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New non-stationary gradient model of heat-mass-electric charge transfer
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The well-known complicated system of non-equilibrium balance equations for a continuous fluid (f) medium needs the
new non-Gibbsian model of f-phase to be applicable for description of the heterogeneous porous media (PMs). It
should be supplemented by the respective coupled thermal and caloric equations of state (EOS) developed specially for
PMs to become adequate and solvable for the irreversible transport f-processes. The set of standard assumptions
adopted by the linear (or quasi-linear) non-equilibrium thermodynamics are based on the empirical gradient-caused
correlations between flows and forces. It leads, in particular, to the oversimplified stationary solutions for PMs. The
most questionable but typical modeling suppositions of the stationary gradient (SG) theory are: 1) the assumption of
incompressibility accepted, as a rule, for f-flows; 2) the ignorance of distinctions between the hydrophilic and
hydrophobic influence of a porous matrix on the properties; 3) the omission of effects arising due to the concomitant
phase intra-porous transitions between the neighboring f-fragments with the sharp differences in densities; 4) the use of
exclusively Gibbsian (i.e. homogeneous and everywhere differentiable) description of any f-phase in PM; 5) the very
restrictive reduction of the mechanical velocity field to its specific potential form in the balance equation of f-motion as
well as of the heat velocity field in the balance equation of internal energy; 6) the neglect of the new specific
peculiarities arising due to the study of any non-equilibrium PM in the meso- and nano-scales of a finite-size
macroscopic (N,V)-system of discrete particles. This work is an attempt to develop the alternative non-stationary
gradient (NSG) model of real irreversible processes in PM. Another aim is to apply it without the above restrictions 1)-
6) to the description of f-flows through the obviously non-Gibbsian thin porous medium (TPM). We will suppose that it
is composed by two inter-penetrable fractal sf-structures of f-phase (formed by the “mixture” of g- and |-phases termed,
in total, interphase) and solid (s) porous matrix termed below s-phase. The permanent influence of humidity and the
respective increase of the moisture content in TPM including the unavoidable phenomenon of capillary condensation
are the main factors to occur the non-stationary transport f-flows through its texture.

Key words: thin porous media; non-stationary gradient model; transport process of fractal fluid phases; non-gibbsian
heterogeneous structures.
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Jlobpe gidoma ycknaonena cucmema HepiBHOBANCHUX PIGHAHb banaucy 0 besnepepsnozo arionozo () cepedosuya
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eycmuni; 4) euxopucmanns, sukmouno, I66cigecokux (mo6mo, 00HOPIOHUX i 6Cl00U OughepeHYillosanux) yseiens y
Oyov-sixuil g-ghazi ecepeouni I1C; 5) Oyaice obmedicyioue npunyujennss NOMeHYitiHOCMI NOJis MEXAHIYHOT (-ueuoKocmi 6
PisHAHHI pYXy (h-cepedosuwia, a maxoxc NOMEHYIUHOCMI NOAs Meniosoi ¢h-ueuoKocmi 8 pieHsHHI Oanancy 0.
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2a3060i (2) i pioxoi (p) ¢as, Hazeanux 6 yinomy, inmepghaszoio) i meepooi (m) nopucmoi mampuyi , HA36aHOL HUdICYE M-
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The functioning of a variety of TPMs (thin porous
media which share the wide range of thickness ¢ from the
textile fabrics and the polymer protecting plates up to the
walls of buildings) needs the clear recognition of the
relevant transport processes. It is hard task even to
enumerate the respective experimental and theoretical
works considering the one-dimensional heat-and-mass
transfer through the usual PM at the given stationary

gradients of pressure VP =(oP/dx) ~AP/L and

temperature VT ==(0T / 6x)t ~AT /L. Thus, one

admits that a sample of PM in the chosen x-direction of its
fixed thickness L (it is here compatible with two other
linear sizes) has the maintained isothermal-isobaric (hence
the locally-equilibrium) LE-conditions on its internal

(Ty,R) and external (T,,P,) sides-planes. Second Law

determines, of course, the direction of a resulting forced
heat-mass flow in dependence on the given relationship

between T, and T, as well as between P, and P,. The so-

called “dry” air porosity &=V, / V), <1 and the certain

implied spatial structure of s-phase (porous matrix M) are
the determinative factors for any PM at the traditional study
of transport processes. The unavoidable moisture content of

f-phase @=m; / my, is ignorable, as a rule, in such one-

phase investigations.

The most serious and unsolved until now problem is
the necessity to extend such oversimplified stationary-
gradient model (SG-) on the description of nonstationary
processes by the realistic gradient models (NSG). It arises
if the initial and boundary conditions become t-dependent.
Another manifestation of complexity in this problem is an
occurrence of a local first-order phase transition
(condensation and/or vaporization) in the pores-capillaries
induced by their hydrophobic (hb-) or hydrophilic (hl-)
internal surfaces and by the possible change of the applied
to PM external (P,T)-conditions. One may add to these
factors the changeable influence of a relative humidity ¢,

% which provides the inflowing moisture air content @(t)

in any PM. Therefore, itself notion of “dry” porosity ¢ loses
perceptibly its meaning with a gradual increase of w inside
of texture. Simultaneously, the respective swelled shape of
PM and its mechanic deformation become the essential
factors at the description of transport processes.

It was recently shown [1] that all above-mentioned
characteristics of a realistic PM can manifest their
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cumulative effect by the rather simple experimental
observation, at least, for the particular case of TPMs (see
below). The specific feature of latters is the very small
actual magnitude of thickness (& << L) which becomes
much less than two other linear TPM-sizes. From a formal
viewpoint, all described trends of a supposed NSG-model
should be pronounced in such actually one-dimensional
transport. Indeed, the thermodynamic forces-gradients
become augmented: VP=~AP/S6>>AP/L and
VT = AT [ 6 >> AT | L in comparison with a usual PM.
Moreover, it is naturally to admit the failure for TPM of the
non-equilibrium linear SG-model of thermodynamics [2,3].
Formally, the gradients of fields (VP; VT ; Vu - of

chemical potential, V@ - of electrostatic potential)

through TPM become great while the respective vector
convection of mass (pu) and/or diffusion flow (of

momentum j.q ., heat jo, mass j;, and free charge j;)

cannot be too great to provide its expected proportionality
to the above gradients. Oppositely, linear non-equilibrium
SG-model postulates that gradients and flows should be
small and linearly-dependent. The well-established only in
the framework of a bilinear entropy production [2,3] cross-
effects of thermo- and electro-diffusion as well as the
thermoelectric phenomena must be the non-linearly
interdependent in a TPM and the determinative factors for a
common transport flow. In other words, the problem of
NSG-model becomes so complex in the case of TPM that
its any simplified (and, even, rather approximate) solution
seems to be very useful for applications.

Additionally, the appearance in the recent years of a
“smart-zexture’s” (ST-) concept applied initially just to the
textile fabrics makes the theoretical investigation of TPMs
especially actual. The construction for them of an adequate
NSG-model confirmed by the relatively scarce and
restricted experimental data can lead to the novel insight
into ST-problem. The main aim of such investigations is the
search for the appropriate controlling parameters and
factors.

2 Reference ideal-liquid and perturbation ideal-
liquid with thermal conductivity regimes proposed
for NSG-model of heterophase phenomena
in any PM.

We refer now the readers of present work to our
previous results reported not only in [1] but also in [4-6]
where the foundation of fluctuational thermodynamics
model (FT- model) has been in detail represented. The main
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idea of latter was the extension of macroscopic non-
equilibrium  thermodynamics [2,3] on the spatial
mesoscopic, nano- and, even, microscopic (i.e. compatible
with the effective sizes of atoms, ions and molecules)
scales. The implied methodology of such extrapolation
maintains the hypothesis of LE-states but formulated,

exclusively, in terms of the independent fields (T,z,p)
and their unique thermodynamic potential P(T,z,¢). The
approach involves their conjugated, strongly fluctuated in
PM densities pe(ps,p,peq) determined per unite of

volume by the fundamental LE-condition. It is formulated
in FT-model [4-6] by means of the standard [2,3]

substantial derivatives (D/Dt=0/ot+0-0/or) for
the velocity field T(F,t):
1DP_DT Du,. Do [W]
p Dt Dt Dt Dt kg
where s=S/ m is the specific (per unit of mass) entropy
and & =4 / m is the specific charge (e denotes below the

specific internal energy E / m).

To avoid the misunderstandings, let us note that the
used also denotation D,, is related, mainly, to the
isothermal-isobaric mass diffusion coefficient [m?/s] in the
Fick’s law for the density gradient Vp [kg/m‘]. This
“force” as well as the similar, widely usable moisture
content gradient Ve [1/m] (see Egs.(2,3)) exist in the
interfacial layers finite thickness of the first-order vapor-

liquid (v,I) VLE-equilibrium phase transition. Hence, both
ones correspond to the equality of chemical potential

44, (P, T)=14(P,T) and themselves cannot obligatory
lead to the thermodynamic irreversibility of such
heterophase self-diffusion. The real cause for latter may be
only gradient Vz [m/s?]. Its dimensionality prompts to
many authors the questionable idea at the formulation of
LE-hypothesis in terms of the co-called modified fluid-
pressure: P=P; +ps g-z (f =v orl). It is composed

by the omnidirectional scalar (Pf ) and the strictly vector

(pf gz) components (see, for comparison, Eq.(4)). Such

combination of external gravitation field and molecular-
based internal field seems to be adequate at the description
of a convection flow by the known Bernoulli’s integral (see
below). However, the similar estimate of the diffusive, by
nature, velocity field described by the famous D’ Arcy’s law
for an irreversible barodiffusion through PM seems to be
oversimplified. One should take into account the quite
different influence of gravity on the air flow (where it is
negligible) and on the liquid flow (where it is essential).
The accepted form of LE-hypothesis in Eq.(1)
emphasizes the determinative scaling meaning of the

inhomogeneous mass density p(x,t). It leads, in
particular, to a possibility of the automodel solution in

terms of the diffusion scaled variable afDm ~~\x% [t for
the balance equation of total mass m. Unfortunately, both

alternative and widespread differential NSG-forms [7-15]
of this equation for PMs based on the strongly fluctuating

field of a one-dimensional moisture content w(X,t) seems
to be hardly adequate for TPMs:

ow =
ey =V-(DwVa)+ D VT +D,Vo+ Dsz), @)

%‘(’zv(o{w(x,t)}w)), E} [10-15], (3)

where the difference between the gradient applied to the
modeling vector velocity field V-U(x,t)(ie. its
divergence) and the gradient applied to the scalar potential

fields Vo, VT , Vo, Vz isemphasized by arrow placed

over the former. The similar distinction has been also used
by FT-model for the divergence of the vector heat flow

V. TQ included in both coupled balance equations for E

(internal energy) and S (entropy).

In opposite to the vast majority of known solutions
performed for Egs.(2,3), the stringent thermodynamic
hierarchy of the determinative sequence has been
introduced by FT-model for a chosen here set of physical

fields {P >T > u,0—>§,E,ix §} . Tensities of the

fundamental gravitation g

{ Ez—V(p [J/Cl-m], B [J-s/CI-m?]} fields determine the
relatively small external force-field influence per unit of

[m/s?] and electromagnetic

volume ¥ /V on the moving fluid:
Du 1, = . =oext | N

pﬁ——VP+\7(mg+qE+ququ) I:F:|(4)
The further FT-transformation of two main Eulerian
regimes for the above hierarchy has the following meaning
and value illustrated schematically by the reported below
sequence of steps. The first reference regime is introduced
as an alternative to the widely usable in the phenomenology
of heat and mass transfer EOS-models of ideal gas and of
its mixtures. An appearance of time t [s] in Eq.(1) is the
realistic feature at the study of actual non-equilibrium
processes in the finite volumes V [m® of any locally
heterogeneous (i.e. non-Gibbsian) N-systems [4-6].

IL-regime of NSG-model for a reference compressible
ideal liquid without the thermal conductivity and the
viscous damping (induced by the D’Arcy’s law)

Assumptions:
1a) the common density of external forces in Eq.(4) tends
tozero & /V 0.
1b) the adopted approximation of isotropicity in Eq.(4) for
the tensor of deformation: R; =—6;P (5; =0 at
i = ] ) provides the LE-interpretation of P;

1c) the implied identification of the resulting Eulerian
Eqg.(4) with the vector equation of motion in the

Newton’s mechanics (D/ Dt<d/ dt) for the

conservative field of a potential pressure-field P(x)
per unit of volume.
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Consequences and results
1A) the introduction by FT-model of the dimensionless
“thermodynamic time” for PM (and for any other
inhomogeneous media) is postulated by the equality
including the inverse volume:

dt, /t, =—dV /V =—(V-d)dt ®)

Its aim is the adequate account for the elasticity of medium
by the isothermal or isoentropic bulk modulus By ¢ (or by

the respective compressibility:

115 =1/ p)(oploP); (=11Br ).

AP At At Pa-s
oo = Brs =% [ 2 } (6)
L°V-u L Xt sk m

where the usual physical time At=t -1, and the pressure

drop through PM AP =P — Py are the finite 4-differences

which have been used instead of differentials d for the
simplicity and for the further correlation with Eq.(1);
1B) Since the relative “thermodynamic time” is now

presented as the ratio (4o / p). . in both characteristics

of elasticity By ¢ and yy ¢, further elimination of (VJ)-

divergence from the system composed by the Eulerian’s
equation of motion and by the continuity equation provides

straightforwardly the integrated pr  ( P)-dependences:

P = Po eXp(ZT,s APT,S) (a)
ap=po| ep( 71 5 4P 5)-1] (b)

1C) An absence of the viscous damping and the thermal
conductivity postulated for the ideal liquid corresponds to
the following isoentropic integral of motion in the Eulerian

description Z!- (t)~0 (which defines here the negligible
entropy production [2,3]):

ZtH(t)=p—'=

s J | ®)
=p|l—+0-Vs|=0
p(at+u Sj {m3K-s}

1D) Its usage in a combination with the LE-hypothesis of
Eqg.(1) leads immediately to the generalized Bernoulli’s
integral:

2
u Tl=
p(7+/¢+eqq0+s ]—

2

u J
=p|—+h|=const, | —
p[Z j [mg}

which is (again formally) identified by FT-model with the
total “mechanical” energy (i.e. with the “hamiltonian” of
mechanics) for a conservative “potential” enthalpy field

ph(P,s) [I/m°] per unit of volume:

, ©)
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ph(P.s) = pe(v.s)+P, [%} W)

1E) The IL-regime admits that any arbitrary path of the
possible perturbation non-equilibrium processes (see below
regime ILT) can be adequately expressed in terms of two
experimentally controllable caloric and thermal EOSs:

ph(P.T)=pe(v,T)+P(v.T),

Ah=Cp(P,T)4T (a) .
28=C,(v,T)AT (b) (42

(11)

where Cp [J/kg K] and C, [J/kg K] are the standard heat

capacities. Hence, to construct the thermodynamic
description of medium one should also know both f- and s-
types of EOS for any non-Gibbsian (i.e. fractal by its
nature) complex phase. It is composed by the fractal solid
(s) matrix of PM and by the fractal fluid (liquid and/or gas)
flows moving inside of it. FT-model imitates both ones by
the molecular-based concept of an excluded volume
introduced long ago by van der Waals.

Namely the alternative to entropy from Eq.(10) value
of temperature in the system of Eqgs.(11,12) stands it on the
second place (after the pressure) in the above
thermodynamic hierarchy of physical fields at the
description of real irreversibility. To corroborate such a
special role of T and of its conjugated variable of entropy s
for any non-equilibrium process, let us remind that just this
pair of isolines was chosen by Carnot to form the well-
known reversible cycle. It was supposedly realized by the
extremely (infinitely) quick processes at S=const and by
the extremely (infinitely) slow processes at T =const.
Strictly speaking, a literal recognition of such extremes
should lead to the certain inconsistency between the
differential forms of First and Second Laws for the
reversible processes (all realistic processes are occurred, of
course, during the finite time intervals):

dE=6Q-6W, {m,q}=const, [J]

o J
| NQ_y 1
T K
Another questionable extreme of Carnot’s ingenious cycle

is, of course, the choice of an ideal gas (ig) as one-phase
working  medium. Its density and  pressure

Pig (T,Pig)z RgM / RT should simultaneously tend to

zero (to be, in fact, negligible) in accordance with the
respective ig-EOS, while the specific ig-internal energy

from Eq.(13) €4 =(3/2)RT /M depends exclusively on

the temperature.

To avoid such oversimplifications, the strategy
proposed long ago by FT-model [4] seems to be the most
appropriate. Indeed, due to its realization one does not omit
on the ad hoc basis the divergences of the vector velocity

field V- l](X,T) in IL-regime and of the directed heat flow

(13)

(14)

V- jo(X,T) in ILT-regime below induced by a gradient

of temperature VT . Instead of this, it is naturally to
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eliminate their finite (i.e. unknown but realistic) values
from the explicit sequence of thermodynamically-consistent
transformation steps by the following scheme.

ILT-regime of NSG-model for a compressible ideal
liquid with the perturbation contribution of thermal
conductivity but without the viscous damping implied by
the D’Arcy’s law

Assumptions:
1a) the system of balance equations for entropy and internal
energy leads to the irreversible production of entropy

Z,(t) which becomes the changeable and x,t-dependent in
comparison with Eq.(8) assumed for IL-regime:

Ds 1- -
207 ()= po === o (xb);

bt T
1b) FT-model proposes to eliminate the itself divergence
V. TQ from the above system of balance equations instead

(1)

of an attempt to obtain the implied complex solution for the
respective parabolic equation of thermal conductivity:

V(}LVT)z(pCPVV)%r—T-ZS'LT(t), (16)
where the subscript P,v for Cp , is recognizable;

1c) the fundamental exact result [4] of such elimination
introduces the characteristic relaxation time-scale 7 [s] for
any PM and/or TPM:

zM =z (t=0)exp[-2t/ 7], (@)
which is the main parameter of ILT-non-stationary changes;
1d) the necessary estimate of initial ZJ"' (t=0)-value

can be obtained by solution of the much more simple
elliptic (stationary) variant of parabolic Eq.(16) in which

the entropy density p- S(X) and the relaxation parameter ¢
should be preliminarily found:

V(AVT)=—(psT), [ r-Ty-Z"" (t=0) (18)

Consequences and results
1A) the discussed Poison’s-type Eq.(18) for the T-field may
be, of course, supplemented by the similar equations for the
u-field and ¢-field following from the LE-condition
assumed by Eq.(1):

Ve-(ymVu)==—py /= (a)
@-(Gquo)z—(poeq)O/r (b)’

where coefficient of the mass conductivity y,, [kg¥/m-s-J]

(19)

and the electric conductivity oy [CI/m-s-J] have been

introduced. Their subordinated role in relation to the T-field
and the use of common <z-value correspond to the
abovementioned hierarchy of fields:

P—>T—u,0—0,El;xB;

1B) the respective cross-effects leading to the known
transport equations of thermal diffusion (Soret effect),
thermal-electric diffusion (Peltier effect) and electric
diffusion (Nernst effect) may be straightforwardly analyzed

for the respective set of quasi-linear T-dependent SG-

coefficients:
jm:_ym(T)V/u (a)

Jg=—0q(T)Ve  (b)
supplemented by two measurable linear SG-correlations for
thermal conductivity (Fourier’s law) and barodiffusion
(D’Arcy’s law):
(a)

Jg=—AVT

Jm=-7VP  (b)
1C) the rejection from the combined definition of an
electrochemical potential (,u+eq(p) in Eg.(1) and the
remarkable “flexibility” of adopted by FT-model LE-

condition which can be represented in terms of the Gibbs-
Duhem’s finite differences:

AP =pSAT + p Au+ pey Ap (22)
Leads immediately to the following SG-description of
thermal-electric diffusion for any f- and/or s-phase:

A _| 5 2.
{m}m‘[eﬂo !

It seems that the well-known Videmann-Frantz’s law
obtained for the proposed by Zommerfeld explanation of

the Lorentz’s coefficient L:

2 2
{i} :LST:”—(k—Bj T, (@4
T4 |, 3le

can be considered as the limiting discrete form of the more
general FT-EQ.(23) derived here for the thermal-electric
phenomena;

1D) the similar FT-correlation for the electric diffusion has
the especially simple form expressed in terms of the

specific charge e, = g/ m:

oq(T) 2

=(eq)y -

Ym (T) fs °

It is interesting and informative to compare this result
with the well-known Nernst-Einstein’s law expressed in
terms of the particle concentration n=N /V , elementary

electric charge gy and the self-diffusion coefficient D,
from the Fick’s law:

2
P} _ngs
D, fs kg T
jm=-DnVp (b)
Such comparison provides immediately the following

explicit ~ T-dependence of  y,, (T ) -coefficient from
Egs.(20,25):

(20)

(21)

(23)

(25)

(a)
. (26)

2
7m(T):pO Dm/(nkBT) (27)
as well as the generalized FT-correlation for electric

diffusion:
2
o(M)] _(ear);
.. nkgT

(28)
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Its physic sense is obvious: the more is temperature at any
density of electric charges, the worse becomes the electric
conductivity of a medium;

1E) the combined test of the previous 1C)- and 1D)-results
leads to the following FT-correlations for the thermal
diffusion:

A 2
—| =s55T (a)
I:ym(T):If,s "

H (sp)
D Js ¢ nkg

For comparison, the formal elimination of oy from the

(29)
(b)

Videmann-Frantz’s and Nernst-Einstein’s laws leads to the
much more restrictive description of the thermodiffusion
ratio from Eq.(29b):
A 7’
S = _kB n
Dy 3
because it ignores, in fact, the physical reason of thermal
conductivity (i.e. transport of heat which is related just to
the entropy density ps).

The physical adequacy, simplicity and the experimental
testability of the reported FT-correlations are the main
advantages used in this work to construct the solvable
TPM-model in Sects. 3,4. Let us discuss below, for
comparison, the conventional theoretical and simulation
approaches to the same or similar PM-problems. The
interested reader can find the more detailed description in
the cited references [7-9, 22-29]. Our aim here is to
emphasize the distinctions between the conventional PM-
models and the proposed NSG-model without the detailed
additional comments. We have changed some denotations
of the original references to make the comparison more
informative.

There are two main concepts in the discussed problem,
which can be termed one-medium and two-medium
approaches. The former adopts the local thermal
equilibrium for the volume-average fields of f-velocity

<uf> and both main thermodynamic fields (T), (P).
The abovementioned modified f-pressure determines the so-
called D’Arcy’s f-velocity up namely by the generalized
D’Arcy’s law:

(30)

P=Pi+p;gz (a) an
up =(ts)=—(K/7)V(P) (b)’

where K [m?] is permeability and # [Pa-s] is viscosity. In
accordance with our previous criticism, this approach
combined with the further omission of the f-velocity

divergence (§~<Uf > = O) leads to the unrealistic model of

incompressible (Po = Const) f-flow (see, for comparison,

FT-Eqgs.(5-7)). This conclusion is also related to the “old”
conventional interpretations of the D’Arcy’s law termed,
respectively, the drag theory and the hydraulic radius
theory. They were described comprehensively by Iberall
long ago [30] for usual PMs:
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j 32
Im="a4 TV L | m2s (32)

The D’Arcy’s correlation (developed for the flow of
liqguid water through sands) resembles, of course, the

Poiseuille’s law for the laminar flow of a continuous lig-

_po N _K 4P {_kg }

uid through the cross-section area 7R? proposed to
determine viscosity 77 =pv [Pa-s]| from experiment
(see also Eq.(31h)):

_poN _R% 4P
- 7R2 At _ET .

(33)

IJm

The conjectural replacement of the (R2 / 8)-quantity
in a medium by the effective quantity termed permeability
of PM K [m’] leads, often, to the confusions at its
experimental determination and interpretation [1]. The
additional,  rather crude, from our viewpoint,
approximations of the supposed convective velocity up

(termed the D’Arcy’s velocity) and the conjectural
Reynold’s number for PM:

N

= RePM =
A-c-At

(a) (b) (34)

d-up -
Up D" Ao
n
provide two alternative modeling variants of K / v -ratio
from Eq.(32):

3d? ~InRe”™ )| 4p

(2
16v(1—5).(4_|nRePM ) L

e (9]”” 1 | ap,
pO D — S v (178)2 L

The former expression of the drag theory of
permeability modified by Iberall [30] contains “the
dimension characteristic of the medium structure, for
instance, it is (either) the diameter (d) of the granule (or)
the fiber diameter”. In accordance with assumptions of
Eq.34 (a,b) this is very complicated and implicit for the

input parameters (d,e,p,,77) equation of the stationary

, (39)

PolUp =

(36)

modeling D’Arcy’s convective flow ( pyUp ). Such rather

formidable drag model is best applicable at high porosities
(e belongs to the range of 0.7 to 0.9). The latter expression
of the hydraulic radius (r) theory of permeability
developed, mainly, by Kozeny contains the purely
adjustable ratio of “an orientation PM-factor O to a shape
PM-factor S”. It turns out [30] that the hydraulic radius
model is applicable exclusively at low porosities in range ¢
0f0.1t0 0.3.

After such interpretation of the mechanical D’Arcy’s
flow contribution, the
volume-averaged balance energy equation becomes [2-5] a
variant of Eq.(16):

{ S (/Ce), ei}6§>+

i=s,f

+(poCp ), <uf>-V<T>—_

=V-[(%e +24)-V(T)]
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where two last terms in the left-hand-side provide a
combination of the convection contribution (?) for the
vector VT -field with the “volume-averaged heat source
term that can be used to describe the cure kinetics (?) of the
resin” [24]. The tensors of the effective thermal
conductivity 4, and of the thermal dispersion A4

introduced on the ad hoc basis in the right-hand-side of
Eq.(37) make, to our mind, any its solution to be rather
arbitrary.

We have not reported here the even more formidable
system of two coupled phase-averaged f,s-energy equations
proposed for the two-medium treatment of PMs-data [26-
29]. It is hardly to discuss the quite complex differential
equations in which the vast majority of input parameters
either unknown or determinable with the large

uncertainties. The concept of two different <Tf > and (T, )-

temperatures itself seems to be rather questionable if the
medium approach is realizable. Nevertheless, we will
demonstrate  below (Section 3) that the similar
discontinuities of the pressure AP and temperature AT
but observable within the same f-phase are unavoidable in
the realistic f-flows through TPM.

This observation returns us to the problem of
equilibrium first-order (I) VLE-phase transition arising
within any realistic PM due to the appearance of moisture
content w in its porous texture. We consider, however, the
conventional approach [7-9] based on the attempt to model,
separately, both v- and I-components of the common f-

velocity field u; as the purely mechanical methodology
(proposed long ago by Clebsh):
G =D Vw+D{ VT =

=(D2’0 + DCIU)VC()-F(D-\[I + D})VT .
The substitution of such superposition into Eq.(2) leads,
simultaneously, to the following modification of the energy
balance equation [7-9] in comparison, for example, with the
one medium description of Eq.(37):

ot
cyPm AT
(PC)" -4

~py A, V(D4 Ve DY VT) |-, (39
=V-(2"MvT)

where the latent heat Ah, [J/kg] (enthalpy of v—I

change) is related to the capillary condensation and plays,
formally, the role of a heat source term. Any solution of the
coupled EQs.(2,39) depends completely on the chosen
(supposedly experimental) magnitudes of ill-founded

coefficients: Daf,, DTf, ...and APV related to the “dry”

porosity ¢ [m*m® of PM. In total, the described
methodology of I-phase transition in PMs’ bears the strong
resemblance with the known Clebsh’s potential of the
convection velocity fields [4]. One may introduce them by
Eq.(1) without the above complexities:

(38)

ip =[Vy+sVT +€ V(p]r, [m/s]. (40)

3 Second law and zero-order (0) VLE-transition in
non-Gibbsian f-phases

To go beyond the Carnot’s cycle artificial extremes,
FT-model introduces not only the described reference IL-

regime with the zero entropy production Z."(t)=0 of

Eq.(8). It uses also the following alternative formulation of
Second Law proposed long ago by Joule, Horstmann and
others [16]:

T dT
where 6V is a variation of volume. It emphasizes here the
discrete nature of description accepted for 6Q on the

molecular and/or atomic levels. Again let us remind (to
avoid the misinterpretation) that the same symbol ¢ is used
in the present work for the thickness of TPM and to distinct
it from the large thickness L of usual PM. Due to such
distinction, we have postulated the principal anisotropy of
one-dimensional transport flows in which the above
“thermodynamic time” of Eq.(5) should be replaced for

TPM by the one-dimensional ratios: ts=0,/07,
dts /t;=—d5/ 5=—(V,-Uy)dt.  The  similar

transformation will be used for the linear compressibility
Xs AP =—461 &y and linear expansivity

a5 AT =A5 1 &, of TPMs. From the viewpoint of FT-

model [4-6] both variations in Eq.(41) should be considered
as the quantisized finite values (i.e. the quantities composed
by the great but finite number of the microscopic portions

of energy kgT [J] and volume of particles

[b ~ d3] [m]).
The presence in the right-hand side of Eq.(41) the only
parameters of a ther-mal EOS (P\V,T) supports the

above-mentioned concepts of FT-model. The me-chanical
theory of heat assumes in this formulation (without any
appeals to the unrealistic extremes) that the internal energy
content and/or the enthalpy content in Eqs.(10-12) of a
body during its state change can be calculated through
nothing more than the P,V,T-information. Hence, the heat
quantity consumed during any such change is irrespective
of what are the path (usually, an isoline) and the
thermodynamic cause (usually, a gradient) for this
consumption.

Particularly, Joule corroborated the consequence of
Second Law by the experimental adiabatic compression of
different liquids [16]:

AT :(T dd )AS P,
PCp
where ap =—(1/ p)(0p/ OT),, contains, again, the

“thermodynamic time” introduced by FT-model. All
processes are here realizable during the finite physical
time-intervals At. The main conclusion from the Second

Law is that the adiabatic compression of a liquid: A, P >0

RQ_P sy, (41)

(42)

should always lead either to its heating AT >0 if
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ap >0 or to its cooling AT <0 if ap <0 (asitisin

water at temperatures below than: t =4 °C, for example).
The meaning of the generalized Bernoulli’s integral
from Eq.(9) becomes now recognizable for any PM. It is
the derived in the present work thermodynamic extension
of its traditional mechanical value [3] (see our comments to

Eq.(1)):
2
u J
— z|+P=const | —|.
,00[ 5 +9 }r [mJ

The latter implies: a) the stationary, non-viscous laminar
flow of incompressible ( oy =const) liquid (or, even, gas)

in the external gravitation field g ; b) the absence of the

internal energy and heat content h (enthalpy) contributions;
c) the implied absence of the permeability for the fluid
particles in its imaginary walls. One may conclude that the
more is a convection contribution in the brackets, the less
becomes a molecular momentum flux (pressure) in such
rather restrictive and purely mechanical integral of a fluid
motion.

The NSG-model rejects in its IL-regime all above
assumptions a), b), ¢) and proposes the much more flexible
description of IL-flow through any PM. In this case, the
more is a convection non-stationary contribution

uz(t)/2, the less becomes a heat content h(t)

(43)

composed by the interchangeable internal energy e(t) - and

pressure P(t)—components. However, this interconnection

of “kinetic” and “potential” parts of “hamiltonian” in the
brackets of Eq.(9) should be additionally controllable by its
changeable mass per unit of volume(i.e. by p(t)). Besides,
the dynamical nature of such changes in the LE-state should
take into account not only the compressibility of IL-flow by
Eq.(7) but also the possibility of internal vapor-liquid
(v—1 or I =) capillary phase transitions occurring in
the pores of PM.

It is the remarkable feature of the developed here
NSG-model and its interpretation adopted by Eq.(41) that
the latter corresponds congruently to the differential
Clausius-Clapeyron’s equation for any I-phase transition:

dP)  5Q  An(T)

{d_TjHV TV Ta(T)
Thus, the T-dependent ratio of discontinuities in the
enthalpy (i.e. in the specific heat content) and the specific
volume (i.e. in the inverse (v=1/p) mass content)

reflects, as a matter of fact, the thermodynamic
irreversibility of a real phase transition (!). The natural
conclusion is that a spontaneous process of condensation
(including its local capillary form) v —I produces
quantitatively the lower cooling effect |-6Q/T| in

comparison with a concomitant process of vaporization
consuming the external heat at the same temperature
(6Q/T) from Eq.(44).

The supposed hysteresis of the “latent” heat 4h (i.e.
its thermodynamically well-grounded by FT-model
irreversibility between the consuming Ah_,, and emitting

(44)
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4h,_,; heat contents) can be experimentally corroborated

for any non-Gibbsian i-phases (i denotes g (gas), v (vapor),
I (liquid), s (solid) etc.). Their main signs and features are
the finite volume V and the finite time At of observation in
which the LE-hypothesis is applied to the heterogeneous
two-phase l-phase transition’s ij-state. Both coexistent
non-Gibbsian i,j-phases cannot (separately) be completely
homogeneous in contrast to their idealized infinite Gibbsian
counterparts. The typical example of a realistic
heterogeneous i,j-coexistence for a pure fluid is, of course,
the LE-states of a moist vapor (i.e. of the mechanical
mixture formed by the bubbles of v-phase in I-phase or by
the drops of I-phase in v-phase). This type of distribution
for a mass content is a typical situation also for PMs.
FT-model [4-6] excludes (as an inaccessible result for
the finite-size measurements) the reality of the strict
Gibbsian equalities between the respective i,j-fields

(R=P 4=u;, Ti:Tj, @, =@j). Thus the same

constraint is also realizable for the LE-state between two
actual non-Gibbsian i,j-phases. However, FT-model admits
the easily verifiable by experiment with the moist air (ma)
relative stability of such mixed i,j-phase in the saturated

density range of a 0-phase transition: Ap:pj —p; (see

below). This relatively stable colloid (as a matter of fact)
heterogeneous formation has been termed interphase (not
interface (!), i.e. not the interfacial layer presumed in the
standard van der Waals-Maxwell-Gibbs (WMG) theory of a
unified EOS and its equilibrium phase transition [17,18]).
FT-model assumes so the metastable LE-states (they exist
during the finite At-interval) but rejects completely the
unstable states of a spinodal decomposition.

This natural admission leads to the novel concept of a
congruent zero-order (0) phase transition [17-21]. The
standard positive characteristics for I-phase transitions
a1 >0 and Cp >0 should become sometimes great but

still finite ones for 0-phase transitions. The magnitudes of
these derivatives correspond to the supposed by FT-model

very small dishalances between Tj; -fields AT =T; —T; at

the forcedly adopted Gibbsian equality for ij-pressures

Rj =B =P;j. Vice versa, the same is true for the small

disbalance: AP =P; — R at the condition: T;; =T; =T;.

Thus Eq.(44) for a Gibbsian’s |1-phase transition should be,

for example, replaced by the following equation for the 0-
phase transition:

AP AAnAT)

AT pTi(avIAT),  Tal

L]

Its congruence with the reference s-path of EQ.(42) is
obvious. Moreover, it is straightforward task [16] to derive
the similar equation for the second-order phase transition

(1) in which the role of given (initial) density p; becomes
pronounced:

(45)

(40" _2 alct1p)
AT _TiA(ag /Pi) |

This variant of FT-model corresponds to the limiting case
of an equilibrium state between two ij-phases occurring at

(46)
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their compatible densities and enthalpies. The respective

conclusion is that the increase of pressure (AP)“ >0
alongside of the path (dP / dT)II leads to the heating of
medium (AT)II only if the both signs of discontinuities
A(ag /pi) and A(Cg /pl) are the same (+/+ or

—/ —). This result can be of great importance (Sect. 4) for
the development of a flexible predictive NSG-model for
TPMs too. In this type of PM the sharp “jumps”

(discontinuities) of second thermal ( yt,ap) and caloric

(C,.Cp) derivatives in the different pores are not only
possible but unavoidable.

4 Fluctuational EOS for hydrophobic and hydro-
philic TPMs

We have assumed in Sects. 2,3 that the thermal
conductivity A [W/m K] and the relaxation period 7 [s] in
Egs.(21a,b) for two main measurable thermodynamic forces
of medium (VT and VP) maintain their constant values
while two other transport coefficient of the particle self-

diffusion 7, (T) and the electric charge conductivity

oy (T)become T-dependent in the proposed model of

NSG. This assumption is in a complete correspondence
with the Second and First Laws combined by the so-called
thermodynamic EOS for single-phase i-states and two-
phase ij-states [18] (the subscripts dp and 6T emphasize the
heterogeneous nature of the 0-phase transition):

pot|[R + p? %
boer ), ek
(313
T T
oP; € —€j
Ri =Tij o AR S| T
S Pi=Pi )q

- ay o )

The accepted by FT-model order of priority for fields from
Eq.(1) is here confirmed. Moreover, the appearance of both
caloric A-discontinuities for entropy and internal energy in
Eq.(48) may become the elucidative factor for explanation
of an irreversible 0-phase transition introduced for the non-
Gibbsian i,j-phases in Sect. 3. We will omit the superscript
0 and the double subscript ij below to avoid the
overcomplications in denotations. The fluctuation i-phase

, (47)

(48)

interpretation of thermal pressure (R, / 6T )p :a,ig / ;A

(see Egs. (41,42)) extended here on its ij-phase counterpart

(dP/dT) 5 =P ! yr (see Egs. (44-46)) leads to the
unambiguous conclusion. It concerns the so-called internal

(energy) pressure term (8ei /8v)T from Eq.(47) and its
respective generalization (Ae / Av)a‘r from Eq.(48). Both

ones should be dependent on the discrete by nature
variables (i.e. the numbers of particles and free electric
charges). They have to be determined as the complementary
parameters of a thermodynamic medium with the following
exceptional role. They should compensate and relax any
external irreversible changes of two main thermodynamic
contributions arising due to the forces VP and VT in
accordance with Egs. (41,42) and/or (44-46). The result of
such compensation includes the main characteristic FT-
parameter of relaxation 7 [s]:
(a)

Vm(T)ZT'p(T'P)
(b)’

oq(T) =gz ! po(T.P)
where the D’Arcy’s law determines by Eq.(32) the
experimental z-values[1] as the ratio of the hardly
measurable permeability K [m?] to the purely theoretical
kinematic viscosity v [m?/s]. Eq.(49) corresponds to the
usual Joule’s density of heat pg Wwhich is supposedly

(49)

compensated by the thermal conductivity:

oq(T)=i56% 1 (AVT). (50)
The derived relatively simple NSG-correlations may form
the reliable basis for the creation of smart textures. Despite
the widespread belief on contrary, neither VP nor VT
can be directly usable as the transport governing variables-
forces. Both are dependent on the changeable external

conditions of TPM-exploitation. Nevertheless, it follows
from our consideration that a combination of two desirable

fixed flows of mass and heat ( jy,, jo) could be provided

through TPM just by the appropriate choice of 7 VP - and
AVT -magnitudes. They should be co-ordinated with the
controllable variable namely of internal pressure
(& / ov), or its variant (de/ Av)s . We intend to
demonstrate below that both are determinable by the T-
dependent cohesive vdW-coefficient a (T) introduced in
FT-EOS. In this case, the obtained explicit correlations for
Ym(T)- and o (T)-parameters in Eqs.(32,49,50)
become the important indicative factors to control, for
example, the given optimal conditions for the comfortable
wear of TPM-fabrics.

We have argued in our previous work [1] that the
interrelation between the volume densities of matrix

My / Vi, moist air mg, /V,, and water content
(liquid) m, /'V, is essential to specify the following factor
of difference between the hydrophobic (hb) and hydrophilic
(hl) TPMs:

A= Pm +(pma Y )Vda IV +

: (51)

+(P1 = Pma VI 1V
where the additivity of the dry air (da) volume
(Vga =Vma +V|) in the total representative volume
V =Vy, +Vy  with the “dry”
&=Vya IV have been assumed. Thus the indicative factor

of above difference can be introduced by
two inequalities for the a priori unknown liquid volume

fraction V| / Vg, :

standard porosity
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PuPra Moo (hbomatrix), (52)
A~ Pma Via
_ V :
Pv " Pra o 2 <1 (hl-matrix).  (53)
P ~Pma  Via

Since both densities of TPM: p, (at the given level

of relative humidity) and o) ~my /V (pga ~0) (at the

zero moisture content @ =0) are, in principle, measurable
quantities, one should, firstly, assume the following
experimental estimate:

0
AR oA A
Va €-p(T)
where o (T ) is the saturated T-dependent liquid density of

water. This simple assumption leads, however, to the rather
interesting and useful for practice observation. The hb-
condition in Eq.(52) can achieve the Ilimit of its
applicability with the permanent increase of moisture

content (t). At this t-moment the given hb-texture

becomes, formally, the modified hl-texture in which the
liquid fragments may exist inside of some capillary pores.
So the study of capillary condensation is necessary for both
hl- and hb-structures.

The further treatment of the wide set of experimental
TPM-data in [1] has completely corroborated the result of
such analysis. Indeed, the calculation of standard TPM’s-

surface density y, [g/m?] (where the TPM-volume is
V = A-9) has shown the existence of two quite different

types of its behavior . It was revealed for the different sets
of hb- and hl-fabrics, respectively:

~w [g/ky], (54)

PR =10 A8 (a) 55
TA==10 +/ -5 (D)

instead of the trivial linear oJ-correlation with the
homogeneous TPM’s-volume density y, =, 6 . In other
words, the very small J-thickness of TPM can become in a
combination with the given asymptotic parameter =y, the
determinative factors for its changeable properties and, first
of all, permeability in accordance with the proposed in [1]
alternate basis I/b-model of the moist permeable media
(see, in particular, Eq.(50)).

The general f- and T-dependent FT-EOS was
introduced by one of us (V.B.R.) [17] in the van der Waals
(vdW)-like 3-coefficient’s form:

2FT 1 b (T)p—c¢(T) a;(T)p
1-b¢ (T)p ke T

where p [m?] denotes here the concentration of particles

N/V and Z; =P; (pkgT). Its further investigation

and application to the wide set of problems [5,6,18-21] has
corroborated its universality and high level of accuracy.
The latter is achievable at the description of any i-phase
and/or ij-phase states if the coexistence curve (CXC) data
of I-phase transition are known from the reliable

experiment {PS(T),pg (T).m (T)} More accurately,

such information is necessary and enough to evaluate the T-

. (56)
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dependent coefficients {af D¢ ,Cs } of f-phase without any

adjustable parameters. In this work we propose to extend
the FT-EOS’ methodology (which rejects the vdW-concept
of a unified (i.e. common for both coexistent f-phases) EOS
[21]) on the description of s-phase (i.e. TPM’s-matrix) too.
Our arguments can be discussed below for the
convenience of reader in the simplified vdW-form with two

constant coefficients {ag,by} :

qow_ _ Bop  3(byp)
aw g _
1-byp kghyT
) 57
Ly Teft-s) o
- Es T

where the characteristic Boyle’s (B) temperature Tg of a
fluid has been introduced in terms of B-density pg and
cohesion coefficient a;:

Tg =89/ (ksbp)=(ay/kg)ps-

This form defines the “dry” porosity ¢ by means of the

(58)

ratio of free volume (V —Nby), where by - excluded
molecular volume, to the representative total volume V. It is
the (1—by p)-parameter determined by the specific

repulsive interparticle potential of f-phase.

But in this framework any structural aggregate
properties of an excluded volume are omitted. We have
used this simple observation to extend its notion on two hb-
and hl-variants of s-phase, respectively:

bhbp l-¢
zP_q=_0 2 7% 0" =0, (59)
s 1_b8bp < 2l
hl
1_
AL R (-¢) (60)
kaO T

To the best of our knowledge, such postulated on the base
of Eq.(56) PM-definitions are the first attempt to
incorporate the physically plausible molecular-based

parameters (@g,by) of matrix M for the description of its
interaction with the molecular structure of f-phase. An

absence of cohesion contribution agb =0 in hb-textures of
Eq.(59) reflects, in particular, their inability to wetting by
the moist f-flow. The remarkable consequence of the
proposed approach is a possibility to combine the given
properties of f- and s- phases by the well-known vdw-
concept of one-fluid approximation. It is most usable at the
description of binary f;, f,-mixtures. We plan to represent

the respective foundation of such idea in the next
publications for f,s-type non-Gibbsian phases.

Some results of the discussed FT-methodology seem
to be especially informative [31,32] at the application to
PMs in the low-temperature range of water (the main
component of a moisture air) located between its triple
T, =273.15 K and normal boiling T,=373.15 K
points. To illustrate the main 0-phase transitions
approximation  (Z; =0, Z;~1) which becomes
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appropriate in this range, the tabular CXC-data [33] are
represented in Table 1 and Fig. 1. The monotonously

changeable but negligible values of Z;(T)~0 as well as
the oscillating deviations of Z (T )=~1 from the ideal-gas

estimate: Zj; =Zg =1 lead in accordance with Eq.(57) to
the basic well-established vdW-behavior of f-phase [31].
Two values of free volume in I-phase +e (T) are

compared in Fig. 2 with that in g-phase €, (T ) to confirm

the obvious heterogeneous nature of former. This is a
typical macroscopic-interphase:

1 4T T
g,:a(li ﬁ‘ﬂ} (2) =1 (). 6D

For water the appropriate numerical estimates are [32]
Tg =2379 [K], by=0.01658 [dm*mol] but the
constant vdW-estimate of the cohesion coefficient
8y =474 [J dm*mol’] seems to be rather crude for our
aims. The more appropriate T-dependent estimate of
ay(T) can be obtained for the low-temperature variant of
FT-EOS (56) at the I-phase transition constraints:
bp =bs; cy=cf =0 and:
aO(T):ag(t):al(T):_ (62)
=—(&—eg)/ (o1~ rg)
Its substitution in the universal form of

thermodynamic two-phase EOS (48) gives the following
system of the coupled f-porosities:

1 1
s=o—— (a) g=o—— (b). (63)
ZyA-1 Z Ay +1
This refined quantity is also represented in Fig. 2.
The cross-impact of Z;- and

A¢ =(T/PR,)" (dr, 7 dT)" -parameters is here the very
interesting feature of the proposed &4 -estimates. It is

coherent, of course, with the concept of 0-phase transition,
which implies the interaction of coexistent f-phases. Such
FT-correlation expressed in terms of the non-dimensional

Z;-and Ay -factors by Eq.(63) cannot be described by
the conventional WMG-theory of the I-phase transition.

The latter adopts, at best, the thermodynamic reversibility
of g —1 and | — g VLE-transient phenomena following

from the unified EOS’-concept and leading to the common
f-coefficients of the type those from Eq.(62). Hence, the

presence of different A (T)-and A, (T)-reduced slopes

in the derived here Eq.(63) corresponds, namely, to the 0-
phase transition from EQ.(45) but not to the I-phase
transition  from  Eq.(44) (where the equality

A(T)=A(T)=Ay(T) should be strictly fuffilled).

The fundamental distinction of the congruent CVL-
diagram [5,6,18-21] from the traditional VLE-diagram
requires the account for irreversibility indicated by the

difference in the direct (A4,qe(T),4 4h(T)) and
reverse  ( Aey; (T),4hg;(T)) two-phase changes
described by the caloric EOSs from Eq.(11,12).

Table 1 — The input CXC-data [33] (Ps, Z), Zg) and FT-predicted (A;, A, &, Pr)-parameters (see text) for the low-tempe-

rature range [Ty, T,] of water.

T, K P, kPa Z Zq A A, & Pui, Pa
273.16 0.6112 4.845-10° 0.9993 15.40 19.84 0.0695 0.0030
275.15 0.7054 5.551-10° 0.9985 14.58 19.66 0.0738 0.0039
280.15 1.0013 7.739-10° 0.9989 14.07 19.22 0.0766 0.0077
285.15 1.4016 1.065-10° 0.9986 13.80 18.80 0.0782 0.0149
290.15 1.9364 1.447-10° 0.9984 13.50 18.39 0.0801 0.0280
295.15 2.643 1.943-10° 0.9984 13.25 18.08 0.0818 0.0514
300.15 3.564 2.580-10” 0.9979 13.05 17.63 0.0832 0.0919
305.15 4,753 3.389-107 0.9971 12.75 17.25 0.0854 0.1611
310.15 6.274 4.409-107 0.9972 12.47 16.90 0.0875 0.2766
315.15 8.198 5.681-107 0.9962 12.14 16.56 0.0901 0.4657
320.15 10.614 7.255-10° 0.9962 11.96 16.23 0.0916 0.7700
325.15 13.612 9.181-10° 0.9951 11.76 15.91 0.0934 1.2497
330.15 17.312 1.153-10" 0.9941 11.43 15.60 0.0965 1.9957
335.15 21.84 1.436-10" 0.9936 11.19 15.30 0.0988 3.1372
340.15 27.33 1.776-10™ 0.9924 10.95 15.01 0.1014 4.8537
345.15 33.96 2.181-10" 0.9916 10.75 14.73 0.1035 7.4075
350.15 41.89 2.660-10" 0.9904 10.50 14.46 0.1064 11.1424
355.15 51.33 3.224-10" 0.9891 10.29 14.20 0.109 16.549
360.15 62.49 3.883-10" 0.9876 10.09 13.94 0.1116 24.267
365.15 75.60 4.649-10" 0.9861 9.89 13.69 0.1143 35.149
370.15 90.93 5.537-10" 0.9844 9.70 13.46 0.117 50.351
373.15 101.325 6.134-10" 0.9835 9.58 13.32 0.1187 62.156
375.15 108.76 6.559-10" 0.9829 9.51 13.23 0.1198 71.333
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FIG.1(a) — CXC of water [33] as an example of the strongly
curvilinear diameter. The formal application of Zeno-line's
methodology may lead, in principle, to the serious errors at

the prediction of critical parameters o (T¢,P. ). 1(b) — The
elongate CXC and its curvilinear diameter provide the exact
location of critical point although the rectilinear part of |-
branch shown by thin line is located for H,O significantly
lower than the actual critical point (black square).
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Fig. 2 — Volume fraction of liquid water & (T) in the total

volume of moist air (ma) and the drop of intra-capillary
pressure Ry (T) in the hydrophilic (hl) PMs.

The important practical consequence of this
requirement is the necessity to introduce the certain CVL-

corrections, especially, in the standard (h,a)) -diagram

[33]. It is based on the physically-plausible vdw-
interpretation of I-phase [34]. Its main parameters are

(p| € ) while s; — 0. This concept leads to the choice of
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zero-point for entropy of I-phase s; (T, =273.16 K)=0

at the triple point of H,O and to the ideal-gas’-estimate of
its enormous value in g-phase:

hg (T) =Ty Sig (T )+ (Ty) . where  hyg O by (Ty) = 0.
Just the rather arbitrary and singular estimate of
hig (Tt ) / s (T, ) -ratio at the triple point corresponds to the

slope of reference isoenthalpy h,, =q in the (T,)-

plane at the construction of standard (h, ) -diagram.

We propose to take into account that the experimental
value of the consumed vaporization heat:

Ag h= hg (Tb P = O.101MPa)—

—h (Tb,PS = 0.101MPa) ~ 2.26kJ / kg
measurable parameter at the adjustable determination of the
above initial value [33] for water: by (T;)= 2.5-10°

[kd/kg]. FT-model states that the respective latent heat
Ath of the reverse condensation process ( g —1) is

is the main

always significantly less for the real 0-phase transitions at
which,  additionally, R (T)<R,(T). Hence, the
introduction of such correction at the standard construction
of (h,®)-diagram may be, in principle, the essential factor
of adequacy for the description of any condensation

phenomena including capillary one.
In this work we have developed the rather simple and

useful estimate of the intra-porous pressure B, <P, (T)

within hl-systems. It is based on the previous results and
admits the following combination [18,36] of the well-
known correlations introduced long ago [37] by Laplace
and Kelvin:

Ry / P (T)=exp{Z) (T)[1-R(T)/ Ry (T) ]} (64)
Its evident advantage is an absence of any hardly
measurable for PMs and TPMs parameters of surface

tension and fractal geometry of a dividing intra-capillary
surface. The capillary condensation is formally impossible

in hb-textures for which B, > P (T).
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Fig. 3 — FT-calculated caloric functions of discontinuities
in the enthalpy and entropy compared with the classical
WMG-estimates in PMs.

To solve this transcendent equation we have used its
differential form, which immediately leads to the
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remarkably simple estimate (shown also in Fig. 2) for the
sought-for intra-porous pressure:

Hence, the independent B, (T )-estimate may be the first

step to use the discussed in this work hierarchy of fields and
the developed NSG-model in accordance with the derived
in Sect. 1-4 resulting equations of a combined mass-heat-
charge transport.

5 Conclusion

The proposed NSG-model opens the new wide field of
the relevant investigations in the non-equilibrium
thermodynamics due to the formal absence of an x-
integration and of its usual complexities. We consider that
only t-dependence of indicative parameter are essential at
the description of transport processes through TPMs.
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