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Trajectory of Earnings Growth Influences Cost of Equity 
Capital, and Optimal Time to Sell 

Anthony F. Herbst1, Joseph S. K. Wu2 

Abstract 
Living individuals and populations of individuals follow an S-shaped growth curve (also 

known as logistic) from birth to death. A long-term perspective on business firms suggests that 
they are not exempt from the pattern of a slow growth phase, followed by one of linear to expo-
nential growth, and finally a steady state or growth decline phase. Growth depends on a number of 
things. Two that are important to the trajectory of growth are the size of the market for the firm’s 
products and the saturation level already reached by its products. New or markedly improved 
products may, in effect, reset the growth pattern and begin the trajectory once again. That is analo-
gous to a star baseball player continuing to hit 400 or better year after year. This paper models the 
effects and implications of logistic growth by corporation earnings, and it suggests there is an op-
timal time for investors to bail out of a particular company’s shares. This also has implications for 
estimating the firm’s cost of capital. In contrast to the enduring and popular dividend capitalization 
model, the analysis presented here is applicable to firms that do not pay dividends. Microsoft pro-
vides focus to demonstrate application of the theory developed in the paper on a widely held and 
followed company. 

Introduction 
In nature, virtually all organisms and populations follow an S-shaped growth curve (also 

known as logistic) from birth to death. For example, the growth rate of the volume of wood in a 
tree increases slowly at first, then accelerates, becomes constant for a while, decelerates as the tree 
matures and finally can even become negative as damage occurs and decay sets in. This has impli-
cations for the determining the optimal time to harvest a plantation of trees. Whole populations of 
animals and insects may similarly follow an S-shaped trajectory: If one starts with two fruit flies of 
opposite sex in a sealed jar containing an apple, the population will increase slowly at first, then 
accelerate, after which it will increase at a decreasing rate, and finally growth will become nega-
tive as food runs out or disease ravages the population.  

Shareholders value their equity investments for the cash flows the stocks are expected to 
yield. Shares that currently pay no dividend must be expected to eventually pay dividends or other 
cash flows or they would have no value. The literature on finance typically3 offers examples of 
one, two or – at most – three growth stages, between which the cost of equity capital varies. In-
variably, at the final stage, all those textbook examples assume constant growth in perpetuity. 
However, a constant growth assumption is not reasonable when it implies that a company can con-
tinue to indefinitely expand, especially at a rate greater than that of the economies in which it op-
erates. There is ample evidence that earnings growth of corporations often follows the an S-shaped 
curve, yet textbooks side-step such issues. Journal literature offers little in the way of contrary 
advice or alternatives to the dividend capitalization model (DCM), often termed the Gordon (1962) 
model. One exception by inference is Haugen (1999) who challenges the concept of growth as it is 
normally considered to exist in companies. 

Attempts over the years to incorporate growth patterns other than constant-rate growth 
have not adequately addressed the question of what model best reflects the reality of growth. A 
recent article by Haslem (2002) is representative of what has been done. Among the works rele-
vant to our study he cites earlier works by Bierman (2001), Williams (1938), and Brigham and 
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Pappas (1966). Haslem correctly points out that dividend models are not very useful in valuing 
stocks that pay little or no dividend. However, he follows precedent by basing his analysis on three 
discrete stages (pioneering, investment maturity, and stabilization) and does not try to formally 
incorporate a logistic function. He correctly mentions in his conclusion that the particular model 
used to describe the dividend time path has a marked influence of the share price value. 

The trajectory of corporate earnings growth is important because it affects the firm’s cost 
of equity capital and thus its overall cost of capital. This has implications for capital investment 
decisions based on discounted cash flow estimates as well as for investors. The trajectory of corpo-
rate earnings growth is important to investors because equity share value should mirror changes in 
earnings, and consequently in dividends currently paid and in prospect to be paid in the future.  

In the dividend capitalization model popularized by Gordon (1962), stock price is the 
time-zero present value of all future cash flows; that is, cash dividends. This means that stock price 
is entirely dependent on dividends, extant and in prospect, as discounted at the market’s (subjec-
tive) discount rate. We extend this by assuming that stock price Pt is time-dependent – that earn-
ings and dividends depend on time – and they are the main determinants of stock value. With a 
logistic trajectory, the growth rate eventually slows. Thus, eventually the curve of present value of 
earnings and dividends plotted against time will begin to bend downward, and the point of its 
maximum is where one should bail out of the stock.  

There is ample evidence of S-curves, not only in nature, but in business as well. Van Dui-
jin (1983, p. 22) avers that the logistic is the backbone of the product-life-cycle in literature on 
marketing. The term product-life-cycle was originated by Joel Dean (1950). Dean identified three 
stages of a product’s life: introduction, growth, and maturity. He claimed that the length of the 
cycle is determined by the rate of technological change. Van Duijin mentions that four, and even 
five phases, are now distinguished, with the last stage termed decline.  

Logistic growth applies to whole companies and whole industries, not just products and 
services they manufacture and sell. Miller (1990) provides a compelling and lucid rationale for 
why companies may follow an S-curve from birth to their eventual demise. He argues that compa-
nies eventually decline and fail when they fail to adapt to changing conditions by continuing to 
operate in the same way that gave them success in the past. Rigid adherence to the tried and true, 
refusal to adapt, when markets, technologies, and competition change, is the path to certain decline 
and eventual ruin if not corrected by management. Foster and Kaplan (2001, p. 55) make a case for 
the S-curve.  

“While this pattern may vary somewhat for sales or earnings—for 
example, near the top of the S-curve it is not uncommon for sales to go into a 
cyclical period, or turn down rather than stay constant—it is a reasonable 
approximation in all industries we have studied.” 

They continue by pointing out that early long-term forecasts of sales or earnings will be 
too low, and later on too high, requiring continual adjustment. At the beginning stage of upward 
revisions the stock price will rise, as will returns to investors. But at the later stage, after the 
growth has peaked, downward revisions will have the opposite effects. Foster and Kaplan (2001, 
p. 57) point out that  

“This is exactly what happens in fast-moving industries like com-
puter hardware. During the period from 1962 to the mid-1970s, both the total 
return to shareholders and the price-to-earnings ratio of the computer indus-
try were above the corresponding levels in the US economy as a whole. This 
proved to be a nightmare for value investors who shunned this industry wait-
ing for a better time to invest. When the ‘better time’ came, the companies 
were underperforming the market . . . until a new group of leaders took over 
in the market and drove performance up again by riding the new S-curve of 
personal computers and eventually the Internet.” 

Readers can find numerous examples of S-curve growth in their book. 
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Stewart (1989) makes a case for forecasting a company’s future by taking measurements 
along its past trajectory, and then applying those measurements to extrapolating the future evolu-
tion along a logistic curve. His focus is more on industries and macroeconomic measures than on 
individual firms, yet may be applicable to them as well. 

In this paper we present results from integrating S-shaped growth into the dividend capi-
talization model. First, we examine the theoretical implications of varying growth on share price 
value. Then we examine a company whose data indicate fits the S-shaped growth model, Micro-
soft1 (ticker symbol MSFT). In doing so we fit a sigmoid curve to the company’s earnings and 
measure the extent to which investors are likely to err if they value the firm’s shares according to 
the Gordon form of the model instead of one that reflects varying growth. The example is used 
solely to illustrate application of the theory, which does not depend on any particular instance in a 
company. 

S-Shaped Functions  
 Several specific mathematical forms of S-shaped curves form a class collectively termed 

sigmoids. Two of the more popular forms are the logistic curve and the Gompertz curve. The lo-
gistic, often called the Pearl-Reed curve, or simply the Pearl curve, is somewhat simpler. It as-
sumes a symmetrical function, while the Gompertz does not require symmetry. We adopt the lo-
gistic here for purposes of exposition. Martino (1983, p. 58-59) provides insight into a key differ-
ence between the two characterizations: 

“The Pearl and Gompertz curves have completely different underly-
ing dynamics. This can be seen by taking their derivatives: The slope of the 
Pearl curve is proportional to y(L − y) and the slope of the Gompertz curve 
is (for y > L/2) proportional to L − y only. That is, the slope of the Gompertz 
curve is a function only of distance to go to the upper limit, whereas the slope 
of the Pearl curve is a function of both distance to go and distance already 
come.” 

In analogy to the computer software market, for example, a Gompertz curve would not be 
affected by the installed base of operating systems and office suite program collections. The Pearl 
curve would be. Given that much computer software is sold to replace existing operating systems 
and application programs, we believe the Pearl curve better represents the reality of the computer 
software industry than the Gompertz does. And it may also represent many other industries where 
replacement is involved better. 

The logistic curve itself has several different mathematical representations. Basically, any 

growth rate
( ) / ( )dF t F t

dt
 that is a decreasing function of the original F(t) is a logistic function. 

For example, if F(t) is a population at time t, and a – bF(t) is a decreasing function, then a logistic 

function can be 
( ) ( ) ( )dF t F t a bF t

dt
= − and the solution for this particular logistic function 

is ( ) at

aF t
b k e−=
+ ⋅

, where 1akk e−=  and k1 is a constant of integration.  

Another form of logistic growth is 
 

                                                           
1 On January 16, 2003 Microsoft announced its first cash dividend:  
“REDMOND, Wash. -- Jan. 16, 2003 -- Microsoft Corp. today announced that its Board of Directors declared an annual 
dividend and approved a two-for-one split on Microsoft common stock. The annual dividend of $0.16 per share pre-split 
($0.08 post-split) is payable March 7, 2003, to shareholders of record at the close of business on Feb. 21, 2003. As a result 
of the stock split, shareholders will receive one additional common share for every share held on the record date of Jan. 27, 
2003.” http://www.microsoft.com/presspass/press/2003/Jan03/01-16ds.asp 
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which has the solution  

 ( )
1 bt
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ae−=
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where c > 0 is constant and is the limiting value, or upper asymptote. This particular form 
is from Raymond Pearl, a US demographer who popularized its use for population forecasting. 

Dividend Growth 
Gordon (1962) uses a discrete constant dividend growth rate g such that 0 (1 )t

tD D g= + , 
where Dt is the dividend at time t. We substitute a continuous logistic growth function for the ex-
ponential curve determined by the constant growth rate, g. The difference between discrete and 
continuous compound growth means such substitution is not entirely analogous, but the compara-
tive statics of the discrete and compound growth curves are comparable and the continuous case is 
a close approximation to its discrete counterpart. 

The following assumption should make the theory sufficiently general to include the case 
of a growing firm that does not pay dividends. We assume that the investor predicts that the firm’s 
earnings will grow according to a logistic function and also prices the stock as if the dividends 
were paid as a fixed percentage (e.g. 70%) of earnings.  

The actual or anticipated dividend, D(t) at time t, is a function of the dividend payout ra-
tio, δ, and the firm’s logistic earnings curve, E(t): D(t)= δE(t). We assume that 0 ≤ δ ≤ 1 on aver-
age; that is, the firm will not normally pay a dividend greater than its earnings, though it may 
choose to pay a constant dividend that exceeds earnings in any given quarter or year.  

Let us assume that D(t), the dividend at time t, takes on the logistic growth form as above 
F(t) in equation 1, namely  

 

 ( ) for , 0
( ) bt

D t ab a b
D t e a

= >
+

&
. (3) 

The solution D(t) will be ( ) ( ) (with , , 0)
1 bt

cD t E t a b c
ae

δ −= = >
+

. This suggests that 

there may be an optimal time to sell this stock investment. 

Optimal Timing 
Under constant growth, the investor is indifferent between cashing out the dividend 

stream either by selling out or by just keeping the dividend stream indefinitely. Under constant 
perpetual growth, going forward from any point t the present value of future dividends is constant. 
But, if the dividend takes a logistic path, then the investor will want to find the optimal time to sell 
the stock, retrieve invested capital, and possibly invest in another stock that is still in the growth 
portion of its own logistic path. If the growth rate is not constant, but eventually declines, there 
will be a time at which the present values of future earnings and dividends decline – that is the 
optimal bail out point1. Our model has a subjective discount rate, and thus the present values can 
be different for different investors, and everyone may have a different optimal bail out time, just as 
all market participants may hold different expectations in order that there are both buyers and sell-
                                                           
1 Selling depends on our discounted curve, not on the deceleration phase. If the investor’s subjective discount rate is high, 
optimal selling could even be in the acceleration phase. The fact that a stock’s return follows a logistic path means we 
should not buy and hold, but should consider that there is an optimal time to sell, and that time is dependent on the subjec-
tive discount rate. 
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ers at the same time. Our use of the continuous growth curve implies we are assuming the investor 
will calculate dividends on a continuous and not discrete basis. We define optimal time 

1* max ( )r t

t
t e D t−≡ and get 

 
b
r

arab

t
⎥⎦
⎤

⎢⎣
⎡ −

=
ln

*
1 , (4) 

with corresponding 

 ( )
b
rcctD −=*

1 . (5) 

 
In other words, *

1t  is the solution for the above optimization problem that meets the usual 

first and second order conditions. The term rte− has the usual meaning of the continuous discount-
ing factor based on the (in this case subjective) discount rate, r. The term b determines the 
slope ( )D t& . We can look at b, which affects the slope, as a factor that marks the rapidity with 
which the firm matures, that is, penetrates all its markets and reaches peak sales and earnings.  

The greater the b term (the steeper the growth curve in dividend/anticipated dividend), ce-
teris paribus, the quicker that the optimal abandonment horizon, *

1t , will be reached. There are 
three possible cases, namely b > r, b = r and b < r. The Appendix shows that b > r is the only case 
where both the first and second order conditions are satisfied. Please refer to Figure 1A1.  

 In Figure 1A, if the dividend traces out an S-curve, then at rate r, the discounted curve 
will bend downwards implying that:  

1. At the inflection point of the discounted dividend curve, it is time to sell shares. This 
is in contrast to Gordon’s hold-forever thesis or that value is constantly growing. 

2. If one does not sell at the inflection point that would imply that the rate r for periods 
after the inflection point must decrease such that the discounted values do not bend 
down the dividend curve.  

3. Alternatively, one might expect some influences (e.g., successful new products of the 
company or drastic cost cutting) that could change the logistic earnings and dividend 
functions2. 

Otherwise, holding beyond the optimal abandonment horizon point *
1t  implies that the 

investor is irrationally willing to stay with his or her investment in a company beyond the point 
where doing so provides a positive expected value change from the investment. An investor would 
not do so unless he or she had unrealistic expectations about the company’s future performance.  

To illustrate with a numerical example, Figure 1A is graphed with the following parame-
ters:  

Asymptote c = 1000 cents; time = 100 periods; 
Slope determinant b = 0.10 > r = .00745 per period; 
Since the curve is symmetrical over [0,100], the inflection point lies at 
 t = 50 = ln[a] / b ⇒ a = exp (50 x b) = exp (5) = 148.41  
 

                                                           
1 Some may object that the logistic parameters can only be determined ex post. However, it is possible to estimate them 
early in the process. For an intuitive sense of how this might be approached see Hugh B. Stewart, Recollecting the Future, 
(1989). 
2 It is sometimes the case that one logistic growth trajectory is followed by a second and possibly even more. This requires 
that old patterns of growth be replaced by new innovations as the old reach saturation or decline. For more on this see 
Perrin Meyer, “Bi-Logistic Growth”, which first appeared in the journal Technological Forecasting and Social Change, 
published by Elsevier Science Inc., New York. 
URL: http://phe.rockefeller.edu/Bi-Logistic/ Citation: Technological Forecasting and Social Change 47:89-102 (1994). 
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Fig. 1A. Logistic Growth (r < b) 

 

 
 

Fig. 1B. Logistic Growth (r = b) 
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Fig. 1A. Logistic Growth (r > b) 

 
Therefore the optimal timing when the discounted dividend e– r t D(t) is maximized is  

*
1t  = ln [ a(b-r) / r ] / b = ln[1843.67]/0.10 = 75.1951th period1 and *

1( )D t =c – rc/b =1000 – 74.5 = 925.50. 
For the other two cases of b = r and b < r, the second order condition is not met and we do 

not have a solution for the optimal timing problem. The economic interpretation is quite clear –
when the subjective discount rate r is greater than or equal to the growth determinant, the investor 
should not be willing to buy the stock. Please see Figures 1 B and 1 C, which are drawn with pa-
rameters r, b set at r = b and r > b, respectively. For the case of r > b the difference between them 
is only 0.0001, 0.10001 versus 0.10000, yet even for this minor difference the curve collapses. 

Application to MSFT 
A company widely followed by investors and the media is Microsoft, ticker symbol 

MSFT. Microsoft, founded in the 1980s, grew to maturity in less than twenty years. Its diluted 
earnings per share became positive in the first quarter of 1988 (Q88-1 in the notation we use here). 
A period of rapid increase and then a recent slowing of growth followed the slow initial growth in 
earnings per share. This suggests that a logistic might be well suited to representation of Micro-
soft’s earnings growth trajectory. We use MSFT diluted per-share earnings from the first quarter of 
1988 to the third quarter of 2001 inclusive, thus ignoring all the quarters of zero reported earnings 
before 1988. We also make the assumption that the anticipated dividend will be 100% of the di-
luted earnings (i.e., the payout ratio, δ = 1) to simply the analysis.  

We fit the simple Pearl form of logistic curve discussed above to MSFT. Figure 2 shows 
the results of fitting the curve to MSFT earnings. We do not include results of experimentation 
with the Gompertz curve. They tend to confirm our aforementioned assumption that it is not as 
well suited as the logistic curve to Microsoft.  

Note again that the fitting process does not use the most recent data points. It would ap-
pear they are either outliers or else Microsoft has experienced a structural change to its earnings. 

                                                           
1 We note that the higher the subjective discount rate r (still < b), the shorter the time to bail-out is. For example, if we 
increase r to 9% per period, *

1t = 28.03th period. 
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The sum of the squared error terms for the Pearl logistic curve is 0.22304. The calculated 
asymptote is $3.13 for the time span Q88-1 through Q01-3 inclusive1. During this time the maxi-
mum diluted per-share earning for MSFT was $1.75 in Q01-3. Following that quarter it has fallen 
off markedly.  

The parameters obtained in fitting the above logistic to MSFT quarterly data2 (shown in 
Figure 2) are: asymptote c = $3.13; b = 0.1155; inflection point ln [a] / b = 63.09504. Hence a = 
exp (7.2875) = 1461.91.  

Further, if we assume that the investor’s subjective discount rate r = 0.09 per annum ( r < 
b): Optimal bail-out time *

1t = ln [ a(b-r) / r ] / b = ln (414.21) /0.1155 = 52.18th quarter, or be-
tween Q2001-1 and Q2001-2.  

Fitting the upper asymptote to a Pearl logistic curve presents a conceptual problem. 
Martino (1983, p. 61) advises against approaches that optimize the curve fit by finding the asymp-
tote as a part of the fitting process.  

“Some forecasters use curve-fitting methods that extract from the 
historical data not only the two coefficients of the Pearl or Gompertz curve, 
but the upper limit L as well. This is bad practice and it should not be done. 
During the early history of a technical approach the upper limit has very lit-
tle effect on its growth in performance. Thus data points from this period 
contain little information on the upper limit. Values for L obtained by such 
means are certain to contain a large error component. 

Instead, the upper limit should be estimated on the basis of, for ex-
ample, the physical and chemical limits imposed by nature on the technical 
approach to be forecast. These natural limits may exist in the form of a 
breakdown voltage, a maximum efficiency, limiting mechanical strength, a 
maximum optical resolution, a minimum detectable concentration of a 
chemical, and so on.” 

We proceed contrary to this advice because, unlike the applications Martino addressed, 
we are aware no logical, a priori method that will provide an upper limit to Microsoft’s diluted 
earnings per share that is not wholly arbitrary. Therefore, we choose to determine the upper as-
ymptote from the data we have, rather than from other methods aimed at determining the maxi-
mum per-share earnings MSFT approaches in the limit. The calculated asymptote is $3.13 for the 
time span Q88-1 through Q01-3 inclusive3. During this time the maximum diluted per-share earn-
ing for MSFT was $1.75 in Q01-3. Since that quarter it has fallen off markedly.  

The alternative logistic, based on fitting with c held to $1.76 is: b = 0.188835, a = 
exp(54.08637 x 0.188835) = exp(10.21340) = 27,266.11, and r = 0.09 per annum yields 

*
1t  = ln (29,942.73) / 0.188835 = 54.58, between Q2001-2 and Q2001-3.  

The graph does not look appreciably different from that in Figure 2 so we do not include it here.  
 

                                                           
1 An asymptote of $1.76, slightly above the maximum realized per-share earnings offers a better fit to the shape of the 
earnings curve in recent quarters, but a poorer fit to the early data. We fitted the logistic by minimizing the squared devia-
tions from the realized diluted earnings per share. 
2 We note that the subjective discount rate r in the logistic function is normally a per annum figure, as it is in the usual 
continuous compounding formula, e.g. ert. What use here the MSFT quarterly diluted earnings as data points to trace out an 
earnings-anticipated-dividend curve. We then fit a logistic function to approximate this earnings-dividend curve. And the r 
in the fitted logistic function is on a per annum basis. 
3 An asymptote of $1.76, slightly above the maximum realized per-share earnings offers a better fit to the shape of the 
earnings curve in recent quarters, but a poorer fit to the early data. We fitted the logistic by minimizing the squared devia-
tions from the realized diluted earnings per share. 
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Fig. 2. MSFT Earnings Per Share 

Table 1 contains optimum bailout numbers for various values of r and asymptotes of 
$3.13 and $1.76.  

Table 1 

Optimal Bailout for Various r and asymptotes of $3.13 and $1.76 per quarter earnings per share 

t* ( $3.13) r t* ( 1.76) t* ( $3.13) r t* ( 1.76) t* ( $3.13) r t* ( 1.76) 

1 2 3 4 5 6 7 8 9 

 104.13886 0.10000% 81.81198 66.35644 4.70000% 59.93548 50.80881 9.30000% 54.24538 

98.06167 0.20000% 78.11306 66.04683 4.80000% 59.78652 50.32260 9.40000% 54.13319 

94.47454 0.30000% 75.93745 65.73909 4.90000% 59.63959 49.81863 9.50000% 54.02102 

91.90649 0.40000% 74.38542 65.43299 5.00000% 59.49460 49.29499 9.60000% 53.90883 

89.89652 0.50000% 73.17500 65.12834 5.10000% 59.35145 48.17958 9.80000% 53.68430 

88.23927 0.60000% 72.18061 64.82493 5.20000% 59.21006 47.58225 9.90000% 53.57191 

86.82521 0.70000% 71.33524 64.52258 5.30000% 59.07034 46.95395 10.00000% 53.45941 

85.58893 0.80000% 70.59890 64.22110 5.40000% 58.93222 46.29041 10.10000% 53.34677 

84.48825 0.90000% 69.94580 63.92030 5.50000% 58.79563 45.58643 10.20000% 53.23396 

83.49436 1.00000% 69.35832 63.61999 5.60000% 58.66050 44.83566 10.30000% 53.12095 

82.58671 1.10000% 68.82390 63.32000 5.70000% 58.52675 44.03012 10.40000% 53.00773 

81.75012 1.20000% 68.33326 63.02015 5.80000% 58.39433 43.15966 10.50000% 52.89426 

80.97305 1.30000% 67.87935 62.72025 5.90000% 58.26317 42.21111 10.60000% 52.78052 

80.24655 1.40000% 67.45670 62.42012 6.00000% 58.13322 41.16687 10.70000% 52.66647 

79.56348 1.50000% 67.06096 62.11959 6.10000% 58.00442 40.00273 10.80000% 52.55210 

78.91813 1.60000% 66.68864 61.81847 6.20000% 57.87672 38.68404 10.90000% 52.43737 

78.30579 1.70000% 66.33686 61.51658 6.30000% 57.75007 37.15873 11.00000% 52.32226 

77.72257 1.80000% 66.00326 61.21373 6.40000% 57.62442 35.34312 11.10000% 52.20673 

77.16520 1.90000% 65.68585 60.90972 6.50000% 57.49973 33.08983 11.20000% 52.09076 

76.63091 2.00000% 65.38295 60.60437 6.60000% 57.37594 30.10011 11.30000% 51.97431 

76.11735 2.10000% 65.09312 60.29748 6.70000% 57.25302 25.60209 11.40000% 51.85736 

75.62248 2.20000% 64.81512 59.98883 6.80000% 57.13092    
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Table 1 (continuous) 
1 2 3 4 5 6 7 8 9 

75.14452 2.30000% 64.54788 59.67822 6.90000% 57.00960    

74.68193 2.40000% 64.29047 59.36542 7.00000% 56.88902    

74.23335 2.50000% 64.04207 59.05020 7.10000% 56.76916    

73.79758 2.60000% 63.80195 58.73233 7.20000% 56.64996    

73.37354 2.70000% 63.56946 58.41155 7.30000% 56.53139    

72.96028 2.80000% 63.34405 58.08760 7.40000% 56.41343    

72.55695 2.90000% 63.12519 57.76021 7.50000% 56.29603    

72.16275 3.00000% 62.91243 57.42907 7.60000% 56.17916    

71.77700 3.10000% 62.70534 57.09389 7.70000% 56.06279    

71.39905 3.20000% 62.50355 56.75432 7.80000% 55.94689    

71.02831 3.30000% 62.30672 56.41001 7.90000% 55.83144    

70.66426 3.40000% 62.11454 56.06059 8.00000% 55.71639    

70.30640 3.50000% 61.92672 55.70566 8.10000% 55.60172    

69.95427 3.60000% 61.74300 55.34476 8.20000% 55.48741    

69.60745 3.70000% 61.56314 54.97743 8.30000% 55.37341    

69.26556 3.80000% 61.38692 54.60316 8.40000% 55.25972    

68.92822 3.90000% 61.21414 54.22139 8.50000% 55.14629    

68.59510 4.00000% 61.04460 53.83151 8.60000% 55.03310    

68.26587 4.10000% 60.87814 53.43284 8.70000% 54.92013    

67.94024 4.20000% 60.71459 53.02464 8.80000% 54.80735    

67.61791 4.30000% 60.55379 52.60612 8.90000% 54.69473    

67.29861 4.40000% 60.39561 52.17634 9.00000% 54.58225    

66.988210 4.50000% 60.23991 51.73431 9.10000% 54.46988    

66.6612 4.60000% 60.08657 51.27890 9.20000% 54.35760    

 
In population forecasting models, researchers usually linearize the logistic function by the 

natural logarithm function, ln, and use regression analysis to determine the parameters a and b. These 
parameters are then plugged into the logistic function and extrapolated for future population estimates. 
We mention this as a possibility for future research since it is outside the scope of this paper.  

Another possible direction for future research will be the application of logistic growth 
analysis in picking stocks. Our analysis suggests the following strategy. If the investor expects 
logistic growth for a set of small companies with promising new products or services, he or she 
will invest in some of these companies. Individual companies will fail. But the expectation is that 
as a group they will grow. Thus the investor should enjoy the rapid growth portion of the logistic 
curve for those that are successful. The investor loses nothing by waiting for the inflection point on 
D(t) to appear for any individual company since the actual or anticipated dividend is rising on the 
rapid growth portion of the curve. When realized growth exhibits a pattern resembling the portion 
beyond the inflection point, the investor should apply the above optimal timing analysis to esti-
mate the optimal bailout point. In case the firm’s earnings-dividend growth pattern is already on 
the rising portion of the logistic curve, the investor can still estimate the a, b, c parameters and 
calculate optimal bail-out time. From the optimal bail-out time, the investor can infer the remain-
ing possible anticipated dividend gain and hence the return based on the current stock price. The 
decision of whether to invest then depends on an estimation of the firm’s ability to grow according 
to the logistic function and on a subjective risk-return preference curve. 

Logistic growth has implications for cost of capital that make estimation of it by corporation 
management more challenging. According to the above analysis and the illustrative application of 



Investment Management and Financial Innovations, 1/2004 

 

110 

logistic growth, the investor’s subjective rate is compared to b, which determines the slope of the 
growth curve. Equation 5 can be used to solve for r, the investor’s minimum required rate of growth. 

 

 ( )
⎥
⎦

⎤
⎢
⎣

⎡
−=

c
tDbr

*
11 . (6) 

 
In terms of the dividend expected at the optimal abandonment time, the asymptote of the 

logistic growth, c, and the slope-determining parameter, b. Given the caveats concerning estima-
tion of the asymptote mentioned above, this poses difficulties for management that seem less eas-
ily resolved than those associated with application of the CAPM or dividend capitalization model 
for estimating cost of capital. However, the dividend capitalization model is inapplicable to stocks 
that pay no cash dividend. And the CAPM approach depends on stability in the relationship be-
tween the returns on a stock and those on the market that cannot exist if the company’s growth 
changes with respect to the market over time. Therefore, the cost of capital given by equation 6 
may still be superior for companies that pay no dividend and follow a logistic growth trajectory. 

Conclusion 
In this paper our approach is to adapt to the firm a logistic growth model widely used in the 

physical sciences. Previous research on the theory of the firm has considered only one, two, or at 
most three discrete phases of a firm’s growth to approximate the firm’s cost of capital (or value) us-
ing the now traditional dividend capitalization (Gordon) model. We show that if the earnings-implied 
anticipated dividend of a firm were to follow a logistic curve, there is an optimal time for the investor 
to sell. In contrast, the Gordon model, assumes earnings and dividends to reach a point of constant 
growth that lasts indefinitely into the future and thus there is no optimal point to sell. 

We suggest that future research might examine the influence that widespread adoption of 
the model presented in this paper could have on the pricing of common stock. In the meanwhile, it 
offers individual investors a means for gauging whether to continue to hold or to sell shares based 
on theory that recognizes non-constant growth.  

We also suggest that the problem of estimating a firm’s cost of capital by using the results 
from the logistic curve model is not demonstrably more difficult than those in applying the CAPM. It is 
a matter of a trade-off of one difficulty for another, an unstable beta for a problematic asymptote value, 
for instance. And, cost of capital can be estimated by using the results of logistic curve modeling, while 
the dividend capitalization model cannot be sensibly used at all for stocks that do not pay dividends. 
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Appendix 
Constant Growth (Gordon) Model 
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But, a constant growth rate forever is unrealistic and has never been observed. Thus, we 
replace the growth rate with the more realistic logistic curve.  

One form of logistic growth , 0bt
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 and has the properties: 

1. A. The curve is growing, but at a continuously decreasing rate.  
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2. ln( )shifts the curve to the right. ( inflection point right)aa a
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(Inflection is at ½ the saturation level, and the curve is symmetrical with respect to the in-
flection point).  
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Optimal timing: 
Find that yields Max(Present Valueof ), i.e.,
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Now, set ( ) 0=

dt
tdPV  for the first order condition: 
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Now the second order condition must also be satisfied: 
Case 1: b > r satisfies 2nd order condition, but  
Case 2: b ≤ r does not necessarily satisfy 2nd order condition. 
Second order condition:  
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