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The well-known complicated system of non-equilibrium balance equations for a continuous fluid (f) medium needs the 

new non-Gibbsian model of f-phase to be applicable for description of the heterogeneous porous media (PMs). It 

should be supplemented by the respective coupled thermal and caloric equations of state (EOS) developed specially for 

PMs to become adequate and solvable for the irreversible transport f-processes. The set of standard assumptions 

adopted by the linear (or quasi-linear) non-equilibrium thermodynamics are based on the empirical gradient-caused 

correlations between flows and forces. It leads, in particular, to the oversimplified stationary solutions for PMs. The 

most questionable but typical modeling suppositions of the stationary gradient (SG) theory are: 1) the assumption of 

incompressibility accepted, as a rule, for f-flows; 2) the ignorance of distinctions between the hydrophilic and 

hydrophobic influence of a porous matrix on the properties; 3) the omission of effects arising due to the concomitant 

phase intra-porous transitions between the neighboring f-fragments with the sharp differences in densities; 4) the use of 

exclusively Gibbsian (i.e. homogeneous and everywhere differentiable) description of any f-phase in PM; 5) the very 

restrictive reduction of the mechanical velocity field to its specific potential form in the balance equation of f-motion as 

well as of the heat velocity field in the balance equation of internal energy; 6) the neglect of the new specific 

peculiarities arising due to the study of any non-equilibrium PM in the meso- and nano-scales of a finite-size 

macroscopic (N,V)-system of discrete particles. This work is an attempt to develop the alternative non-stationary 

gradient (NSG) model of real irreversible processes in PM. Another aim is to apply it without the above restrictions 1)-

6) to the description of f-flows through the obviously non-Gibbsian thin porous medium (TPM). We will suppose that it 

is composed by two inter-penetrable fractal sf-structures of f-phase (formed by the “mixture” of g- and l-phases termed, 

in total, interphase) and solid (s) porous matrix termed below s-phase. The permanent influence of humidity and the 

respective increase of the moisture content in TPM including the unavoidable phenomenon of capillary condensation 

are the main factors to occur the non-stationary transport f-flows through its texture. 

 

Key words: thin porous media; non-stationary gradient model; transport process of fractal fluid phases;  non-gibbsian 

heterogeneous structures. 

 

 

Нова нестаціонарна градієнтна модель переносу тепла, маси 
і електричного заряду в тонких пористих середовищах 
 

В. Б. Роганков, М. В. Швець, О. В. Роганков 

Одеська національна академія харчових технологій, вул. Канатна, 112, Одеса, 65082, Україна 

 

Добре відома ускладнена система нерівноважних рівнянь балансу для безперервного флюїдного (ф) середовища 

потребує нової не-Гiббсівськоi моделі ф-фази, щоб бути придатною для опису гетерогенних пористих 

середовищ (ПС). Вона повинна бути доповнена взаємопов'язаними термічними і калорічними рівняннями стану 

(РС), розвиненими спеціально для моделі ПС з метою її адекватності і розв’язуваності для незворотних 

процесів ф-перенесення. Ряд стандартних припущень, прийнятих в лінійній (або квазілінійній) нерівноважній 

термодинаміці, засновані на емпіричних, викликаних градієнтами термодинамічних полів кореляцiями між 

потоками і силами. Це призводить, зокрема, до надмірно-спрощених стаціонарних рішень для ПС. Найбільш 

спірними, але типовими моделюючими припущеннями стаціонарної градієнтної (СГ) теорії є: 1) допущення 

нестисливості, прийняте, як правило, для ф-потоків; 2) ігнорування відмінностей між гідрофільним і 

гідрофобним впливом пористої матриці на ф-властивості; 3) неврахування ефектів, що виникають завдяки 

виникненню внутрішньо-пористих фазових переходів між сусідніми ф-фрагментами з різкими відмінностями в 

густині; 4) використання, виключно, Гiббсівських (тобто, однорідних і всюди диференційованих) уявлень у 

будь-який ф-фазі всередині ПС; 5) дуже обмежуюче припущення потенційності поля механічної ф-швидкості в 

рівнянні руху ф-середовища, а також потенційності поля теплової ф-швидкості в рівнянні балансу для 

внутрішньої енергії; 6) нехтування новими специфічними особливостями, що виникають при вивченні будь-яких 

нерівноважних ПС в мезо- і нано масштабах скінченно-мірної макроскопічної (N, V)-системи дискретних 

частинок. Ця робота є спробою розвинути альтернативну нестаціонарну градієнтну (НСГ) модель реальних 

необоротних процесів. Іншою метою є її застосування без зазначених вище обмежень 1) -6) до опису ф-потоків 

крізь очевидно не-Гiббсівське тонке пористе середовище (ТПС). Ми будемо припускати, що вона утворена 

двома взаємо-проникними фрактальними тф-структурами, що складаються з ф-фази (гетерогенної «суміші» 

газової (г) і рідкої (р) фаз, названих в цілому, інтерфазою) і твердої (т) пористої матриці , названої нижче т-
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фазою. Постійний вплив вологості і відповідне збільшення вмісту вологи в ТПС, включаючи неминуче явище 

капілярної конденсації, слід вважати основними факторами, що стимулюють нестаціонарнiсть ф-потоків 

переносу через її структуру. 

 

Ключові слова: тонкі пористі середовища; нестаціонарна градієнтна модель; процеси переносу в 

фрактальних флюїдних фазах; не-Гiббсiвськi гетерогеннi структури. 
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1 Introduction 
 

The functioning of a variety of TPMs (thin porous 

media which share the wide range of thickness δ from the 

textile fabrics and the polymer protecting plates up to the 

walls of buildings) needs the clear recognition of the 

relevant transport processes. It is hard task even to 

enumerate the respective experimental and theoretical 

works considering the one-dimensional heat-and-mass 

transfer through the usual PM at the given stationary 

gradients of pressure  
t

P P / x P / L      and 

temperature T   
t

T / x T / L    . Thus, one 

admits that a sample of PM in the chosen x-direction of its 

fixed thickness L (it is here compatible with two other 

linear sizes) has the maintained isothermal-isobaric (hence 

the locally-equilibrium) LE-conditions on its internal 

 1 1T ,P  and external  2 2T ,P  sides-planes. Second Law 

determines, of course, the direction of a resulting forced 

heat-mass flow in dependence on the given relationship 

between 1T  and 2T  as well as between 1P  and 2P . The so-

called “dry” air porosity 1da MV / V    and the certain 

implied spatial structure of s-phase (porous matrix M) are 

the determinative factors for any PM at the traditional study 

of transport processes. The unavoidable moisture content of 

f-phase f dam / m   is ignorable, as a rule, in such one-

phase investigations. 

The most serious and unsolved until now problem is 

the necessity to extend such oversimplified stationary-

gradient model (SG-) on the description of nonstationary 

processes by the realistic gradient models (NSG). It arises 

if the initial and boundary conditions become t-dependent. 

Another manifestation of complexity in this problem is an 

occurrence of a local first-order phase transition 

(condensation and/or vaporization) in the pores-capillaries 

induced by their hydrophobic (hb-) or hydrophilic (hl-) 

internal surfaces and by the possible change of the applied 

to PM external (P,T)-conditions. One may add to these 

factors the changeable influence of a relative humidity  , 

% which provides the inflowing moisture air  content  t  

in any PM. Therefore, itself notion of “dry” porosity ε loses 

perceptibly its meaning with a gradual increase of ω inside 

of texture. Simultaneously, the respective swelled shape of 

PM and its mechanic deformation become the essential 

factors at the description of transport processes. 

It was recently shown [1] that all above-mentioned 

characteristics of a realistic PM can manifest their 

cumulative effect by the rather simple experimental 

observation, at least, for the particular case of TPMs (see 

below). The specific feature of latters is the very small 

actual magnitude of thickness ( L  ) which becomes 

much less than two other linear TPM-sizes. From a formal 

viewpoint, all described trends of a supposed NSG-model 

should be pronounced in such actually one-dimensional 

transport. Indeed, the thermodynamic forces-gradients 

become augmented: P P / P / L      and 

T T / T / L      in comparison with a usual PM. 

Moreover, it is naturally to admit the failure for TPM of the 

non-equilibrium linear SG-model of thermodynamics [2,3]. 

Formally, the gradients of fields ( P ; T ;   – of 

chemical potential,   – of electrostatic potential) 

through TPM become great while the respective vector 

convection of mass ( u ) and/or diffusion flow (of 

momentum muj , heat Qj , mass mj  and free charge qj ) 

cannot be too great to provide its expected proportionality 

to the above gradients. Oppositely, linear non-equilibrium 

SG-model postulates that gradients and flows should be 

small and linearly-dependent. The well-established only in 

the framework of a bilinear entropy production [2,3] cross-

effects of thermo- and electro-diffusion as well as the 

thermoelectric phenomena must be the non-linearly 

interdependent in a TPM and the determinative factors for a 

common transport flow. In other words, the problem of 

NSG-model becomes so complex in the case of TPM that 

its any simplified (and, even, rather approximate) solution 

seems to be very useful for applications. 

Additionally, the appearance in the recent years of a 

“smart-texture’s” (ST-) concept applied initially just to the 

textile fabrics makes the theoretical investigation of TPMs 

especially actual. The construction for them of an adequate 

NSG-model confirmed by the relatively scarce and 

restricted experimental data can lead to the novel insight 

into ST-problem. The main aim of such investigations is the 

search for the appropriate controlling parameters and 

factors. 

 
2 Reference ideal-liquid and perturbation ideal-
liquid with thermal conductivity regimes proposed 
for NSG-model of heterophase phenomena 
in any PM. 
 

We refer now the readers of present work to our 

previous results reported not only in [1] but also in [4-6] 

where the foundation of fluctuational thermodynamics 

model (FT- model) has been in detail represented. The main 
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idea of latter was the extension of macroscopic non-

equilibrium thermodynamics [2, 3] on the spatial 

mesoscopic, nano- and, even, microscopic (i.e. compatible 

with the effective sizes of atoms, ions and molecules) 

scales. The implied methodology of such extrapolation 

maintains the hypothesis of LE-states but formulated, 

exclusively, in terms of the independent fields  T , ,   

and their unique thermodynamic potential  P T , ,  . The 

approach involves their conjugated, strongly fluctuated in 

PM densities  qe s, , e     determined per unite of 

volume by the fundamental LE-condition. It is formulated 

in FT-model [4-6] by means of the standard [2,3] 

substantial derivatives  D / Dt / t u / r       for 

the velocity field  u r ,t : 

1
q

D P DT D D W
s e ,

Dt Dt Dt Dt kg

 



 
    

 
,        (1) 

where s S / m  is the specific (per unit of mass) entropy 

and qe q / m  is the specific charge (e denotes below the 

specific internal energy E / m ). 

To avoid the misunderstandings, let us note that the 

used also denotation mD  is related, mainly, to the 

isothermal-isobaric mass diffusion coefficient [m
2
/s] in the 

Fick’s law for the density gradient   [kg/m
4
]. This 

“force” as well as the similar, widely usable moisture 

content gradient    1 / m  (see Eqs.(2,3)) exist in the 

interfacial layers finite thickness of the first-order vapor-

liquid (v,l) VLE-equilibrium phase transition. Hence, both 

ones correspond to the equality of chemical potential 

   v lP,T P,T   and themselves cannot obligatory 

lead to the thermodynamic irreversibility of such 

heterophase self-diffusion. The real cause for latter may be 

only gradient   [m/s
2
]. Its dimensionality prompts to 

many authors the questionable idea at the formulation of 

LE-hypothesis in terms of the co-called modified fluid-

pressure: f fP P g z    ( f v  or l). It is composed 

by the omnidirectional scalar  fP  and the strictly vector 

 f g z  components (see, for comparison, Eq.(4)). Such 

combination of external gravitation field and molecular-

based internal field seems to be adequate at the description 

of a convection flow by the known Bernoulli’s integral (see 

below). However, the similar estimate of the diffusive, by 

nature, velocity field described by the famous D’Arcy’s law 

for an irreversible barodiffusion through PM seems to be 

oversimplified. One should take into account the quite 

different influence of gravity on the air flow (where it is 

negligible) and on the liquid flow (where it is essential). 

The accepted form of LE-hypothesis in Eq.(1) 

emphasizes the determinative scaling meaning of the 

inhomogeneous mass density  x,t . It leads, in 

particular, to a possibility of the automodel solution in 

terms of the diffusion scaled variable 
2

mD ~ x / t  for 

the balance equation of total mass m. Unfortunately, both 

alternative and widespread differential NSG-forms [7-15] 

of this equation for PMs based on the strongly fluctuating 

field of a one-dimensional moisture content  x,t  seems 

to be hardly adequate for TPMs: 

 T gD D T D D z
t

 


 


       


,   (2) 

   
1

D x,t ,
t s


 

  
     

,   [10-15],     (3) 

where the difference between the gradient applied to the 

modeling vector velocity field  u x,t (i.e. its 

divergence) and the gradient applied to the scalar potential 

fields  , T ,  , z  is emphasized by arrow placed 

over the former. The similar distinction has been also used 

by FT-model for the divergence of the vector heat flow 

Qj  included in both coupled balance equations for E 

(internal energy) and S (entropy). 

In opposite to the vast majority of known solutions 

performed for Eqs.(2,3), the stringent thermodynamic 

hierarchy of the determinative sequence has been 

introduced by FT-model for a chosen here set of physical 

fields  P T , g,E,u B     . Tensities of the 

fundamental gravitation g  [m/s
2
] and electromagnetic 

{ E    [J/Cl·m], B  [J·s/Cl·m
2
]} fields determine the 

relatively small external force-field influence per unit of 

volume 
extf / V  on the moving fluid: 

  3

1 ext

q

Du N
P m g q E qu B

Dt V m


 
       

 
.(4) 

The further FT-transformation of two main Eulerian 

regimes for the above hierarchy has the following meaning 

and value illustrated schematically by the reported below 

sequence of steps. The first reference regime is introduced 

as an alternative to the widely usable in the phenomenology 

of heat and mass transfer EOS-models of ideal gas and of 

its mixtures. An appearance of time t [s] in Eq.(1) is the 

realistic feature at the study of actual non-equilibrium 

processes in the finite volumes V [m
3
] of any locally 

heterogeneous (i.e. non-Gibbsian) N-systems [4-6]. 

 

Assumptions: 

1a) the common density of external forces in Eq.(4) tends 

to zero 0extf / V  . 

1b) the adopted approximation of isotropicity in Eq.(4) for 

the tensor of deformation: ij ijP P  ( 0ij   at 

i j ) provides the LE-interpretation of P; 

1c) the implied identification of the resulting Eulerian 

Eq.(4) with the vector equation of motion in the 

Newton’s mechanics  D / Dt d / dt  for the 

conservative field of a potential pressure-field  P x  

per unit of volume. 

IL-regime of NSG-model for a reference compressible 

ideal liquid without the thermal conductivity and the 

viscous damping (induced by the D’Arcy’s law) 
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Consequences and results 
1A) the introduction by FT-model of the dimensionless 

“thermodynamic time” for PM (and for any other 

inhomogeneous media) is postulated by the equality 

including the inverse volume: 

 
0V

V V

t V / V ;

dt / t dV / V u dt



     
           (5) 

Its aim is the adequate account for the elasticity of medium 

by the isothermal or isoentropic bulk modulus T ,sB  (or by 

the respective compressibility:  

  1 1T ,s T ,sT ,s
/ / P / B      ): 

2 2 2 2T ,s

T ,s

P t t Pa s
B ,

L u L L m

  



 
     

   
,    (6) 

where the usual physical time 0t t t    and the pressure 

drop through PM 0P P P    are the finite Δ-differences 

which have been used instead of differentials d for the 

simplicity and for the further correlation with Eq.(1); 

1B) Since the relative “thermodynamic time” is now 

presented as the ratio  
T ,s

/   in both characteristics 

of elasticity T ,sB  and T ,s , further elimination of  u -

divergence from the system composed by the Eulerian’s 

equation of motion and by the continuity equation provides 

straightforwardly the integrated  T ,s P -dependences: 

 

 

0

0 1

T ,s T ,s

T ,s T ,s

exp P ( a )

exp P (b )

   

   



  
 

.       (7) 

1C) An absence of the viscous damping and the thermal 

conductivity postulated for the ideal liquid corresponds to 

the following isoentropic integral of motion in the Eulerian 

description   0IL
sZ t   (which defines here the negligible 

entropy production [2,3]): 

 

3
0

IL
s

D s
Z t

Dt

s J
u s

t m K s





 

  
      

     

.        (8) 

1D) Its usage in a combination with the LE-hypothesis of 

Eq.(1) leads immediately to the generalized Bernoulli’s 

integral: 

2

2

3

2

2

q

u
e sT

u J
h const ,

m

  



 
     

 

   
         

,               (9) 

which is (again formally) identified by FT-model with the 

total “mechanical” energy (i.e. with the “hamiltonian” of 

mechanics) for a conservative “potential” enthalpy field 

 h P,s  [J/m
3
] per unit of volume: 

   
3

J
h P,s e v,s P,

m
 

 
   

 
.     (10) 

1E) The IL-regime admits that any arbitrary path of the 

possible perturbation non-equilibrium processes (see below 

regime ILT) can be adequately expressed in terms of two 

experimentally controllable caloric and thermal EOSs: 

     h P,T e v,T P v,T   ,              (11) 

 

 

P P

v v

h C P,T T ( a )

e C v,T T (b )

 

 




,               (12) 

where PC  [J/kg K] and vC  [J/kg K] are the standard heat 

capacities. Hence, to construct the thermodynamic 

description of medium one should also know both f- and s-

types of EOS for any non-Gibbsian (i.e. fractal by its 

nature) complex phase. It is composed by the fractal solid 

(s) matrix of PM and by the fractal fluid (liquid and/or gas) 

flows moving inside of it. FT-model imitates both ones by 

the molecular-based concept of an excluded volume 

introduced long ago by van der Waals. 

Namely the alternative to entropy from Eq.(10) value 

of temperature in the system of Eqs.(11,12) stands it on the 

second place (after the pressure) in the above 

thermodynamic hierarchy of physical fields at the 

description of real irreversibility. To corroborate such a 

special role of T and of its conjugated variable of entropy s 

for any non-equilibrium process, let us remind that just this 

pair of isolines was chosen by Carnot to form the well-

known reversible cycle. It was supposedly realized by the 

extremely (infinitely) quick processes at s const  and by 

the extremely (infinitely) slow processes at T const . 

Strictly speaking, a literal recognition of such extremes 

should lead to the certain inconsistency between the 

differential forms of First and Second Laws for the 

reversible processes (all realistic processes are occurred, of 

course, during the finite time intervals): 

 dE Q W, m,q const    , [J]           (13) 

0
Q J

T K

  
  

 
 .                            (14) 

Another questionable extreme of Carnot’s ingenious cycle 

is, of course, the choice of an ideal gas (ig) as one-phase 

working medium. Its density and pressure 

 ig ig igT ,P P M / RT   should simultaneously tend to 

zero (to be, in fact, negligible) in accordance with the 

respective ig-EOS, while the specific ig-internal energy 

from Eq.(13)  3 2ige / RT / M  depends exclusively on 

the temperature. 

To avoid such oversimplifications, the strategy 

proposed long ago by FT-model [4] seems to be the most 

appropriate. Indeed, due to its realization one does not omit 

on the ad hoc basis the divergences of the vector velocity 

field  u x,T  in IL-regime and of the directed heat flow 

 Qj x,T  in ILT-regime below induced by a gradient 

of temperature T . Instead of this, it is naturally to 
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eliminate their finite (i.e. unknown but realistic) values 

from the explicit sequence of thermodynamically-consistent 

transformation steps by the following scheme. 

 

Assumptions: 

1a) the system of balance equations for entropy and internal 

energy leads to the irreversible production of entropy 

 sZ t  which becomes the changeable and x,t-dependent in 

comparison with Eq.(8) assumed for IL-regime: 

   
1ILT

s Q

Ds
Z t j x,t

Dt T
    ;          (15) 

1b) FT-model proposes to eliminate the itself divergence 

Qj  from the above system of balance equations instead 

of an attempt to obtain the implied complex solution for the 

respective parabolic equation of thermal conductivity: 

     ILT
P,v s

T
T C T Z t

t
 


    


,    (16) 

where the subscript P,v for P,vC  is recognizable; 

1c) the fundamental exact result [4] of such elimination 

introduces the characteristic relaxation time-scale τ [s] for 

any PM and/or TPM: 

   2ILT ILT
s sZ Z t o exp t /    ,         (17) 

which is the main parameter of ILT-non-stationary changes; 

1d) the necessary estimate of initial  ILT
sZ t o -value 

can be obtained by solution of the much more simple 

elliptic (stationary) variant of parabolic Eq.(16) in which 

the entropy density  s x   and the relaxation parameter τ 

should be preliminarily found: 

     00
0ILT

sT sT / T Z t           (18) 

 

Consequences and results 
1A) the discussed Poison’s-type Eq.(18) for the T-field may 

be, of course, supplemented by the similar equations for the 

μ-field and φ-field following from the LE-condition 

assumed by Eq.(1): 

 

   
0

0
0

m

q q

/ ( a )

e / ( b )

   

   

    

    
,     (19) 

where coefficient of the mass conductivity m  [kg
2
/m·s·J] 

and the electric conductivity q  [Cl
2
/m·s·J] have been 

introduced. Their subordinated role in relation to the T-field 

and the use of common τ-value correspond to the 

abovementioned hierarchy of fields: 

qP T , g,E,u B     ; 

1B) the respective cross-effects leading to the known 

transport equations of thermal diffusion (Soret effect), 

thermal-electric diffusion (Peltier effect) and electric 

diffusion (Nernst effect) may be straightforwardly analyzed 

for the respective set of quasi-linear T-dependent SG-

coefficients: 

 

 

m m

q q

j T ( a )

j T (b )

 

 

  

  
                  (20) 

supplemented by two measurable linear SG-correlations for 

thermal conductivity (Fourier’s law) and barodiffusion 

(D’Arcy’s law): 

q

m

j T ( a )

j P (b )





  

  
                          (21) 

1C) the rejection from the combined definition of an 

electrochemical potential ( qe  ) in Eq.(1) and the 

remarkable “flexibility” of adopted by FT-model LE-

condition which can be represented in terms of the Gibbs-

Duhem’s finite differences: 

qP s T e                         (22) 

Leads immediately to the following SG-description of 

thermal-electric diffusion for any f- and/or s-phase: 

 

2

0q qf ,s

s
T

T e





   
   
 

    

.                  (23) 

It seems that the well-known Videmann-Frantz’s law 

obtained for the proposed by Zommerfeld explanation of 

the Lorentz’s coefficient sL : 

22

3

B
s

q s

k
L T T

e

 

 

   
     

    

.         (24) 

can be considered as the limiting discrete form of the more 

general FT-Eq.(23) derived here for the thermal-electric 

phenomena; 

1D) the similar FT-correlation for the electric diffusion has 

the especially simple form expressed in terms of the 

specific charge qe q / m : 

 

 
 

2

0

q
q

m f ,s

T
e

T





 
 

  

.                   (25) 

It is interesting and informative to compare this result 

with the well-known Nernst-Einstein’s law expressed in 

terms of the particle concentration n N / V , elementary 

electric charge 0q  and the self-diffusion coefficient mD  

from the Fick’s law: 
2
0q

m Bf ,s

m m

nq
( a )

D k T

j D (b )





 
 

 

  

.                 (26) 

Such comparison provides immediately the following 

explicit T-dependence of  m T -coefficient from 

Eqs.(20,25): 

   2
0m m BT D / nk T              (27) 

as well as the generalized FT-correlation for electric 

diffusion: 

   
2

0
qq

m Bf ,s

eT

D n k T

 
 

  

.            (28) 

ILT-regime of NSG-model for a compressible ideal 

liquid with the perturbation contribution of thermal 

conductivity but without the viscous damping implied by 

the D’Arcy’s law  
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Its physic sense is obvious: the more is temperature at any 

density of electric charges, the worse becomes the electric 

conductivity of a medium; 

1E) the combined test of the previous 1C)- and 1D)-results 

leads to the following FT-correlations for the thermal 

diffusion: 

 

 

2
0

2

0

m f ,s

m Bf ,s

s T ( a )
T

s
( b )

D n k







 
 

  

 
 
 

.           (29) 

For comparison, the formal elimination of q  from the 

Videmann-Frantz’s and Nernst-Einstein’s laws leads to the 

much more restrictive description of the thermodiffusion 

ratio from Eq.(29b): 
2

3

s
B

mf

k n
D

 
                             (30) 

because it ignores, in fact, the physical reason of thermal 

conductivity (i.e. transport of heat which is related just to 

the entropy density s ). 

The physical adequacy, simplicity and the experimental 

testability of the reported FT-correlations are the main 

advantages used in this work to construct the solvable 

TPM-model in Sects. 3,4. Let us discuss below, for 

comparison, the conventional theoretical and simulation 

approaches to the same or similar PM-problems. The 

interested reader can find the more detailed description in 

the cited references [7-9, 22-29]. Our aim here is to 

emphasize the distinctions between the conventional PM-

models and the proposed NSG-model without the detailed 

additional comments. We have changed some denotations 

of the original references to make the comparison more 

informative. 

There are two main concepts in the discussed problem, 

which can be termed one-medium and two-medium 

approaches. The former adopts the local thermal 

equilibrium for the volume-average fields of f-velocity 

fu  and both main thermodynamic fields T , P . 

The abovementioned modified f-pressure determines the so-

called D’Arcy’s f-velocity Du  namely by the generalized 

D’Arcy’s law: 

 

f f

D f

P P g z ( a )

u u K / P (b )





 

   
,   (31) 

where K [m
2
] is permeability and η [Pa·s] is viscosity. In 

accordance with our previous criticism, this approach 

combined with the further omission of the f-velocity 

divergence  0fu   leads to the unrealistic model of 

incompressible  0 const   f-flow (see, for comparison, 

FT-Eqs.(5-7)). This conclusion is also related to the “old” 

conventional interpretations of the D’Arcy’s law termed, 

respectively, the drag theory and the hydraulic radius 

theory. They were described comprehensively by Iberall 

long ago [30] for usual PMs: 

0

2m

V K P kg
j

A t L m s

  

 

 
    

  
.             (32) 

The D’Arcy’s correlation (developed for the flow of 

liquid water through sands) resembles, of course, the 

Poiseuille’s law for the laminar flow of a continuous liq- 

uid through the cross-section area 
2R  proposed to 

determine viscosity  0 Pa s     from experiment 

(see also Eq.(31b)): 
2

0

2 8
m

V R P
j

LR t

  

 
   .                      (33) 

The conjectural replacement of the (
2 8R / )-quantity 

in a medium by the effective quantity termed permeability 

of PM K [m
2
] leads, often, to the confusions at its 

experimental determination and interpretation [1]. The 

additional, rather crude, from our viewpoint, 

approximations of the supposed convective velocity Du  

(termed the D’Arcy’s velocity) and the conjectural 

Reynold’s number for PM: 

0PM D
D

d uV
u ( a ) Re (b )

A t



  

 
 

 
  (34) 

provide two alternative modeling variants of K / -ratio 

from Eq.(32): 

 

 
 

2

0

23

16 1 4

PM

D PM

ln Red P
u

Lln Re




 

 
   
  
 

,      (35) 

 

2

0 2

1

1

PM

D

O r P
u

S L




 

  
   
   

.             (36) 

The former expression of the drag theory of 

permeability modified by Iberall [30] contains “the 

dimension characteristic of the medium structure, for 

instance, it is (either) the diameter (d) of the granule (or) 

the fiber diameter”. In accordance with assumptions of 

Eq.34 (a,b) this is very complicated and implicit for the 

input parameters ( 0d , , ,   ) equation of the stationary 

modeling D’Arcy’s convective flow ( 0 Du ). Such rather 

formidable drag model is best applicable at high porosities 

(ε belongs to the range of 0.7 to 0.9). The latter expression 

of the hydraulic radius (r) theory of permeability 

developed, mainly, by Kozeny contains the purely 

adjustable ratio of “an orientation PM-factor O to a shape 

PM-factor S”. It turns out [30] that the hydraulic radius 

model is applicable exclusively at low porosities in range ε 

of 0.1 to 0.3. 

After such interpretation of the mechanical D’Arcy’s 

flow contribution, the  

volume-averaged balance energy equation becomes [2-5] a 

variant of Eq.(16): 

 

 

 

0

0

3

P ii
i s , f

P f if
i s , f

e d

T
C

t

C u T s

W
T

m

 



 





   
 

  

   

 
        

 




,            (37) 
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where two last terms in the left-hand-side provide a 

combination of the convection contribution (?) for the 

vector T -field with the “volume-averaged heat source 

term that can be used to describe the cure kinetics (?) of the 

resin” [24]. The tensors of the effective thermal 

conductivity e  and of the thermal dispersion d  

introduced on the ad hoc basis in the right-hand-side of 

Eq.(37) make, to our mind, any its solution to be rather 

arbitrary. 

We have not reported here the even more formidable 

system of two coupled phase-averaged f,s-energy equations 

proposed for the two-medium treatment of PMs-data [26-

29]. It is hardly to discuss the quite complex differential 

equations in which the vast majority of input parameters 

either unknown or determinable with the large 

uncertainties. The concept of two different fT  and sT -

temperatures itself seems to be rather questionable if the 

medium approach is realizable. Nevertheless, we will 

demonstrate below (Section 3) that the similar 

discontinuities of the pressure P  and temperature T  

but observable within the same f-phase are unavoidable in 

the realistic f-flows through TPM. 

This observation returns us to the problem of 

equilibrium first-order (I) VLE-phase transition arising 

within any realistic PM due to the appearance of moisture 

content ω in its porous texture. We consider, however, the 

conventional approach [7-9] based on the attempt to model, 

separately, both v- and l-components of the common f-

velocity field fu  as the purely mechanical methodology 

(proposed long ago by Clebsh): 

   

ff
f T

v l v l
T T

u D D T

D D D D T



 





    

     
.       (38) 

The substitution of such superposition into Eq.(2) leads, 

simultaneously, to the following modification of the energy 

balance equation [7-9] in comparison, for example, with the 

one medium description of Eq.(37): 

 

 

 

0

PM

v v
v T

PM

T
C

t

h D D T

T





  




 


       
 

   

,     (39) 

where the latent heat vh  [J/kg] (enthalpy of v l  

change) is related to the capillary condensation and plays, 

formally, the role of a heat source term. Any solution of the 

coupled Eqs.(2,39) depends completely on the chosen 

(supposedly experimental) magnitudes of ill-founded 

coefficients: 
fD , 

f
TD , … and 

PM  related to the “dry” 

porosity ε [m
3
/m

3
] of PM. In total, the described 

methodology of I-phase transition in PMs’ bears the strong 

resemblance with the known Clebsh’s potential of the 

convection velocity fields [4]. One may introduce them by 

Eq.(1) without the above complexities: 

f qu s T e          ,  [m/s].           (40) 

 

3 Second law and zero-order (0) VLE-transition in 
non-Gibbsian f-phases 

 
To go beyond the Carnot’s cycle artificial extremes, 

FT-model introduces not only the described reference IL-

regime with the zero entropy production   0IL
sZ t   of 

Eq.(8). It uses also the following alternative formulation of 

Second Law proposed long ago by Joule, Horstmann and 

others [16]: 

Q dP
V

T dT


 ,                                (41) 

where δV is a variation of volume. It emphasizes here the 

discrete nature of description accepted for Q  on the 

molecular and/or atomic levels. Again let us remind (to 

avoid the misinterpretation) that the same symbol δ is used 

in the present work for the thickness of TPM and to distinct 

it from the large thickness L of usual PM. Due to such 

distinction, we have postulated the principal anisotropy of 

one-dimensional transport flows in which the above 

“thermodynamic time” of Eq.(5) should be replaced for 

TPM by the one-dimensional ratios: 0t /   , 

 x xdt / t d / u dt         . The similar 

transformation will be used for the linear compressibility 

0P /      and linear expansivity 

0T /     of TPMs. From the viewpoint of FT-

model [4-6] both variations in Eq.(41) should be considered 

as the quantisized finite values (i.e. the quantities composed 

by the great but finite number of the microscopic portions 

of energy Bk T  [J] and volume of particles 

3b ~ d 
 

 [m
3
]). 

The presence in the right-hand side of Eq.(41) the only 

parameters of a ther-mal EOS  P,V ,T  supports the 

above-mentioned concepts of FT-model. The me-chanical 

theory of heat assumes in this formulation (without any 

appeals to the unrealistic extremes) that the internal energy 

content and/or the enthalpy content in Eqs.(10-12) of a 

body during its state change can be calculated through 

nothing more than the P,V,T-information. Hence, the heat 

quantity consumed during any such change is irrespective 

of what are the path (usually, an isoline) and the 

thermodynamic cause (usually, a gradient) for this 

consumption. 

Particularly, Joule corroborated the consequence of 

Second Law by the experimental adiabatic compression of 

different liquids [16]: 

P
s s

P

T
T P

C


 



 
  
 

,                        (42) 

where   1P P
/ / T       contains, again, the 

“thermodynamic time” introduced by FT-model. All 

processes are here realizable during the finite physical 

time-intervals t . The main conclusion from the Second 

Law is that the adiabatic compression of a liquid: 0s P   

should always lead either to its heating 0s T   if 
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0P   or to its cooling 0s T   if 0P   (as it is in 

water at temperatures below than: 4t  °C, for example). 

The meaning of the generalized Bernoulli’s integral 

from Eq.(9) becomes now recognizable for any PM. It is 

the derived in the present work thermodynamic extension 

of its traditional mechanical value [3] (see our comments to 

Eq.(1)): 

2

0 32

u J
g z P const

m


   
         

.           (43) 

The latter implies: a) the stationary, non-viscous laminar 

flow of incompressible ( 0 const  ) liquid (or, even, gas) 

in the external gravitation field g ; b) the absence of the 

internal energy and heat content h (enthalpy) contributions; 

c) the implied absence of  the permeability for the fluid 

particles in its imaginary walls. One may conclude that the 

more is a convection contribution in the brackets, the less 

becomes a molecular momentum flux (pressure) in such 

rather restrictive and purely mechanical integral of a fluid 

motion. 

The NSG-model rejects in its IL-regime all above 

assumptions a), b), c) and proposes the much more flexible 

description of IL-flow through any PM. In this case, the 

more is a convection non-stationary contribution 

 2 2u t / , the less becomes a heat content  h t  

composed by the interchangeable internal energy  e t - and 

pressure  P t -components. However, this interconnection 

of “kinetic” and “potential” parts of “hamiltonian” in the 

brackets of Eq.(9) should be additionally controllable by its 

changeable mass per unit of volume(i.e. by  t ). Besides, 

the dynamical nature of such changes in the LE-state should 

take into account not only the compressibility of IL-flow by 

Eq.(7) but also the possibility of internal vapor-liquid 

( v l  or l v ) capillary phase transitions occurring in 

the pores of PM. 

It is the remarkable feature of the developed here 

NSG-model and its interpretation adopted by Eq.(41) that 

the latter corresponds congruently to the differential 

Clausius-Clapeyron’s equation for any I-phase transition: 

 

 

I

l v

h TdP Q

dT T V T v T



 

 
  

 
.            (44) 

Thus, the T-dependent ratio of discontinuities in the 

enthalpy (i.e. in the specific heat content) and the specific 

volume (i.e. in the inverse  1v /   mass content) 

reflects, as a matter of fact, the thermodynamic 

irreversibility of a real phase transition (!). The natural 

conclusion is that a spontaneous process of condensation 

(including its local capillary form) v l  produces 

quantitatively the lower cooling effect Q / T  in 

comparison with a concomitant process of vaporization 

consuming the external heat at the same temperature 

 Q / T  from Eq.(44). 

The supposed hysteresis of the “latent” heat h  (i.e. 

its thermodynamically well-grounded by FT-model 

irreversibility between the consuming l vh   and emitting 

v lh   heat contents) can be experimentally corroborated 

for any non-Gibbsian i-phases (i denotes g (gas), v (vapor), 

l (liquid), s (solid) etc.). Their main signs and features are 

the finite volume V and the finite time t  of observation in 

which the LE-hypothesis is applied to the heterogeneous 

two-phase I-phase transition’s i,j-state. Both coexistent 

non-Gibbsian i,j-phases cannot (separately) be completely 

homogeneous in contrast to their idealized infinite Gibbsian 

counterparts. The typical example of a realistic 

heterogeneous i,j-coexistence for a pure fluid is, of course, 

the LE-states of a moist vapor (i.e. of the mechanical 

mixture formed by the bubbles of v-phase in l-phase or by 

the drops of l-phase in v-phase). This type of distribution 

for a mass content is a typical situation also for PMs. 

FT-model [4-6] excludes (as an inaccessible result for 

the finite-size measurements) the reality of the strict 

Gibbsian equalities between the respective i,j-fields 

( i jP P , i j  , i jT T , i j  ). Thus the same 

constraint is also realizable for the LE-state between two 

actual non-Gibbsian i,j-phases. However, FT-model admits 

the easily verifiable by experiment with the moist air (ma) 

relative stability of such mixed i,j-phase in the saturated 

density range of a 0-phase transition: j i     (see 

below). This relatively stable colloid (as a matter of fact) 

heterogeneous formation has been termed interphase (not 

interface (!), i.e. not the interfacial layer presumed in the 

standard van der Waals-Maxwell-Gibbs (WMG) theory of a 

unified EOS and its equilibrium phase transition [17,18]). 

FT-model assumes so the metastable LE-states (they exist 

during the finite t -interval) but rejects completely the 

unstable states of a spinodal decomposition. 

This natural admission leads to the novel concept of a 

congruent zero-order (0) phase transition [17-21]. The 

standard positive characteristics for I-phase transitions 

0T   and 0PC   should become sometimes great but 

still finite ones for 0-phase transitions. The magnitudes of 

these derivatives correspond to the supposed by FT-model 

very small disbalances between ijT -fields j iT T T    at 

the forcedly adopted Gibbsian equality for ij-pressures 

ij i jP P P  . Vice versa, the same is true for the small 

disbalance: j iP P P    at the condition: ij i jT T T  . 

Thus Eq.(44) for a Gibbsian’s I-phase transition should be, 

for example, replaced by the following equation for the 0-

phase transition: 

 

 

0
i , j

i , j

iji P i P
ij

i i i PP

h / T CP

T T v / T T

   

    

 
  

 
.      (45) 

Its congruence with the reference s-path of Eq.(42) is 

obvious. Moreover, it is straightforward task [16] to derive 

the similar equation for the second-order phase transition 

(II) in which the role of given (initial) density i  becomes 

pronounced: 

 
 

ijII
i iP

ij
i iP

C /P

T T /

  

   

 
 

 
.                  (46) 

This variant of FT-model corresponds to the limiting case 

of an equilibrium state between two ij-phases occurring at 
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their compatible densities and enthalpies. The respective 

conclusion is that the increase of pressure   0
II

P   

alongside of the path  
II

dP / dT  leads to the heating of 

medium  
II

T  only if the both signs of discontinuities 

 ij
iP /    and  ij

iPC /   are the same ( /   or 

/  ). This result can be of great importance (Sect. 4) for 

the development of a flexible predictive NSG-model for 

TPMs too. In this type of PM the sharp “jumps” 

(discontinuities) of second thermal ( T P,  ) and caloric 

( v PC ,C ) derivatives in the different pores are not only 

possible but unavoidable.  

 

4 Fluctuational EOS for hydrophobic and hydro-
philic TPMs 

 

We have assumed in Sects. 2,3 that the thermal 

conductivity λ [W/m K] and the relaxation period τ [s] in 

Eqs.(21a,b) for two main measurable thermodynamic forces 

of medium ( T  and P ) maintain their constant values 

while two other transport coefficient of the particle self-

diffusion  m T  and the electric charge conductivity 

 q T become T-dependent in the proposed model of 

NSG. This assumption is in a complete correspondence 

with the Second and First Laws combined by the so-called 

thermodynamic EOS for single-phase i-states and two-

phase ij-states [18] (the subscripts δρ and δT emphasize the 

heterogeneous nature of the 0-phase transition): 

2i i
i i i

T

i i
i

T T

P e
P T

T

s e
T

v v






   
    

    

    
    

    

,               (47) 

ij i j
ij ij i j

i j T

ij ij
ij

ij ijT T

P e e
P T

T

s e
T

v v

 

 

 
 

 

 

   
          

   
    

   
   

.      (48) 

The accepted by FT-model order of priority for fields from 

Eq.(1) is here confirmed. Moreover, the appearance of both 

caloric Δ-discontinuities for entropy and internal energy in 

Eq.(48) may become the elucidative factor for explanation 

of an irreversible 0-phase transition introduced for the non-

Gibbsian i,j-phases in Sect. 3. We will omit the superscript 

0 and the double subscript ij below to avoid the 

overcomplications in denotations. The fluctuation i-phase 

interpretation of thermal pressure   i i
i P TP / T /


     

(see Eqs. (41,42)) extended here on its ij-phase counterpart 

  P TdP / dT /


   (see Eqs. (44-46)) leads to the 

unambiguous conclusion. It concerns the so-called internal 

(energy) pressure term  i T
e / v   from Eq.(47) and its 

respective generalization  
T

e / v


   from Eq.(48). Both 

ones should be dependent on the discrete by nature 

variables (i.e. the numbers of particles and free electric 

charges). They have to be determined as the complementary 

parameters of a thermodynamic medium with the following 

exceptional role. They should compensate and relax any 

external irreversible changes of two main thermodynamic 

contributions arising due to the forces P  and T  in 

accordance with Eqs. (41,42) and/or (44-46). The result of 

such compensation includes the main characteristic FT-

parameter of relaxation τ [s]: 

   

   2

m

q q Q

T T ,P ( a )

T j / T ,P (b )

  

  

 


,         (49) 

where the D’Arcy’s law determines by Eq.(32) the 

experimental τ-values[1] as the ratio of the hardly 

measurable permeability K [m
2
] to the purely theoretical 

kinematic viscosity ν [m
2
/s]. Eq.(49) corresponds to the 

usual Joule’s density of heat Q  which is supposedly 

compensated by the thermal conductivity: 

   2 2
q qT j / T    .                   (50) 

The derived relatively simple NSG-correlations may form 

the reliable basis for the creation of smart textures. Despite 

the widespread belief on contrary, neither P  nor T  

can be directly usable as the transport governing variables-

forces. Both are dependent on the changeable external 

conditions of TPM-exploitation. Nevertheless, it follows 

from our consideration that a combination of two desirable 

fixed flows of mass and heat ( m Qj , j ) could be provided 

through TPM just by the appropriate choice of P  - and 

T -magnitudes. They should be co-ordinated with the 

controllable variable namely of internal pressure 

 i T
e / v   or its variant  

T
e / v


  . We intend to 

demonstrate below that both are determinable by the T-

dependent cohesive vdW-coefficient  fa T  introduced in 

FT-EOS. In this case, the obtained explicit correlations for 

 m T - and  q T -parameters in Eqs.(32,49,50) 

become the important indicative factors to control, for 

example, the given optimal conditions for the comfortable 

wear of TPM-fabrics. 

 We have argued in our previous work [1] that the 

interrelation between the volume densities of matrix 

M Mm / V , moist air ma mam / V  and water content 

(liquid) l lm / V  is essential to specify the following factor 

of difference between the hydrophobic (hb) and hydrophilic 

(hl) TPMs: 

 

 

V M ma M da

l ma l

V / V

V / V

   

 

   

 
,          (51) 

where the additivity of the dry air (da) volume 

( da ma lV V V  ) in the total representative volume 

da MV V V   with the standard “dry” porosity 

daV / V   have been assumed. Thus the indicative factor 

of above difference can be introduced by  

two inequalities for the a priori unknown liquid volume 

fraction l daV / V : 
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 1M ma l

l ma da

V
hb matrix

V

 

 


  


,        (52) 

 1M ma l

l ma da

V
hl matrix

V

 

 


  


.         (53) 

Since both densities of TPM: V  (at the given level 

of relative humidity) and  0 0V M dam / V    (at the 

zero moisture content 0  ) are, in principle, measurable 

quantities, one should, firstly, assume the following 

experimental estimate: 

 

0
l V V

da l

V

V T

 


 





 [g/kg],                 (54) 

where  l T  is the saturated T-dependent liquid density of 

water. This simple assumption leads, however, to the rather 

interesting and useful for practice observation. The hb-

condition in Eq.(52) can achieve the limit of its 

applicability with the permanent increase of moisture 

content  t . At this t-moment the given hb-texture 

becomes, formally, the modified hl-texture in which the 

liquid fragments may exist inside of some capillary pores. 

So the study of capillary condensation is necessary for both 

hl- and hb-structures. 

The further treatment of the wide set of experimental 

TPM-data in [1] has completely corroborated the result of 

such analysis. Indeed, the calculation of standard TPM’s-

surface density A  [g/m
2
] (where the TPM-volume is 

V A   ) has shown the existence of two quite different 

types of its behavior . It was revealed for the different sets 

of hb- and hl-fabrics, respectively: 

0

0

hb hb hb
A V

hl hl hl
A V

( a )

( b )

   

   

  

   
                (55) 

instead of the trivial linear δ-correlation with the 

homogeneous TPM’s-volume density A V   . In other 

words, the very small δ-thickness of TPM can become in a 

combination with the given asymptotic parameter 0  the 

determinative factors for its changeable properties and, first 

of all, permeability in accordance with the proposed in [1] 

alternate basis l/b-model of the moist permeable media 

(see, in particular, Eq.(50)). 

The general f- and T-dependent FT-EOS was 

introduced by one of us (V.B.R.) [17] in the van der Waals 

(vdW)-like 3-coefficient’s form: 

   

 

 
1

1

f f fFT
f

f B

b T c T a T
Z

b T k T

 




  


,       (56) 

where ρ [m
-3

] denotes here the concentration of particles 

N / V  and  f f BZ P k T . Its further investigation 

and application to the wide set of problems [5,6,18-21] has 

corroborated its universality and high level of accuracy. 

The latter is achievable at the description of any i-phase 

and/or ij-phase states if the coexistence curve (CXC) data 

of I-phase transition are known from the reliable 

experiment       s g lP T , T , T  . More accurately, 

such information is necessary and enough to evaluate the T-

dependent coefficients  f f fa ,b ,c  of f-phase without any 

adjustable parameters. In this work we propose to extend 

the FT-EOS’ methodology (which rejects the vdW-concept 

of a unified (i.e. common for both coexistent f-phases) EOS 

[21]) on the description of s-phase (i.e. TPM’s-matrix) too. 

Our arguments can be discussed below for the 

convenience of reader in the simplified vdW-form with two 

constant coefficients  0 0a ,b : 

 

 

0 00

0 0

1
1

11

vdW
f

B

B ff

f

a bb
Z

b k b T

T

T









   



 

,        (57) 

where the characteristic Boyle’s (B) temperature BT  of a 

fluid has been introduced in terms of B-density B  and 

cohesion coefficient 0a : 

   0 0 0B B B BT a / k b a / k   .          (58) 

This form defines the “dry” porosity ε by means of the  

 

ratio of free volume  0V N b , where 0b  - excluded 

molecular volume, to the representative total volume V. It is 

the  01 b  -parameter determined by the specific 

repulsive interparticle potential of f-phase. 

But in this framework any structural aggregate 

properties of an excluded volume are omitted. We have 

used this simple observation to extend its notion on two hb- 

and hl-variants of s-phase, respectively: 

0
0

0

1
1 0

1

hb
hb hb
s hb

b
Z , a

b

 




   


,       (59) 

 0

0

1
1

hl
hl
s hl

B

a
Z

Tk b


    .                      (60) 

To the best of our knowledge, such postulated on the base 

of Eq.(56) PM-definitions are the first attempt to 

incorporate the physically plausible molecular-based 

parameters  0 0a ,b  of matrix M for the description of its 

interaction with the molecular structure of f-phase. An 

absence of cohesion contribution 0 0hba   in hb-textures of 

Eq.(59) reflects, in particular, their inability to wetting by 

the moist f-flow. The remarkable consequence of the 

proposed approach is a possibility to combine the given 

properties of f- and s- phases by the well-known vdW-

concept of one-fluid approximation. It is most usable at the 

description of binary 1 2f , f -mixtures. We plan to represent 

the respective foundation of such idea in the next 

publications for f,s-type non-Gibbsian phases. 

Some results of the discussed FT-methodology seem 

to be especially informative [31,32] at the application to 

PMs in the low-temperature range of water (the main  

component of a moisture air) located between its triple 

273 15tT .  K and normal boiling 373 15bT .  K 

points. To illustrate the main 0-phase transitions 

approximation ( 0lZ  , 1gZ  ) which becomes 
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appropriate in this range, the tabular CXC-data [33] are 

represented in Table 1 and Fig. 1. The monotonously 

changeable but negligible values of   0lZ T   as well as 

the oscillating deviations of   1gZ T   from the ideal-gas 

estimate: 1ig BZ Z   lead in accordance with Eq.(57) to 

the basic well-established vdW-behavior of f-phase [31]. 

Two values of free volume in l-phase  le T  are 

compared in Fig. 2 with that in g-phase  ge T  to confirm 

the obvious heterogeneous nature of former. This is a 

typical macroscopic-interphase: 

1 4
1 1

2
l g

B B

T T
( a ) (b )

T T
 

 
     

 
.     (61) 

For water the appropriate numerical estimates are [32] 

2379BT   [K], 0 0 01658b .  [dm
3
/mol] but the 

constant vdW-estimate of the cohesion coefficient 

0 474a   [J dm
3
/mol

2
] seems to be rather crude for our 

aims. The more appropriate T-dependent estimate of 

 0a T  can be obtained for the low-temperature variant of 

FT-EOS (56) at the I-phase transition constraints: 

0 fb b ; 0 0fc c   and: 

     

   
0 g l

l g l g

a T a t a T

e e /  

  

   

.                    (62) 

Its substitution in the universal form of 

thermodynamic two-phase EOS (48) gives the following 

system of the coupled f-porosities: 

1 1

1 1
l g

g l l g

( a ) (b )
Z A Z A

  
 

.   (63) 

This refined quantity is also represented in Fig. 2. 

The cross-impact of fZ - and 

   
f f

f s sA T / P dP / dT -parameters is here the very 

interesting feature of the proposed f -estimates. It is 

coherent, of course, with the concept of 0-phase transition, 

which implies the interaction of coexistent f-phases. Such 

FT-correlation expressed in terms of the non-dimensional 

fZ - and fA -factors by Eq.(63) cannot be described by 

the conventional WMG-theory of the I-phase transition. 

The latter adopts, at best, the thermodynamic reversibility 

of g l  and l g  VLE-transient phenomena following 

from the unified EOS’-concept and leading to the common 

f-coefficients of the type those from Eq.(62). Hence, the 

presence of different  lA T - and  gA T -reduced slopes 

in the derived here Eq.(63) corresponds, namely, to the 0-

phase transition from Eq.(45) but not to the I-phase 

transition from Eq.(44) (where the equality 

     s l gA T A T A T   should be strictly fulfilled).  

The fundamental distinction of the congruent CVL-

diagram [5,6,18-21] from the traditional VLE-diagram 

requires the account for irreversibility indicated by the 

difference in the direct (    l ,g l ,ge T , h T  ) and 

reverse (    g ,l g ,le T , h T  ) two-phase changes 

described by the caloric EOSs from Eq.(11,12).  

 

 

Table 1 – The input CXC-data [33] (Ps, Zl, Zg) and FT-predicted (Al, Av, εl, Phl)-parameters (see text) for the low-tempe-

rature range [Tt, Tb] of water. 

T, K Ps, kPa Zl Zg Al Av εl Phl, Pa 

273.16 0.6112 4.845·10
-6

 0.9993 15.40 19.84 0.0695 0.0030 

275.15 0.7054 5.551·10
-6

 0.9985 14.58 19.66 0.0738 0.0039 

280.15 1.0013 7.739·10
-6

 0.9989 14.07 19.22 0.0766 0.0077 

285.15 1.4016 1.065·10
-5

 0.9986 13.80 18.80 0.0782 0.0149 

290.15 1.9364 1.447·10
-5

 0.9984 13.50 18.39 0.0801 0.0280 

295.15 2.643 1.943·10
-5

 0.9984 13.25 18.08 0.0818 0.0514 

300.15 3.564 2.580·10
-5

 0.9979 13.05 17.63 0.0832 0.0919 

305.15 4.753 3.389·10
-5

 0.9971 12.75 17.25 0.0854 0.1611 

310.15 6.274 4.409·10
-5

 0.9972 12.47 16.90 0.0875 0.2766 

315.15 8.198 5.681·10
-5

 0.9962 12.14 16.56 0.0901 0.4657 

320.15 10.614 7.255·10
-5

 0.9962 11.96 16.23 0.0916 0.7700 

325.15 13.612 9.181·10
-5

 0.9951 11.76 15.91 0.0934 1.2497 

330.15 17.312 1.153·10
-4

 0.9941 11.43 15.60 0.0965 1.9957 

335.15 21.84 1.436·10
-4

 0.9936 11.19 15.30 0.0988 3.1372 

340.15 27.33 1.776·10
-4

 0.9924 10.95 15.01 0.1014 4.8537 

345.15 33.96 2.181·10
-4

 0.9916 10.75 14.73 0.1035 7.4075 

350.15 41.89 2.660·10
-4

 0.9904 10.50 14.46 0.1064 11.1424 

355.15 51.33 3.224·10
-4

 0.9891 10.29 14.20 0.109 16.549 

360.15 62.49 3.883·10
-4

 0.9876 10.09 13.94 0.1116 24.267 

365.15 75.60 4.649·10
-4

 0.9861 9.89 13.69 0.1143 35.149 

370.15 90.93 5.537·10
-4

 0.9844 9.70 13.46 0.117 50.351 

373.15 101.325 6.134·10
-4

 0.9835 9.58 13.32 0.1187 62.156 

375.15 108.76 6.559·10
-4

 0.9829 9.51 13.23 0.1198 71.333 
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FIG.1(a) – CXC of water [33] as an example of the strongly 

curvilinear diameter. The formal application of Zeno-line's 

methodology may lead, in principle, to the serious errors at 

the prediction of critical parameters  c c cT ,P . 1(b) – The 

elongate CXC and its curvilinear diameter provide the exact 

location of critical point although the rectilinear part of l-

branch shown by thin line is located for H2O significantly 

lower than the actual critical point (black square). 

 

 
 

Fig. 2 – Volume fraction of liquid water  l T  in the total 

volume of moist air (ma) and the drop of intra-capillary 

pressure  hlP T  in the hydrophilic (hl) PMs. 

 

The important practical consequence of this 

requirement is the necessity to introduce the certain CVL-

corrections, especially, in the standard  h, -diagram 

[33]. It is based on the physically-plausible vdW-

interpretation of l-phase [34]. Its main parameters are 

 l l,e  while 0ls  . This concept leads to the choice of 

zero-point for entropy of l-phase  273 16 0l ts T . K   

at the triple point of H2O and to the ideal-gas’-estimate of 

its enormous value in g-phase: 

     ig t t ig t l th T T s T h T  , where   0ig l th h T  . 

Just the rather arbitrary and singular estimate of 

   ig t l th T / s T -ratio at the triple point corresponds to the 

slope of reference isoenthalpy mah q  in the  T , -

plane at the construction of standard  h, -diagram. 

We propose to take into account that the experimental 

value of the consumed vaporization heat:  

 

 

0 101

0 101 2 26

l ,g g b s

l b s

h h T ,P . MPa

h T ,P . MPa . kJ / kg

   

  
 is the main 

measurable parameter at the adjustable determination of the 

above initial value [33] for water:   32 5 10ig th T .   

[kJ/kg]. FT-model states that the respective latent heat 

g ,lh  of the reverse condensation process ( g l ) is 

always significantly less for the real 0-phase transitions at 

which, additionally,    l vP T P T . Hence, the 

introduction of such correction at the standard construction 

of  h, -diagram may be, in principle, the essential factor 

of adequacy for the description of any condensation 

phenomena including capillary one. 

In this work we have developed the rather simple and 

useful estimate of the intra-porous pressure  hl sP P T  

within hl-systems. It is based on the previous results and 

admits the following combination [18,36] of the well-

known correlations introduced long ago [37] by Laplace 

and Kelvin: 

        1hl s l s hlP / P T exp Z T P T / P T     .   (64) 

Its evident advantage is an absence of any hardly 

measurable for PMs and TPMs parameters of surface 

tension and fractal geometry of a dividing intra-capillary 

surface. The capillary condensation is formally impossible 

in hb-textures for which  hb sP P T . 

 
 

 

 

 

To solve this transcendent equation we have used its 

differential form, which immediately leads to the 

Fig. 3 – FT-calculated caloric functions of discontinuities 

in the enthalpy and entropy compared with the classical 

WMG-estimates in PMs. 
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remarkably simple estimate (shown also in Fig. 2) for the 

sought-for intra-porous pressure: 

   hl s lP P T Z T  .                        (65) 

Hence, the independent  hlP T -estimate may be the first 

step to use the discussed in this work hierarchy of fields and 

the developed NSG-model in accordance with the derived 

in Sect. 1-4 resulting equations of a combined mass-heat-

charge transport. 

 

5 Conclusion 
 

The proposed NSG-model opens the new wide field of 

the relevant investigations in the non-equilibrium 

thermodynamics due to the formal absence of an x-

integration and of its usual complexities. We consider that 

only t-dependence of indicative parameter are essential at 

the description of transport processes through TPMs. 
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