions. The fact that research in this area has not been

pushed further a lot for the last decade can be considered as an evidence. However, this concept has great potential. Especially the

idea of creating a paradigm agnostic model depicting facts of the real world – the so called “Universe of Discourse” – instead of

concrete data structures following a certain logical data model makes it so powerful and valuable. Hence, it deserves further re-

search to find best practices to utilize conceptual modeling effectively. The problems that discouraged software engineers from mak-

ing use of conceptual modeling is that the models are hard to understand. Creating them is time-consuming, other stakeholders do

not know what to do with them and creating the final data structures requires an additional process step. After all, it is mostly per-

ceived as too expensive in time and money without creating an appropriate value. In this article, the existing approaches are exam-

ined to find out their weaknesses and the reasons why they did not gain a broader acceptance. Therefore, the important requirements

that a conceptual modeling language has to meet for practical fielding are determined. Furthermore, the concepts of semantic mod-

eling languages are examined. Using semantics instead of mere structural discussions simplifies access and understanding for non-

IT stakeholders. It helps to check the validity of the created data structures against the demands of the real business. In the further

course, the concept of semantically irreducible sentence modeling will be discussed which can act as a bridge between semantic and

conceptual modeling. With the results of these discussions, the conceptual modeling language AGILA MOD is presented. This model-

ing language bases on the idea of depicting semantically irreducible sentences as graphical model. By this, it can act as a common

platform all project participants can agree upon building the bridge between IT implementation and business requirements. The

models can be created from semantically irreducible sentences and they can be read backwards into semantically irreducible sen-

tences making this language easy to understand for all project participants. AGILA MOD is therefore intended to be as easy as

possible to get started without a lot of learning efforts. Hence, it bases on the well-known Entity-Relationship language in a simpli-

fied variant. A few additional constructs are added that also refer to well-known modeling techniques reducing the efforts of learning

new elements nearly to zero. The derivation of AGILA MOD models to a logical model is done by following simple derivation rules

making it less time consuming and hence less cost-intensive. This language shall act as a basis for further research targeting towards

the new logical models of NoSQL as well as creating a comprehensive framework automating the derivation as much as possible.

Additionally, the possibility of making use of polyglot persistence with this approach and the creation of a convenient API shall be

considered in future research.

Keywords: Database; Conceptual Modeling; Domain mode; Semantic data modeling; Entity-Relationship; Paradigm Agnosti-

cism

Introduction

In the past years, conceptual data modeling as a

general approach has not been evolving a lot further

any more. Nowadays, modeling basically has settled

on the techniques of Entity-Relationship approaches

or UML. Current research basically focuses on spe-

cialized scenarios and environments where a general

approach may be inappropriate or they already con-

cern the logical level. Practically, it can be experi-

enced that creating a comprehensive data model in a

project has become rather unpopular and seldom as

it is perceived as an additional task with no real ben-

efit or even as double work and hence too expensive

and not worth the effort. However, it is often the

complexity of the data that lets projects fail or at

least suffer from heavy delays due the created data

© Müllenbach, Sabine, Kern-Bausch, Lore,

 Kolonko, Matthias, 2019

structure being highly imperformant and computing-

intensive.

The idea of this article is not to invent another

wheel so users have to learn yet another modeling

language, but to find a way to apply the idea of a

general conceptual data model as easy as possible

and by this make it easily understandable and appli-

cable. Taking into account the concepts of semantic

data modeling as well, this approach shall be eligible

to act as an interface between business experts and

IT experts.

The result should be a model both sides can un-

derstand and agree upon on the one hand. On the

other hand, this model should still be formalized in a

way that it can be easily used as basis to derive its

contents into the correct information structures for

the IT.

https://orcid.org/0000-0002-0392-0334
https://orcid.org/0000-0003-3401-1333
https://orcid.org/0000-0002-8296-1758

Herald of Advanced Information Technology 2019; Vol.2 No.4: 246–258

 Design of Information Technologies and Systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

247

Formulation of the problem

The general approach of data modeling like it is

presented in [1] comprises three steps: a conceptual

model which is independent of the technical data

structure, a logical model which depicts the tech-

nical structures due to a selected structural paradigm

[1; e.g. relational or hierarchical structures] and a

physical model that applies the logical structures to a

certain vendor specific instance including all physi-

cal attributes to run the database efficiently. Logical

and physical model shall be derived directly from

the predecessor by a defined ruleset. The real brain-

work remains with the conceptual model.

This general approach is widely accepted and

can be found until today in relevant literature [1; 2;

3]. In the wider context of project execution, a con-

ceptual model is suitable to be used in the develop-

ment process as a common platform to acquire a

common sense on the development topic between

developers and business experts. Such a model could

e.g. then be part of the functional specification doc-

ument customer and contractor agree upon. In addi-

tion to data modeling, it is widely used to create a

single information space for effective enterprise

management [24].

However, to convince the audience to make use

of this approach, the entry should be as simple as

possible and it should be universally applicable to

minimize resistance or even rejection.

Therefore, it is necessary to define a modeling

syntax that meets three goals:

1) Understandable by both, IT and business ex-

perts, so the model can act as a common platform.

2) Easy syntax to avoid learning efforts.

3) Paradigm agnostic to not anticipate the deci-

sion of the target environment.

Analysis of existing scientific achievements

and publications

The desired solution needs to be accepted by IT

experts, i.e. according to the second goal, they need

to be able to master the modeling language quickly

or they are even already familiar with it. We can find

basically two modeling languages that have settled

nowadays: UML and Entity-Relationship.

The development of the Unified Modeling Lan-

guage (UML) started in the 1990s and has developed

until today to the version 2.5 which was published in

2013[4; ch.1.4]. This language is a comprehensive

framework for software modeling containing struc-

tural modeling elements that are of course capable of

solving the task to model data structures. It can also

be considered that UML is widely accepted among

IT experts and hence can be assumed familiar for

them. However, UML runs contrary to the first goal

of being understandable by non IT experts. The vari-

ety of syntax primitives can be confusing at times

and especially the structural elements are inspired by

technical terms of IT[1, e.g. classes, components or

packages] as its main goal is to model “systems” [4;

p.21] and not the real world. Hence, UML is hard to

understand for non IT experts even though one of its

premises is “understandability” [4; p.21]. Further-

more, UML has a strong notion of the object-

oriented paradigm and by this runs contrary to the

third goal as well. In the end, UML seems to be ra-

ther inadequate as a basis for creating the desired

approach.

Entity-Relationship (ER) on the other hand

came up already in 1976 by Peter Chen [5] and was

developed further during the following years by

several researchers (Fig. 1). Various constructs have

been added to the syntax calling the results “EER”,

[1; ch.4] or E³R [6]. Like UML, ER is widely ac-

cepted today for modeling data structures in the IT

business. It can be found in various literature that

concentrate on modeling of data structures. [1; 7; 8].

Hence, ER can be supposed to be familiar among the

IT business. Still, ER and most of its derivate target

on just representing data structures in a more or less

abstract fashion. The notion of a semantic model

was only brought up by Hull and King in 1987 with

“ER (+)” [17]. Furthermore, the syntax primitives of

ER as we know it today are indeed not so numerous

and complex like in UML. Still, it can take non-IT

experts some time to understand an ER model when

they are confronted with one. Though ER has been

brought up in combination with relational structures

and still is considered in conjunction with it by most

people nowadays, ER has become paradigm agnostic

as we can see in [1] where it is used as conceptual

language and several logical models can be derived

from it. Hence, ER in its current forms meets at least

goal two and three.

Of course other approaches have also been de-

veloped, but never gained as much acceptance as

UML or ER. EXPRESS [9] is one example. In the

first place, it was developed as a pure lexical repre-

sentation with a fixed format. It is constructed as a

full description framework including data types and

structural properties capable to describe highly com-

plex structures and dependencies between them. To

ease readability, a graphical representation, “EX-

PRESS-G”, was also created which contains only a

subset of the original possibilities to describe the

structures. But with respect to its powerful abilities it

is again very complex and hard to understand.

Hence, it does not support neither of the formulated

goals except being paradigm agnostic. Another ex-

ample is IDEF1X [10] which suffer from the same

peculiarities as EXPRESS and hence, are also not

applicable to meet the formulated goals.

Herald of Advanced Information Technology 2019; Vol.2 No.4: 246–258

 Design of Information Technologies and Systems

248

 ISSN 2663-0176 (Print)

 ISSN 2663-7731 (Online)

Concerning the first goal, the desired solution

needs to have the ability to be understandable by all

participants, i.e. people who are not necessarily fa-

miliar with the technical terms of IT. The most

common comprehension among humans is of course

natural language. Hence, it seems rather logical to

seek for the solution in the area of semantic models.

The philosophy behind these models goes beyond

the mere representation of structures in a technical

sense. They follow the idea of representing the reali-

ty as it is utilizing natural language in one way or

another [11].

Currently, the Resource Description Framework

(RDF; [12]) and the Web Ontology Language

(OWL; [13]), both developed under the W3C organ-

ization, are the most known representatives concern-

ing semantic description languages and have re-

ceived already a very high recognition in the IT

world. However, these languages have a very tech-

nical background and are not meant to be read by

some non-IT audience. They are rather an approach

to encode semantic meaning from natural language

using facilities like XML and URIs so that machines

can utilize it, e.g. for artificial intelligence. It is not

their intention to act as a link to normal humans.

Hence, these technologies are way too technical for

meeting the first goal.

Fig. 1. Development lines of data modeling techniques Solid edges represent direct derivations,

 dashed edges represent influences on the development (adapted from [6]; ch.3.1.3; p.74)

A similar example for semantic languages is

Gellish [14]. From its basic idea, it is very similar to

OWL, but focuses much more on the idea of being a

usable not only by IT experts. The basic idea is to

describe everything in most simple sentences of the

form “subject predicate object” (e.g. “Augsburg lies

Herald of Advanced Information Technology 2019; Vol.2 No.4: 246–258

 Design of Information Technologies and Systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

249

in Bavaria”). In Gellish it is defined as “left-hand

term”, “relation type” and “right-hand term”. Gellish

comes with a predefined and comprehensive set of

elements containing natural language terms under-

standable by every human. Still, it allows adding

additional elements as necessary at any time. The

built sentences are saved as so called “facts”.

All elements are represented in natural lan-

guage, but get assigned a unique ID simultaneously.

By this, Gellish allows to create dictionaries in every

language to translate these facts without effort. At

the same time facts get assigned a unique ID them-

selves enabling them to become part of other facts as

well. This makes Gellish extremely powerful and

still comprehensible by non-IT experts.

The idea of building simple sentences that are

comprehensible by everyone is charming and can be

a step towards the desired approach. Still, Gellish

does not meet the needs completely as the vast set of

elements makes it again complicated which contra-

dicts the second goal.The former professor for data-

bases and data modeling of Augsburg University of

Applied Sciences (AUAS), Lore Kern-Bausch, de-

veloped with Bernd Wenzel in 1980 her own ap-

proach simply called “Informationsanalyse” (i.e.

“information analysis”) [18]. It was inspired by the

original Entity Relationship approach [5] and got

further developed in 1986 and 1997 [19; 20]. In fact,

this approach introduces another graphical modeling

syntax aside from the already well-known ER nota-

tion. This is definitely objectionable and contradicts

the first and the second goal of finding an appropri-

ate approach. But during its development, this ap-

proach received a very fascinating notion of seman-

tic modeling. The authors introduced the method of

semantically irreducible sentence building to their

syntax. The idea behind this is – similar to Gellish –

to build the simple most sentences in natural lan-

guage that can't be divided into several single sen-

tences without losing parts or all of the semantical

meaning behind the original sentence. Every of these

semantically irreducible sentences shall then be ex-

pressed graphically in the conceptual model with the

syntax primitives of the approach of

“Informationsanalyse”. By doing so, the graphical

model can be created from natural language and

natural language can be read from this model re-

versely. It enables IT experts to just talk to the busi-

ness experts and make them “read” the model to

double check if the model is correct by simply

checking the proposition of every sentence. This

concept is eligible to meet the first and the second

goal as it becomes possible to communicate between

IT and business experts and it is paradigm agnostic

as the sentences that are translated to graphical nota-

tion simply represent facts of the real world inde-

pendently of any target system environment.

The survey shows that many approaches al-

ready exist dealing with the problem of conceptual

modeling more or less. All of them have benefits to

some of the defined goals for the desired approach.

But still, all of them run short in at least one of these

goals.

Research methods

AGILA MOD as it is taught today at Augsburg

University of Applied Sciences is a resumption of

the work of Bernd G. Wenzel and Lore Kern-Bausch

titled “Informationsanalyse” [18; 19]. The develop-

ment has been continued during the teaching period

of Lore Kern-Bausch and subsequently Sabine

Müllenbach incorporating the experience of working

with student teachings and bachelor, master and PhD

thesis (Fig. 1).

Presentation of the main research material

The presented approach is called AGILA MOD.

Though the name resembles the concepts of “agile

development” (cf. [15]), it is more a coincidence in

the first place. AGILA stands for “Automatic Gen-

erators for Information representation, Logical DB

structures and Applications” MOD simply stands for

“modeling language”. AGILA is supposed to be a

whole framework enabling to create data structures

in a generic fashion based on a conceptual model. In

this article, the developed modeling language as the

absolute basis shall be presented.

The idea of AGILA MOD is to recombine cer-

tain elements from the before mentioned approaches

to meet the stipulated goals. The starting point builds

the concept of the “Informationsanalyse” approach

creating a conceptual model by translating natural

language as semantically irreducible sentences into

graphical notation. This concept aligns perfectly

with the first goal of understandability and also with

the third goal of paradigm agnostic. But instead of

creating a new syntax, the basis of AGILA MOD

syntax is ER which aligns to some extent the second

goal as the learning efforts are quite low due to the

fact that ER is widely known by IT experts. To fully

support this goal, the decision was made to reduce

the syntax primitives as much as possible. Hence,

AGILA MOD uses a subset of the syntax primitives

of ER. To support the third goal even more, the

wording is slightly changed to set the focus more on

the idea of modeling the real world or at least a part

of it.(the so called “Universe of Discourse” (UoD))

This philosophy shall be kept in mind by all partici-

pants of the modeling process when creating a data

model.

Starting from this minimal subset, a few addi-

tional elements have been added or adapted from the

Herald of Advanced Information Technology 2019; Vol.2 No.4: 246–258

 Design of Information Technologies and Systems

250

 ISSN 2663-0176 (Print)

 ISSN 2663-7731 (Online)

before mentioned approaches, basically to illustrate

certain aspects more in detail than it could be with

the base syntax.

Basic syntax elements

The first syntax primitive of AGILA MOD is

the “Object Type”. It represents a group of real

world objects of the same type and is represented by

a rectangle with a solid border and the name of the

object type inside. In ER it is called an Entity. It was

renamed as the term “Object Type” is easier to un-

derstand for non-IT experts. There is a distinction

between lexical and non-lexical object types. Lexical

object types can be represented directly as data in an

IT system while non-lexical object types cannot.

This distinction depends on semantics in the first

place and does not reflect in the model or notation

immediately. Examples for non-lexical object types

are “Person”, “Car” or “Room” whereas lexical ob-

ject types might by “Name”, “Salary” or “Birthday”.

The concept of lexical and non-lexical object types

is adapted from the NIAM modeling language where

“LOT” and “NOLOT” are explicitly described [23;

ch.4.5].

The second syntax primitive is the “Association

Type”. It comprises all associations between two or

more object types under a certain premise. It is rep-

resented by a rhombus with a solid border and the

name of the association type inside denoting the

premise of the association. An association type must

not stand alone it needs at least two participating

object types which are connected to the association

type via a straight solid edge. Each of these edges

needs to be annotated with the role that the instances

of the connected object type play in every associa-

tion. The roles used must be unique for that associa-

tion type (i.e. there must not be two participants for

an association type using the same role name). Fur-

thermore, the edge must be annotated with a cardi-

nality stating how often every instance of the con-

nected object type has to be part of an association at

the minimum and maximum. For the boundaries

applies: {min,max | min ∈ ℕ0 ∧ max ∈ ℕ ∧

0≤min<+∞ ∧ 0<max≤+∞ ∧ min≤max}. The bound-

aries of the cardinality are notated “<min>:<max>”.

A maximum boundary of +∞ will be notated as an

asterisk (“*”). This differs slightly from

Elmasri/Navathe (cf. [1, p.113 bottom]) where the

notation is “(<min>:<max>)” and +∞ is represented

by the letter “N”. The brackets have been omitted

for simplicity reasons during modeling while using

an asterisk instead of “N” prevents confusions. In

the past, students experienced that when using paper

and pencil for their models, a badly written ‘n’ could

be misinterpreted as “1” which leads to completely

wrong assertions in the model (especially during

examinations). An asterisk does not cause such ef-

fects. Mentioning a role may be omitted if the role is

identical to the name of the object type. It is recom-

mended however to always mention a role for clear

expression and the deliberate decision for using the

object type in this role.

With these two syntax primitives sentences can

already be graphically represented like in

Fig. 2.

Fig. 2: Association type

This model can be read backwards: “A person

can participate in arbitrary courses (but does not

have to participate in any)”. It also states: “A course

needs to be attended by at least one person”. Hence,

it becomes clear that every association type contains

as many facts as participants because it needs to be

read from the perspective of every participant.

For association types, there exists only one re-

striction: If there is a participant with a maximum

boundary of “1”, the association type must only have

exactly two participants. If there were more than two

participants, the model would not be semantically

irreducible anymore.

Fig. 3 shows such a problematic association

type. Reading this backwards results in: “A person

has a mobile phone and an office phone”. But this

sentence can be split into two sentences without

losing any information in it: “A person has a mobile

phone. A person has an office phone”. Hence, the

original sentence is semantically reducible and can

be equivalently modeled as in [14]

Fig. 3. Erroneous association type. Resulting

sentences are not semantically irreducible

Fig. 4. Correct model

Herald of Advanced Information Technology 2019; Vol.2 No.4: 246–258

 Design of Information Technologies and Systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

251

The association type does not impose any fur-

ther restrictions. It is especially not of relevance

what participants are used. For example, it is al-

lowed to let the same object type participate more

than once in an association type.

Fig. 5 shows a simple example illustrating that

this is not a special case and can occur quite often:

The boss of an employee is an employee himself. An

employee can have a boss (“can” because the CEO

on top won’t have one.). And an employee can be

boss of arbitrary employees. This example also clari-

fies why the roles of the participants are vital. An

employee must not participate more than once with

the same role in this association type.

Fig. 5. An object type participating twice in an

association type

Naming conventions

Moreover, a special kind of association type

was introduced. It has only two participants, both

having an upper boundary of “1” (Fig. 6). It implies

that for every instance of the first object type there is

at most one instance of the second object type as-

signed and vice versa. This describes the state of a

mutual identification between these object types. For

this, a simplified association type element was added

called a “naming convention”. It simply has no label

inside, roles of the participants are omitted and the

cardinality is only written when it should be “0:1”

(otherwise it is “1:1” by default). This abbreviated

form of an association type eases the recognition of

such identifying connections on first sight by any

reader of an AGILA MOD model. The experience

with students over the last two decades also showed

that it enables modelers to realize an identification

more quickly, because an association type having

“1:1” on both sides is salient in the model making

the modeler reconsider if this identification is really

on purpose. Hence, using this abbreviation conse-

quently improves the quality of the model.

Fig. 6: Naming convention

Objectification

One of the most powerful, still simple con-

structs of AGILA MOD is the concept of objectifi-

cation. It enables the modeler to elevate any associa-

tion type to an object type. By this, a so called

“structured object type” is created that can be used

like any other object type to describe the universe of

discourse.

Fig. 7 shows the example of

Fig. 2 enhanced by an application date using

objectification. As in the original example already

suggested, the combination of a person and a course

can be considered an attendee. From a semantic

point of view, it is pretty obvious that an attendee

can be perceived as an object type as well. Hence,

objectifying this association type enables the model-

er to reuse that association type as an object type to

model further semantically irreducible sentences

where the attendee acts as an object type. In this

example the new sentence is: “An attendee has an

application date”. An association type should only

be objectified if needed as an object type. Otherwise,

the objectification is redundant.

Fig. 7. Objectification

Syntactically, it is important to note that the line

of the inner association type must not touch or cross

the line of the objectification rectangle. This is im-

portant to have a clear distinction where an edge

leads to in this combined structure and prevent mis-

takes when modeling. Like before, objectification is

not a newly invented concept, but adopted from

existing modeling languages. The origins can be

found in the IDEF1X language [10] as well as in

existing dialects of ER [23; ch.4.2]

Base and system types

With these rather simple syntax primitives a

modeler is already able to depict highly complex

situations of the real world. However, the link be-

tween this real world model and the technical level

is missing at this point. AGILA MOD therefore pro-

vides the modeling elements of base types and sys-

tem types. Both of these types can be perceived as a

special form of object type. A system type represents

a data type that IT systems use for representing data

like e.g. “String”, “Integer” or “Boolean”. Semanti-

cally, it represents all possible data values that a

target system can utilize for the particular definition.

The concept of a system type is not new. It can be

found in other modeling languages like e.g. Step

Herald of Advanced Information Technology 2019; Vol.2 No.4: 246–258

 Design of Information Technologies and Systems

252

 ISSN 2663-0176 (Print)

 ISSN 2663-7731 (Online)

EXPRESS [9] and was adopted into AGILA MOD

for offering the connection point to the technical

representation.

Additionally, the concept of a base type was in-

troduced. A base type generalizes the concept of a

system type to any type of data which by itself has

no immediate reference to the real world. A plausi-

ble example is the base type “money”. Money is

more of a general unit that objects of the real world

are applied to. A salary is paid in money for exam-

ple, but money itself has no meaning whatsoever.

Base types can be perceived as an intermediate ele-

ment of the syntax between an object type and a

system type. It is by this best described as a fully

formalized lexical object type as it can be found in

the NIAM syntax [23; ch.4.5]. As such an interme-

diate element, it was adopted to AGILA MOD being

notated and used the same way as a system type.

In AGILA MOD base and system types are rep-

resented as rectangles showing their resemblance to

object types, but the border is drawn as a dashed line

for easier distinction when reading a model. Graph-

ically, there is no difference between base and sys-

tem types because they are both used in the same

way while modeling. The difference is only of tech-

nical nature: while system types have an immediate

relation to the data types for implementation, base

types need a onetime declaration of how they get

mapped to real system types. The advantage of base

types is that they regularly have a semantic notion.

Furthermore, using a base type several times in a

model ensures that the representation keeps unique

as the onetime mapping applies for all appearances

in the model. Using a system type instead might lead

to different representations of the same type of data

(like e.g. “money” being represented as numeric

value and somewhere else as a float).

Base and system types can be participants of

association types like a regular object type. Howev-

er, when doing so the minimum boundary of this

participation basically needs to be “0”.

This becomes obvious when thinking the ex-

ample in Fig, 8 through: The system type “String”

that is used for the association type “Person Name”

can analogously to an object type be interpreted as

container of all possible strings as arbitrary combi-

nations of characters. Using a lower boundary of “1”

would imply that every possible string has to be used

at least in one association. This is obviously non-

sense and the lower boundary must be “0”.

Fig, 8: System type as part of an association type

Base and system types can also be used to ex-

press a representation of a lexical object type. A

semantically irreducible sentence for this could be:

“A salary is represented by money”. In AGILA

MOD, a representation like this is depicted as a di-

rected edge with a dashed line leading from a base

or system type to the object type that should be rep-

resented.

As a matter of fact, lexical object type always

need to have representation as shown in Fig. 9, while

non-lexical object types always need to have an

identification (like a naming convention or a struc-

turing via an objectified association type) which is

also the distinguishing feature between those two

kinds of object types.

Fig. 9. Base type representing a lexical object type

A “represented by” edge has always its origin in

a system or base type and targets to an object type or

a base type. The target of a representation must not

be represented more than once. With the latter, base

types can be represented them by system or other

base types to declare their mapping immediately in

the model. In some situations, this approach is more

useful than leaving the mapping to the derivation. If

a base type itself is not represented by a system type,

which is explicitly valid, the mapping of a base type

to a system type is left to the derivation process

where this decision needs to be made once and get

documented.

Ancillary elements

Additionally, AGILA MOD introduced two an-

cillary elements to facilitate the expression of certain

real-world conditions in the model that sometimes

occur.

An enumeration is a supporting construct that

shall explicate the restriction of a basic type to cer-

tain values from the beginning, i.e. on the conceptual

level. An enumeration acts like a basic type, but its

values are restricted to a fixed list of values. In terms

of graphical representation, an enumeration is de-

fined as rectangle with a double border on the right

side. The border lines are dashed as it is a special

form of a basic type. The name of the enumeration is

mentioned inside the rectangle. The possible values

for the enumeration can be written as textual meta

information at the edge of the model. Enumerations

should be used in cases where the allowed values for

this type are defined permanently from the begin-

ning as a fixed list of unique unordered values

(Fig.10).

Herald of Advanced Information Technology 2019; Vol.2 No.4: 246–258

 Design of Information Technologies and Systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

253

Fig. 10: Enumeration type

As stipulated for the definition of AGILA

MOD, the concept of enumeration types is also not

new but borrowed in syntax and meaning from the

EXPRESS language [22; p. 240]

Similarly borrowed from EXPRESS for AGILA

MOD is a set type. It is meant to ease the solution in

certain situations that might occur during the model-

ing phase. A set is an order less collection, free of

duplicates, comprising object instances of arbitrary

object types. This differs slightly from the set defini-

tion in EXPRESS where a set is an order less collec-

tion of homogeneous objects.

Graphically, a set is represented as a rectangle

with a double border on the left side. Due to the fact

that a set is not representing a certain type of object,

but is merely a container with arbitrary objects in it,

the border lines are dashed. The object types that

shall contribute their objects to the set have a di-

rected edge from object type to the set. The set is

meant to enable a modeler to associate the contain-

ing instances that have no common hierarchy with

other object types. This case is pretty seldom. But as

Fig. 11 shows, they can occur. In these cases, sets

present an easy way out of that problem. The only

alternative would be to create an abstract super type

from which all participants would have to inherit.

This is rather inconvenient and creates an artificially

constructed and complex super type structure with

no meaning at all that even makes nonsense of the

idea of inheritance. One could argument that the set

is nothing else then the definition of an artificial

super type. However, the meaning is a different one

which is an important point for a modeling tech-

nique based on semantical formulations. Further-

more, other than a super type, a set does not hand

down any properties to the contributing object types.

Fig. 11. Set type

Using set types in an association type is subject

to certain restrictions. A set type may only be part of

an association type with the cardinality of “0:*”. At

the same time, the counterpart in this association

type may only participate with an upper boundary of

“1” (i.e. “x:1” with x ϵ {0, 1). Due to the before

mentioned rules concerning association type partici-

pants, this restriction implies that a set type can only

be part of an association type comprising two partic-

ipants.

The reason for this restriction lies in the fact

that a set type represents merely a lose collection of

arbitrary objects. It is only intended to act as a con-

tainer other object types can refer to. Any other use

of this construct results in heavy complications when

derivation to logical structures. Fig. 12 shows a viv-

id example for using a set type for an association

type.

Fig. 12: Using a set type for an association type

underlies restrictions

Inheritance

With these syntax primitives at hand, compre-

hensive conceptual models based on semantically

irreducible sentences are possible that also include a

bridge to the technical implementation using system

types. However, when creating larger models there

will be another issue coming up pretty fast. Having a

model of a university for example, there will exist

students and lecturers. These two object types have

something in common in real life: they both repre-

sent humans and therefore share quite many facts –

both have: first name, surname, birth date, phone

numbers, addresses etc. Until now, a modeler would

be forced to write down these facts twice (Fig. 13).

It is pretty obvious that this is not very efficient and

moreover makes a model very soon a lot bigger and

confusing. These considerations clearly lead to the

concept of inheritance which has its origins in the

object-oriented development (cf. [16]).

Herald of Advanced Information Technology 2019; Vol.2 No.4: 246–258

 Design of Information Technologies and Systems

254

 ISSN 2663-0176 (Print)

 ISSN 2663-7731 (Online)

Fig. 13. Utilizing AND in a type hierarchy

Similarly, it has already been introduced into

the EER language of Elmasri/Navathe ([1; ch.4]).

Syntactically, AGILA MOD follows this concept of

EER giving the possibility to express whether the

members of the subtypes of a supertype “must be

disjoint sets” of “overlapping” ([1; p. 144f.]). For the

notation, AGILA MOD uses syntax similar to what

is known from UML where a directed solid edge

leads from the subtype to the super type. Multiple

inheritances with one subtype inheriting from more

than one super type are valid. While the concept of

multiple inheritance tends to be a problem for pro-

gramming languages mostly due to behavioral issues

of an object, it is controllable in this case as the topic

of AGILA MOD is defining data structures, i.e. state

and not behavior. Unlike the EER notation, this no-

tation is already familiar for IT experts being used to

UML and also comprehensible pretty fast by busi-

ness experts.

To add the EER concept of disjoint and over-

lapping subtypes, AGILA MOD was amended by a

circle notation set in between the super type and its

subtypes which carries a boolean operator. “OR”

refers to an overlapping, “XOR” to a disjointed set.

This notation also adheres to the idea of semantical-

ly irreducible sentences: “A person is either a stu-

dent or a lecturer” resembles directly an “XOR”

inheritance. AGILA MOD also allows the use of the

“AND” operator in the circle which can be helpful

for more complicated hierarchies like in Fig. 13. It is

possible to omit the circle and connect the subtypes

directly with the super type. This notation is equiva-

lent with the circle notation using an “OR” operator

(Fig. 14; Fig. 16).

Fig. 14. Subtypes inheriting from a supertype

AGILA MOD also covers the topic which is

known both in object-orientation and EER concern-

ing the question if a super type must always be spe-

cialized to at least one subtype or not. In [1; ch.4.3,

p.145], EER uses the “completeness” constraint for

this, where a super type can be totally or only par-

tially member of a subtype. In object-orientation an

abstract class can be defined which can't be instanti-

ated on its own. As this concept is again familiar to

IT experts and easier to understand by business ex-

perts, AGILA MOD adopted this concept to meet

the originally stated goals. Any object type can be

declared abstract. This also applies for structured

object types (i.e. objectified association types). An

abstract object type is denoted by drawing the rec-

tangle with a thick line (Fig. 15; Fig. 16).

Fig. 15. Using an abstract object type for

completeness

Fig. 16. Object type “Person” of Model1 is used in

Model2

Final notes

With these syntax primitives, AGILA MOD en-

ables a modeler to define highly complex conceptual

data models creating a truly detailed model of the

real world. Finally, two points need to be considered

when using AGILA MOD:

– All names of object types and association

types need to be unique. Otherwise, it becomes un-

clear if both object types shall represent the same

real-world element or different ones. This does not

apply for system and base types as these clearly

represent the same thing (A string will always be a

string and money will always be money).

– As it is common in software engineering dis-

ciplines, elements of a model may be re-used in oth-

er models. To be able to reference this element

uniquely, the model itself needs to receive a unique

identifier for referenciation reasons (A possibility

would be the use of an URI).

Approbation of the research material

AGILA MOD has been part of the curricula for

computer science and business informatics studies at

the faculty of computer science at AUAS for over 15

years. The lessons contain teaching the idea of se-

Herald of Advanced Information Technology 2019; Vol.2 No.4: 246–258

 Design of Information Technologies and Systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

255

mantically irreducible conceptual modeling, intro-

ducing the syntax of AGILA MOD and accomplish-

ing a self-imposed project task as part of the practi-

cal training. The experiences made here are consist-

ently positive. As intended by the mentioned goals,

the students are able to understand the philosophy

and the basics of this modeling technique pretty fast

even if they had no prior experience in this field of

activity. This has also been acknowledged regularly

in evaluations and feedback talks with students visit-

ing the lectures and tutors that support the students

during their practical training. The results in the

examinations additionally prove this observation:

The number of students failing is to a great extent

very low.

As a matter of fact, the courses have been put

very early in the curriculum nowadays, i.e. to the

second semester for business informatics and the

third semester for computer science studies. The

faculty council decided to do so after other profes-

sors acknowledged that this approach enables stu-

dents to think through data structures thoroughly and

systematically. They can build their teaching upon

that basis and facilitates their work.

Furthermore, AGILA MOD has been utilized

successfully in several theses of diploma, bachelor

and master students. Currently, there is another mas-

ter thesis in progress using AGILA MOD for creat-

ing a conceptual data model acting as basis to derive

relational structures from it. AGILA MOD has also

been utilized successfully for several projects. The

experiences here working on the models together

with business experts were as positive as the experi-

ences made with the students during lectures.

Hence, AGILA MOD proves to be eligible to

be a modeling language that meets the originally

stated goals.

Conclusions and prospects for further re-

search

The presented modeling language AGILA

MOD is a good approach to reach the goals formu-

lated at the beginning of this article. It has proven

itself in many years of teaching at the faculty of

computer science at AUAS and in productive use for

several projects and thesis'.

The idea of phrasing semantically irreducible

sentences all concerned parties can agree upon

which then can be depicted as a simple conceptual

model is amazingly simple and easy to grasp for

everyone.

By using only a minimum of syntax primitives,

the learning efforts that may be necessary to create

and read models is minimized. Especially, the con-

cepts described at the end of the main part are only

optional and not necessary to start right away.

Learning efforts are further minimized by using

syntax elements IT experts are familiar with as they

are not newly invented but adopted from widely

known and accepted modeling techniques (i.e. basi-

cally Entity-Relationship Modeling and UML). Only

small adaptations and amendments have been added

to enable a more precise distinction of semantic

meaning or help solving some seldom and complex

situations (e.g. base and system types as a special

form of object types or sets as a simplification).

By adding the notion of representing semanti-

cally irreducible sentences representing the world

itself as it is an AGILA MOD model can be under-

standable for all participants: IT experts (not only

database specialists) and business experts. There-

fore, AGILA MOD can act as a common platform

with IT experts creating the model with their experi-

ence and enabling business experts to read the syn-

tax backwards into semantically irreducible sentenc-

es and check these against their experience and per-

ceptions.

Furthermore, the idea of semantically irreduci-

ble sentence modeling is representing the world or a

part of it as “Universe of Discourse”. This leads to

the fact that this modelling language is no longer

bound to any implementation conditions. It is truly

paradigm agnostic and can be derived to any chosen

logical data model by applying the according deriva-

tion rules.

Further research on AGILA MOD will now be

done on the question how the language is already

applicable for the newer logical data structures com-

ing up with NoSQL. Hereby, amendments which

may be necessary shall be kept minimal to keep the

number of syntax primitives still as low as possible.

Moreover, there will be research concerning the

derivation to logical and physical models. Currently,

the ruleset for deriving to relational structures is

complete. Hence, rulesets for the other current logi-

cal models (like document or graph models) need to

be defined. In parallel to this, a development will be

started to automate the derivation process to the

maximum possible extent.

The goal of this future research is to get a com-

prehensive framework that receives a conceptual

model and produces a logical and physical model by

applying the particular ruleset more or less automat-

ically.

References

1. Elmasri, R. & Navathe, S. (2016). “Funda-

mentals of Database Systems”, Harlow: Pearson

Education, 1172 р.

Herald of Advanced Information Technology 2019; Vol.2 No.4: 246–258

 Design of Information Technologies and Systems

256

 ISSN 2663-0176 (Print)

 ISSN 2663-7731 (Online)

2. Kern-Bausch, L & Jeckle, M. (2001). „Da-

tenbanken“, ch.14 in Schneider U. et al. (eds.).

“Taschenbuch der Informatik”, München:

Fachbuchverlag Leipzig, Germany, 2001, pp.80-88.

3. (2015). Kudraß T. et al. (eds.). „Taschenbuch

Daten-banken“, München: Fachbuchverlag Leipzig,

Germany, 577 р.

4. Kecher, C. & Salvanos, A. (2015). „UML 2.5

- Das umfassende Handbuch“, Bonn: Rheinwerk

Verlag.

5. Chen, P. (1976). “The Entity-Relationship

Model – Toward a Unied View of Data”, ACM

Transactions on Database Systems, 1976, 1.1, pp. 9-

36. DOI>10.1145/320434.320440.

6. Jeckle, M. (2004). „Ableitung Objektorien-

tierter Strukturen aus Konzeptuellen Schemata“,

PhD. thesis. Augsburg University of Applied Scienc-

es, Germany, Ulm University, Germany, (May

2004), 375 р.

7. Kastens, U. & Kleine Büning, H. (2018).

„Modellierung - Grundlagen und Formale Metho-

den“, München: Carl Hanser Verlag,

8. (1992). Batini, C. et al. “Conceptual Data-

base Design – An Entity-Relationship Approach”,

Redwood City: The Benjamin/Cummings Publishing

Company, 492 р. DOI.org/10.1016/S0065-

2458(08)60593-8.

9. ISO/IEC 10303-11: 2004: “Industrial Auto-

mation Systems and Integration – Product Data Rep-

resentation and Exchange”, Part 11: Description

Methods: The EXPRESS Language Reference Man-

ual, International Organization for Standardization,

Geneva, Switzerland and Internet source

https://www.sis.se/api/document/preview/905433/.

10. ISO/IEC 31320-2:2012: “Information Tech-

nology – Modeling Languages”, Part 2: “Syntax and

Semantics for IDEF1X97 (IDEFOBJECT)”, Interna-

tional Organization for Standardization, Geneva:

Switzerland and Internet source

https://www.iso.org/obp/ui/#iso:std:iso-iec-

ieee:31320:-2:ed-1:v1:en.

11. Klas, W. & Schrefl, M. (1995).”Semantic

data Modeling”, Berlin: Publ. Springer Verlag.

12. Becket, D. (2004). “RDF/XML Syntax

Specification (Revised”). World Wide Web Consor-

tium and Internet source

https://www.w3.org/TR/2003/WD-rdf-syntax-

grammar-20030905/.

13. Dean, M., & Schreiber, G. (2004). “OWL

Web Ontology Language”, World Wide Web Con-

sortium, 2004. Antoniou G., van Harmelen F.

(2004). “Web Ontology Language: OWL”. In: Staab

S., Studer R. (eds) Handbook on Ontologies. Inter-

national Handbooks on Information Systems. Publ.

Springer, Berlin: Heidelberg. DOI 10.1007/978-3-

540-24750-0_4.

14. Van Renssen, A. (2003). “Gellish: an Infor-

mation Representation Language, Knowledge base

and Ontology”, ESSDERC 2003, Proceedings of the

33rd European Solid-State Device Research,

ESSDERC '03 (IEEE Cat. No. 03EX704), IEEE,

2003 and Internet source

https://www.academia.edu/7201584/Gellish_an_info

rmation_representation_language_knowledge_base_

and_ontology?auto=download.

15. Stellman, A. (2015). “Learning Agile – Bei-

jing: O'Reilly”, Internet source

https://www.oreilly.com/library/view/learning-

agile/9781449363819/#toc-start.

16. Meyer, B. (1997). “Object Oriented Soft-

ware Construction”, Upper Saddle River, NJ: Pren-

tice Hall, 1225 р.

17. Hull, R. & King, R. (1987). “Semantic Data

Modeling: Survey, Application and Research Is-

sues”, ACM Computing Surveys, 19.3, pp. 201-260,

ACM Computing Surveys, Vol. 19, No. 3, (Septem-

ber 1987), doi>10.1145/45072.45073.

18. Kern-Bausch, L. & Wenzel, B. (1980). „In-

formationsanalyse. Technical Report“, München:

Germany, Leibnitz Rechenzentrum.

19. Kern-Bausch, L. & Wenzel, B. (1986). “Da-

tabase Design for Relational Systems: Why, Who,

How?”. European ORACLE Users Group Newslet-

ter, No. 10, doi.org/10.1007/978-3-642-48673-9_3.

20. Kern-Bausch, L. & Jeckle, M. (1998).

“From a Semantically Irreducible Formulated Con-

ceptual Schema to an UML Model”, Kern-Bausch,

L., Jeckle, M. (1998).” “From a Semantically Irre-

ducible Formulated Conceptual Schema to an UML

Model”. In: Schader, M., Korthaus, A. (eds) The

Unified Modeling Language. Physica-Verlag, pp.

32-44, Part of the book.

21. (1997) .Schader, M. & Korthaus, A. (eds.)

„The Unified Modeling Language – Technical As-

pects and Applications”, Würzburg, Wien: Physica-

Verlag, 281 р.

22. Schenck, D. & Wilson, P. (1994). “Infor-

mation Modeling the EXPRESS Way”, New York:

Oxford: Oxford University press, 388 р.

23. Loos, P. (1992). „Datenstrukturierung in der

Fertigung“, München, Wien: R., Oldenburg Verlag,

219 р.

https://doi.org/10.1145/320434.320440
https://www.sis.se/api/document/preview/905433/
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:31320:-2:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:31320:-2:ed-1:v1:en
https://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20030905/
https://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20030905/
https://www.academia.edu/7201584/Gellish_an_information_representation_language_knowledge_base_and_ontology?auto=download
https://www.academia.edu/7201584/Gellish_an_information_representation_language_knowledge_base_and_ontology?auto=download
https://www.academia.edu/7201584/Gellish_an_information_representation_language_knowledge_base_and_ontology?auto=download
https://www.oreilly.com/library/view/learning-agile/9781449363819/#toc-start
https://www.oreilly.com/library/view/learning-agile/9781449363819/#toc-start

Herald of Advanced Information Technology 2019; Vol.2 No.4: 246–258

 Design of Information Technologies and Systems

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

257

24. Glava, M. G., Malakhov, E. V., Arsiri, O.

O. & Trofymov, B. F. (2019). “Information Tech-

nology for Combining the Relational Heterogeneous

Databases using Integration Models of Different

Subject Domains?”, Applied Aspects of Information

Technology, Vol. 2 No. 1, pp.29-44.

DOI://10.15276/aait.02.2019.3.

Received 05.09.2019

Received after revision 15.10.2019

Accepted 30.11.2019

УДК 004. 652

1
Мюленбах, Сабине, Ph.D., професор факультету комп’ютерних наук,

E-mail: sabine.muellenbach@hs-augsburg.de, ORCID: https://orcid.org/0000-0002-0392-0334
1
Керн-Бауш, Лоре, Ph.D., професор факультету комп’ютерних наук,

E-mail: lore.kern-bausch@hs-augsburg.de, ORCID https://orcid.org/0000-0003-3401-1333
1
Колонко, Маттиас, Диплом-Wirtschaftsinformatiker (FH), асистент факультету комп’ютерних наук,

E-mail: matthias.kolonko@hs-augsburg.de, ORCID: https://orcid.org/0000-0002-8296-1758
1
Університет прикладних наук, An der Hochschule, 1, м. Аугсбург, Німеччина, 86161

Tel. +49 (821)55860

МОВА КОНЦЕПТУЛЬНОГО МОДЕЛЮВАННЯ AGILA MOD

Анотація. У статті розглядаються існуючі підходи до розробки моделей предметних областей з метою з'ясування

причин їх слабкого практичного застосування. Визначено важливі вимоги, яким повинна відповідати мова концептуального

моделювання для її більш широкого практичного застосування. Крім того, розглядаються концепції мов семантичного

моделювання. Використання семантики замість простих структурних конструкцій спрощує доступ і розуміння зацікавле-

них сторін, які не пов'язані з ІТ. Це допомагає перевірити валідність створених структур даних на відповідність вимогам

реального бізнесу. Надалі буде обговорюватися концепція семантично неприводимого моделювання речень, яка може слу-

жити мостом між семантичним і концептуальним моделюванням.За результатами цих обговорень представлена мова

концептуального моделювання AGILA MOD. Ця мова моделювання заснована на ідеї зображення семантично неприводимих

речень в якості графічної моделі. Таким чином, AGILA MOD може виступати в якості загальної платформи, з якої всі

учасники проекту можуть домовитися про створення моста між впровадженням ІТ та бізнес-вимогами. Моделі можуть

бути створені з семантично неприводимих речень, і їх можна читати назад в семантично неприводимі речення, що робить

цю мову легкою для розуміння усіма учасниками проекту. Мова AGILA MOD заснована на відомій мові Entity-Relationship з

введенням деяких спрощень. Додано декілька додаткових конструкцій, які також відносяться до добре відомих методів

моделювання, що зводить зусилля до вивчення нових елементів майже до нуля. Деривація моделей AGILA MOD в логічну

модель виконується за простими правилами деривації, що робить її менш трудомістким і, отже, менш витратним. Ця

мова має бути основою для подальших досліджень, спрямованих на нові логічні моделі NoSQL, а також на створення уза-

гальненої структури, яка дозволить максимально автоматизувати процедуру деривації . Крім того, можливість викорис-

тання концепції багатоваріантної персистентності в поєднанні з AGILA MOD і створення зручного API повинні бути

розглянуті в майбутніх дослідженнях

Ключові слова: бази даних; концептуальне моделювання предметних областей; семантичне моделювання даних; мо-

дель сутність-зв'язок

УДК 004. 652

1
Мюлленбах, Сабине Ph.D., профессор факультета компьютерних наук,

E-mail: sabine.muellenbach@hs-augsburg.de, ORCID: https://orcid.org/0000-0002-0392-0334
1
Керн-Бауш, Лоре, Ph.D., профессор факультета компьютерних наук,

E-mail: lore.kern-bausch@hs-augsburg.de, ORCID https://orcid.org/0000-0003-3401-1333
1
Колонко, Маттиас, Диплом-Wirtschaftsinformatiker (FH), ассистент факультета компьютерних наук,

E-mail: matthias.kolonko@hs-augsburg.de, ORCID: https://orcid.org/0000-0002-8296-1758
1
Университет прикладних наук An der Hochschule 1, г. Аугсбург, Германия, 86161 Tel. +49 (821)55860

https://orcid.org/0000-0002-0392-0334
https://orcid.org/0000-0003-3401-1333
https://orcid.org/0000-0002-8296-1758
https://orcid.org/0000-0002-0392-0334
https://orcid.org/0000-0003-3401-1333
https://orcid.org/0000-0002-8296-1758

Herald of Advanced Information Technology 2019; Vol.2 No.4: 246–258

 Design of Information Technologies and Systems

258

 ISSN 2663-0176 (Print)

 ISSN 2663-7731 (Online)

ЯЗЫК КОНЦЕПТУЛЬНОГО МОДЕЛИРОВАНИЯ AGILA MOD

Аннотация. В этой статье рассматриваются существующие подходы к разработке моделей предметных областей

с целью выяснения причин их слабого практического применения. Определены важные требования, которым должен соот-

ветствовать язык концептуального моделирования для практического применения. Кроме того, рассматриваются кон-

цепции языков семантического моделирования. Использование семантики вместо простых структурных обсуждений уп-

рощает доступ и понимание заинтересованных сторон, не связанных с ИТ. Это помогает проверить валидность создан-

ных структур данных на соответствие требованиям реального бизнеса. В дальнейшем будет обсуждаться концепция

семантически неприводимого моделирования предложений, которая может служить мостом между семантическим и

концептуальным моделированием. По результатам этих обсуждений представлен концептуальный язык моделирования

AGILA MOD. Этот язык моделирования основан на идее изображения семантически неприводимых предложений в качест-

ве графической модели. Таким образом, он может выступать в качестве общей платформы, с которой все участники

проекта могут договориться о создании моста между внедрением ИТ и бизнес-требованиями. Модели могут быть созда-

ны из семантически неприводимых предложений, и их можно читать обратно в семантически неприводимые предложе-

ния, что делает этот язык легким для понимания всеми участниками проекта. Язык AGILA MOD основан на известном

языке Entity-Relationship с введением некоторых упрощений. Добавлено несколько дополнительных конструкций, которые

также относятся к хорошо известным методам моделирования, сводящим усилия к изучению новых элементов почти до

нуля. Вывод моделей AGILA MOD в логическую модель выполняется по простым правилам деривации, что делает его менее

трудоемким и, следовательно, менее затратным. Этот язык должен служить основой для дальнейших исследований,

направленных на новые логические модели NoSQL, а также на создание всеобъемлющей структуры, максимально автома-

тизирующей вывод. Кроме того, возможность использования концепции многовариантной персистентности в сочетании

с AGILA MOD и создание удобного API должны быть рассмотрены в будущих исследованиях

Ключевые слова: базы данных; концептуальное моделирование предметных областей; семантическое моделирование

данных; модель сущность-связь

Müllenbach, Sabine Ph.D., Professor

Research field: Information systems design, database development, conceptual

modeling of subject areas, semantic data modeling

Kern-Bausch, Lore, Ph.D., Professor

Research field: Database development, conceptual, logical and physical data models

Kolonko, Matthias, assistant

Research field: Database development for applied information systems, conceptual

modeling of subject areas, semantic data modeling

