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R&D Investment under Evolving Market Conditions 

Lakshmi K. Raut1  

Abstract 
This paper formulates a dynamic model of R&D investment of private firms operating 

under evolving market conditions. Using the dynamic programming approach, the paper derives 
the closed form optimal R&D investment rule in the presence of exogenous variables that Granger 
cause the marketing environment. Conditions for identification and econometric techniques for 
estimation of the structural parameters are given. The paper provides a tractable approach to 
evaluation of policies regarding R&D subsidies, firm size, market concentration that is free from 
Lucas critique on econometric policy evaluation. 
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1. Introduction 
 The in-house R&D investment of a private firm is a process or a product innovation. The 

timing of an innovation from a given R&D investment is uncertain and it depends on the R&D 
capability of the firm and the scientific complexity of the innovation pursued by the firm. The 
profitability of a firm's new innovation depends on market conditions such as how competitive the 
firm's industry is, the size of the firm, the strength of patent protection and the ease of imitation of 
the innovation by other rival firms. Government policies also affect these market conditions which 
evolve over time and influence the profitability of a firm's R&D investment. Thus the Lucas cri-
tique (1976) on policy evaluation ia applied to R&D investment. The main point of the critique in 
the present context is that if a firm's R&D investment decision under uncertainty depends on its 
expectations about the future market conditions and policy changes, then, instead of estimating a 
R&D decision rule by throwing in arbitrarily some policy variables as regressors, one should 
model and estimate the parameters of the firm's objective function and the stochastic processes that 
govern the future environments in which the firm operates. 

Hansen and Sargent (1981) pioneered such a line of research by modeling the US aggre-
gate labor supply decisions over time for a representative agent. They gave up the dynamic pro-
gramming approach for solving their cost-of-adjustment model of labor supply decisions, and fol-
lowed the variational approach that uses Euler equation, Transversality condition and the Wiener-
Kolmogorov prediction formula to compute a close form optimal decision. I have shown in Raut 
(2004) that it is possible to derive a close form solution following the dynamic programming ap-
proach and using only from the matrix Riccati equation. The Wiener- Kolmogorov prediction for-
mula is not required for this purpose. I have also shown that in the linear quadratic problems, the 
hypothesis of rational expectations impose cross equations parameter restrictions which are useful 
for identifing some of the structural parameters but not all. To identify all structural parameters, 
further structure is needed. More specifically, I have shown that when the firm's environment vari-
ables follow first order autoregressive processes, the cross equations restrictions imposed by the 
rational expectation hypothesis help to identify only a subset of the structural parameters. When 
some of the environmental variables were assumed to follow autoregressive processes of orders 
higher than two, not only that all the structural parameters were identified from the cross equation 
restrictions, there were also over-identifying restrictions that could be used for more efficient esti-
mation of the parameters and for testing the model. I showed these in Raut (2004) under the as-
sumption that technological knowledge is observable. In this paper, I extend the analysis to the 
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case when technological knowledge is imperfectly observed and when other exogenous variables 
are present that Granger cause the firm's environment variables. 

There are many hypotheses regarding the factors that affect the accumulation of techno-
logical knowledge and hence the R&D investment decisions. Some of these hypotheses are as fol-
lows: 

1. Firm size, intensity of rivalry or competition (Schumpeter, 1934, 1950). 
2. Complete uncertainty about the profitability of a new product, if it is a product inno-

vation, and partial uncertainty about the shifts in demand for the product if it is a 
process innovation (Schmookler, 1966). 

3. The R&D capabilities or the ''strength of knowledge'' for efficient R&D search for 
firms having different ''science bases'' (Rosenberg, 1976, Nelson, 1982, Nelson and 
Winter, 1977,1978, Evenson and Kislev, 1976). 

4. Government policies such as R&D tax credits, anti-trust policies to restrict monopoly 
power of a firm, licensing schemes, patent laws, and investments in basic research af-
fecting (1)-(3) above. 

Theoretical models of R&D have considered most of the above aspects of technological 
knowledge, and studied the effects of government policies on R&D subsidies, market concentra-
tion, firm size (Dasgupta and Stiglitz (1980a&b) are among others, see Kamien and Schwartz 
(1981) for a survey of these papers). The empirical research, on the other hand, has been carried 
out mainly in two lines ignoring many of the above aspects of R&D. One set of studies is con-
cerned with testing the Schumpeterian hypothesis regarding the effects of firm size and intensity of 
rivalry on the pace of R&D investments within a static framework (see Levin and Reiss (1984), 
Kamien and Schwartz (1981) for an account of these studies). The other set of studies is concerned 
with the effects of R&D expenditures on productivity growth (Griliches (1984), Mohnen (1992), 
Mairesse and Sassenou (1991), for account of studies on developed countries, and Raut (1995) for 
account of studies on developing countries). Although many studies are directed toward policy 
analysis, these studies do not formulate R&D investment decisions using a dynamic economic 
model and then estimate the model parameters.1 

The rest of the paper is organized as follows. In section 2, I formulate the R&D invest-
ment decision as a dynamic programming problem. In section 3, I derive explicitly the optimal 
R&D decision rule with cross equation restrictions. In section 4, these restrictions and the optimal 
decision rule to address the identification issues are used. In section 5, I introduce exogenous vari-
ables that Granger cause the marketing conditions of the firm. In section 6, I deal with issues re-
lated to unobserved technological knowledge. In section 7, the econometric estimation and testing 
issues are discussed. 

2. The Basic Model 
Technological knowledge has been conceptualized in the literature in many ways. For in-

stance, Arrow(1962) treats technological knowledge as information on the states of nature and the 
role of R & D is to acquire more knowledge about the states of nature to improve one's subjective 
beliefs about the possibility of reaping an innovation. Nelson (1982) views technological knowl-
edge as ''capability for efficient search'' and R&D helps to search for a given target, say for in-
stance, a product innovation or a process innovation. The main point of this notion of technologi-
cal knowledge is that it is the strength of knowledge that determines how much R&D efforts are 
expected to be successful as opposed to Schmookler's viewpoint (1966) that the pay-off deter-
mines R&D investments. Griliches (1979,1984) treated the stock of technological knowledge as 
one of the factors of production, analogous to stock of physical capital. Like capital stock, it de-
preciates and becomes obsolete over time, but can replenish over time with R&D investments. 

                                                           
1Pakes (1984), however, goes a step closer in this direction; instead of deriving the reduced form solution with cross 
equations restrictions imposed by rational expectations, he, however, parameterizes the reduced form solution for 
estimation. 
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My definition of technological knowledge is drawn from all three notions. I consider ac-
cumulation of technological knowledge as acquisition of more information on the states of nature 
related to product improvements or process improvements. I also view it as a deliberate economic 
activity similar to investment in physical capital. A set of R&D inputs adds to the stock of knowl-
edge which might be immediately used or might be useful for further information production. 
However, unlike in the case of investment in physical capital, I assume here that the marginal rate, 
b, at which a unit of R&D adds to the stock of knowledge varies from industry to industry depend-
ing on the R&D capability or strength of knowledge or the science base of that industry. There are 
various sources for spillover effects, e.g., government's investment in basic research, technological 
knowledge of other domestic or foreign firms, the strength of which depends on the patent law. I 
assume that all these constitute a constant amount of spillover knowledge in each period. More 
formally, 

 
 0 t,111111 ≥+++=+ tttt wcbRzaz , (1) 
where 

 

tz1  = our firm’s stock of knowledge at the beginning of period t; 

tR  = R&D investment of the firm in period t; 

11 a−  = depreciation rate for knowledge; 
b  = technological capability or a measure of strength of knowledge; 

1c  = a constant measuring the spill-over effect; 

tw1  = a random shock in period t; 
The specification (1) of the technology of technological knowledge production is general 

enough to encompass various empirical findings on differential lagged effects of R&D investments 
on production of knowledge. 

Technological knowledge is intangible, indivisible, inappropriable, i.e., difficult to insti-
tute a property right on, and involves externalities in production and its use. Following the strategy 
to value information in statistical decision theory, I impute an indirect private value to a stock of 
technological knowledge in the following way: 

The timing of innovation is uncertain, but the likelihood of its taking place in any period 
is higher, the greater is the stock of accumulated knowledge at the beginning of that period. Let 
( )tzP 1  be the probability that the firm will reap the innovation in period t if its stock of knowl-

edge is z1t  , given that it has not achieved it yet. Various forms for ( ).P  are plausible. I will fur-

ther assume that ( )tzP 1  takes the following form:  
 

 ( ) ( ) 0 1,z0 ,1 2 >>≤<−
−

= γµγµ
γµ

zzzP . (2) 

 
The value of an innovation at time t depends in a number of ways on the firm size, z2t  , 

intensity of rivalry, z3t  , and the market condition, or the profitability from the current line of re-
search, tξ . Market concentration or intensity of rivalry is an industry level attribute. More rivals 
in an industry lead to a higher chance for imitation of an innovated product or process and also a 
higher chance for another firm's innovation to arrive before the current innovation has reaped its 
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maximum monopoly rent. Furthermore, more rivals in an industry may reduce the market share of 
a firm. All these lead to a lower value for an innovation and to a higher intensity of rivalry.1 

The effect of firm size on the value of technological knowledge may come through differ-
ent channels. Following Nelson's (1959) interpretation, I argue that the larger firms having already 
established name and reputation in the market can appropriate the benefits of an innovation by 
easy market penetration, and having more product diversification could use the accumulated 
knowledge in more than one line of business. Therefore, the larger firms may envisage a bigger 
return from a given stock of technological knowledge than the smaller one.2 

Another important factor in the determination of value of technological knowledge is the 
completely unknown demand for new products in the case of product innovation and the shift in 
the demand in the case of process innovation. The higher these uncertainties are, the lower will be 
the value of technological knowledge. This is sometimes referred to a Schmookler's hypothesis or 
demand pull or market opportunity hypothesis. I denote the value of the innovation as a function 
of the environment variables at time t as follows:  

 
 ( )ttt zz ξη ,, 32 . (3) 
 

For simplicity, I am assuming that (3) gives the present value at time t of the stream of 
cash-flows that the innovation will bring, and it depends only on the market condition prevailing at 
that time, but not on the future market conditions. For instance, this will be the case if the innova-
tion is patented and sold to another firm for an amount of royalty payments, which value is deter-
mined by the market conditions prevailing then.3 

Let Rt  be the R&D input used in period t. Assume that the cost of R&D is quadratic in 

input use. One period expected reward from a stock of knowledge, z1t , in period t is then given by 
 

   ( ) ( ) ( ) ( )[ ] 2
11321 1.0,, ttttttt RzPzPzzz θξην −−−=   (4) 

 
plus a stock of technological knowledge, 11 +tz  as given by (1). 

Assume that after reaping the targeted innovation, the firm will venture into another inno-
vation that will use the knowledge of the previous pursuit. The firm then faces an infinite horizon 
for its R&D investment decisions. Given the sequences, { }tz2  , { }tz3  , and { }tξ  , that character-
ize the environment facing the firm, the expected value of a sequence of technological knowledge 
{ }tz1  obtained by using the sequence of R&D investments { }tR  is given by 

 

 ( ) ( )( )∑
∞

=

−=
0

2
13200 ,,

t
ttttt

t RzPzzEV θξηβ , (5) 

 
where ( )xEt  denotes the conditional expectation of x given information set tΩ . I assume the 
following linear specification for the reward function  
 
 ( ) tttttt zrzrrrzz 33221032 ,, +++= ξξη , (6) 

                                                           
1 Also greater monopoly power reduces the incentive for innovation as the firm with monopoly power can continue to earn 
the monopoly rent without venturing into a new technological innovation. It is generally argued that an intermediate level 
of market concentration is most conducive to rapid technological innovation. 
2 It should, however, be noted that the smaller firms are not necessarily restricted to use their knowledge only in their own 
production units as they can always sell it to another firm with licensing arrangements. 
3 Kamien and Schwartz (1981), explicitly modelled rivalry using a subjective hazard function, and then derived a functional 
relationship between rivalry and the present value of an innovation. 
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where 0 1 2, , 0r r r >  and 3 0r <  . Substituting (2) in (6) and disregarding all terms with powers 
greater than two, one gets  

( ) ( ) ( ) 2
1

0
1332210132 ,, ttttttttt zrzzrzrrrzPzz ⋅

−
−⋅

−
+++=

γµ
γ

γµ
µξξη . 

 
Substituting the above in equation (4) and regarding ζξ =+ 10 rr  equation (4) can be 

rewritten as,  
 ( ) 2'

1 tttt HRQZZz +=ν , (7) 
 
where, ( )

4,...1, =
=

jiijqQ , ( )γµγ −−= /011 rq , ( )γµµ −= 212 rq , ( )γµµ −= /313 rq , 

( )γµµ −= /14q  other ijq ’s are zero, θ−=H  and ( )',,, 321 ttttt zzzZ ζ= . I further as-

sume that z2t  , z3t  and tζ  follow a first order auto-regressive process given by 
 

 
⎪
⎭

⎪
⎬

⎫

++=
++=
++=

+

+

+

ttt

ttt

ttt

wca
wczaz
wczaz

44441

333313

222212

ζζ
, (8) 

 
where ( )ttt www 432 ,,  is a three dimensional vector of white noise processes. Writing (1) and (8) 
together, one has,  
 
 tttt wcBRAZZ +++=+1 , (9) 
 
where 
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I assume wt  to be a 4-dimensional Gaussian process with mean 0 and variance-

covariance matrix ∑. Notice that I am assuming here for simplicity that R&D activities affect nei-
ther the firm size nor the intensity of rivalry. While this assumption is innocuous in the short-run1, 
for a medium to long-run analysis this may not be the case (see Landes (1969) for historical evi-
dence). 

Assume that the manager of the firm knows the parameters of his objective function in 
equation (5) and the parameters of the stochastic processes in equation (9). At the beginning of 
each period, t, he observes the realization of the variables in his information set, tΩ . The vari-

ables in his information set include any stochastic process that Granger causes either z1t , z2t , 

                                                           
1 However, see Levin (1981), and Levin and Reiss (1984) for studies of the simultaneity of R&D expenditures and market 
concentration in a static framework. 
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z3t , or tζ . But for simplicity of exposition, I do not include such variables in the information set 

tΩ  I assume for now that the manager of the firm can observe z1t  . In a later section, I deal with 
the case of unobserved technological knowledge. 

The R&D investment choice problem of the manager can be treated precisely as follows: 
Given tΩ  in period t, he chooses a R&D investment Rt  so as to maximize (5) subject to (9). To 
solve this problem using dynamic programming approach, the corresponding Bellman's equation 
for a slightly general case is given by,  

 
 ( ) ( )( )tttttttttttRtt wcBRAZVERhHRRZqQZZZV

t

+++++++= +1
'' ''max β . (10) 

 
In the present case, q and h are zero vectors. Solution of (10) gives the optimal Rt  as a 

function of tΩ . In the next section, I’ll derive the close form solution to the above problem. 

3. Optimal R&D Investment Decision Rule 
Following Bertsekas (1976), and Chow (1975,1981), it is easy to show that under certain con-

ditions1 on A, B, c, Q, and H, there exists an optimal stationary solution to (10) which is given by 
  

 ( )gGZR tt +−= , (11) 
where 
 
 ( ) KABKBBHG '' 1−+= ββ ; (12) 
 

 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +++= −

2
'

2
'' 1 hkBKcBKBBHg βββ . (13) 

 
K is a positive definite solution of the following matrix Riccati equation:  
 

   ( )[ ]AKBKBBHKBKAQK ''' 1−+−+= βββ   (14) 
 
and k is the solution to the following vector Riccati equation:  
 
 ( )( ) ( ) ( ) KABgGhBGAKcGKBBHgqBGAIk ''2''2''2'' ββββ −−−+++=−− . (15) 
 

Note that the vector Riccati equation (15) involves K, G and g, whereas the matrix Riccati 
equation K does not involve k and g . To find the explicit optimal decision rule from equation (11), 
note that  

 
θββ +=+ 11

2' kbHKBB  
and 
 

( )414111 ,...,' abkabkKAB = . 
 

                                                           
1 These conditions are controllability and observability as stated in Bertesekas (1976). 
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Substituting these in equation (11), one gets  
 

 ( ) gzakzakzak
kb
bR tttt −+++

+
−= 441422121111

11
2 ...

θβ
β

. (16) 

 
Compute k 11  , k 12 , . . . .k 14  from the Riccati equation (14) as follows:  

 

 

Q
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⎟
⎟
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⎜
⎜

⎝

⎛

=

+=

+⎥
⎦

⎤
⎢
⎣

⎡
+

−=
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, (17) 

 
where 
 

 
( )

K

m
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kb
KKBBK

dD
jiij
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⎟
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4,3,2,1,
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, (18) 

 
where 

θβ
β

+
=

11
2

22

kb
bm . It is now easy to compute ijd  's as follows: 

θβ
θβ

β
+

=−=
11

2
112

111111 kb
k

mkkd , after substituting the value of m, 

 

θβ
θβ

β
+

=−=
11

2
12

12111212 kb
kkmkkd , after substituting the value of m. 

 
… 

Substituting these in the right hand side of the last equality in the expressions (17) and 
then equating the matrix elements of both sides, one gets the following:  

 

 ( ) 1111111
11

2

2
1

11 1k .,.,1 qaeiq
kb

ak =−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

− λ
θβ

θβ , (19) 

 

 ( ) 1221212
11

2
21

12 1k .,.,1 qaeiq
kb
aak =−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

− λ
θβ

θβ , (20) 
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… 
 

where 
θβ

θβ
λ

+
=

11
2

1

kb
a . By substituting these in equation (16) and simplifying the ex-

pression (13) in a similar fashion, the close form decision rule (21) in the following proposition is 
obtained. 

Proposition 1. A closed form solution to the firm's problem is given by  
 

 ttttt ZZZgR ζαααα 4332211 ++++−= , (21) 
 
where 

( ) ( )∑
=

−−
−

=
4

1
1

1

1

1
1 j

jjj qac
a

bg λ
λθ

λ  

 

( ) 4,...1,1 1
1

1

=−−= − iqaa
a
b

iiii λ
θ
λα  

 

θβ
θβ

λ
+

=
11

2
1

kb
a  

 
and k 11  is a positive solution of the quadratic equation:  
 

11
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2

2
1

11 1 q
kb

ak =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
θβ

θβ . 

 
Equation (21) and the system of equations (9) for the motion of the environment consti-

tute the firm's decision rule. The assumption of rational expectations and a particular specification 
of the stochastic processes in equation (9) have generated cross equations parameter restrictions in 
the decision function of the firm. These restrictions are generally used for identification of the 
structural parameters and also for testing the rational expectations hypothesis assuming the model 
(9) is correct or for testing the specification of the model (9) assuming the rational expectations 
hypothesis is correct. I shall take up the identification issues in the next section and the estimation 
and testing issues in a previous section.  

For identification of structural parameters the environment variables must follow higher 
order autoregressive processes than what I have assumed. I now extend the above analysis by as-
suming a third order autoregressive process for the environment variables and then discuss how 
the structural parameters can be identified for this model. Assume that 
 

 ( )
( )
( ) ⎪

⎪
⎭

⎪
⎪
⎬

⎫

++=
++=
++=
+++=

+

+

+

+
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4441

333313

222212
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ζδζ
δ
δ , (22) 

where 
( ) 4,3,2,2

321 =++= iLaLaaL iiiiδ  
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and L is the lag operator, i.e., 1t tLX X -= . Note that 1tZ  is assumed to have the same form as 

before. For the above system, one can derive the optimal solution by expanding the state space Zt  
to contain all the lag values of sZt '  and then extend the definition of A, Q, B and c appropriately. 
One obtains the following proposition: 

Proposition 2: A closed form solution of the optimization problem (10) subject to the law 
of motion of the environment (22) is given by  
 
 ( ) ( ) ( ) ttttt LZLZLZgR ζαααα 4332211 ++++−= , (23) 
 
where 
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and k 11  is a positive solution of the quadratic equation: 
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λ
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. (28) 

 
( )+  denotes the annihilation operator that tells us to ignore negative powers of L. 

Hansen and Sargent (1981) gave a similar close form solution using Wiener - Kolmo-
gorov prediction formula. Following the dynamic programming approach, however, I have derived 
equations (23) and (24) directly from the matrix Riccati equation of the problem. 

4. Identification of Parameters: Need for More Lags 
The structural parameters are θ, β, jq1 , 4,...2,1=j  from the objective function, ∑, b, 

1a , ija , 1c , 4...2=i , 3...1=j  from the stochastic processes (22). The second set of coeffi-
cients could be estimated by the system of equations (22). The estimation of the decision rule (22) 
will give the estimates for the reduced form parameters g, and 1α  and ijα , 4...2=i , 3...1=j . 

Rewriting the expressions for 21α , 22α  and 23α  from equation (28), we have 
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 ( )
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⋅−=
a

qb , (29) 
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( )λλδθ
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⋅−=
a

a
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There are similar expressions for ijα , 4,3=i  and 3...1=j  . Substituting the values of 

23α from equation (31) and analogous values of 33α  and 43α  in equation (24) we have the fol-
lowing: 

 

 ( )∑
=

−=+
4

2
33111 1//

j
jjj gacac λαα . (32) 

 
Note that from equation (32), one can get an estimate of λ . Substituting the value of 11q  from 

equation (25) in equation (27) and then substituting the value of 11k  in equation (26) one gets  
 

 
λβα

β
λ

/1 1
2

1

b
a

+
= . (33) 

 
From equation (33) one can estimate β. 
Let’s also note that substituting in equation (24) the values of 11q  from equation (25), 

12q  from equation (30) and 13q  and 14q  from the equations that parallel equation (30), one can 

get an estimate of θ. Now from equation (30), one gets 12q  , and from equations parallel to equa-

tion (30) for tZ3  and tζ , one can estimate 13q  and 14q . Finally, from equation (25) one can es-

timate 11q . So, all the structural parameters could be recovered in this case. Note that I have never 
used the equations that are parallel of equations (29) and (30) corresponding to the other two vari-
ables, tZ3 , tζ  in this identification strategy. These are over-identifying restrictions across equa-
tions which could be used to test the validity of the model or to design more efficient GMM esti-
mators. 

5. Granger Causality and Choice of Exogenous Variables in tΩ  

So far implicitly I have assumed that tΩ  contains only tZ1 , tZ2 , tZ3 , tς and their lag 

values. In fact, tΩ  should include all observable variables that Granger cause either tZ1 , tZ2 , 

tZ3 , or tς . In this section, I consider the nature of the close form solution and the cross equations 
restrictions for this case. For expositional ease, I continue to assume third order auto-regressive 
processes for tZ2 , tZ3 , and tς . Assume that there is an extra stochastic process tX 2  which 

Granger causes tZ2  and which is related to tZ2  process as follows  
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, (34) 

where 
( ) 2

2322212 LaLaaLa ++=  
and 

( ) 2
2322212 LmLmmL ++=µ . 

 
Similarly ( )La 2'  and ( )L2'µ  are defined. 

Assuming the same first order autoregressive processes for tZ1 , tZ3 , tς  as before, and 

expanding the state space variable tZ  to accommodate tX  and its lags and appropriately modify-
ing the matrices, A, B, C and using the matrix Riccati equation, the close form solution can be 
shown to be as stated in the following proposition: 

Proposition 3: A close form solution to the firm's problem is given by 
 

 ( ) ( ) ( ) tt
t
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2

2
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⎠
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⎜⎜
⎝

⎛
++−= , (35) 

 
where g, 1α , ( )L3α  and ( )L4α  are as in (23), and ( )L2α  is given by  
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( ) ( ) ( ) ( )λρλλλψ '1 aa −−=  

 

j2'α 's have the similar expression as j2α 's after we replace ja2 's and ja 2' 's respec-

tively by jm2 's and jm 2' 's. 

 



Investment Management and Financial Innovations, 1/2004 

 

130 

The identification of structural parameters in this case follows the same steps as in the 
previous model. Notice that the above could be generalized for higher order auto-regressive proc-
esses and for other Z-variables easily. 

6. Unobserved Technological Knowledge 
I now extend the analysis to the case of unobserved tZ1 . I assume that there is a set of 

''noisy measurements'', tX 's for tZ1 . Let ( )ttt XZEZ 11
ˆ = . It is well-known in the control the-

ory that the same closed form solutions hold if we replace tZ1  by tZ1
ˆ  in any of the equations (21) 

or (23). The problem still remains, however, how to evaluate ( )tt XZE 1 . 

Two approaches could be applied to estimate ( )tt XZE 1  . One approach, used in the op-
timal control literature, is based on the Kalman-filtering formula (see Chow (1981) for an exposi-
tion of Kalman filtering). While this is an appropriate approach, it assumes that initial stock of 
knowledge is known, which is rather a strong assumption if one would like to use panel data. Even 
when one could obtain some noisy estimates of the initial stock of technological knowledge, Kal-
man filtering algorithm when combined with an algorithm of maximum likelihood estimation of 
the structural parameters becomes highly non-linear and may not converge. 

An alternative approach based by Griliches (1979) and Pakes and Griliches (1984) in a 
somewhat different context, would be to take changes in the stock of knowledge at time t as the 
weighted sum of past five years' R & D investments and then to relate it to the number of patents 
applied for by the firm in any period. Although, their purpose was not the estimation of stock of 
knowledge, their method could be adopted to generate an empirical measure of knowledge up to a 
scale factor. From their productivity analysis, one could get a direct estimate of the weights for 
different lags of R&D expenditures and hence a measure of knowledge with measurement errors 
(see Griliches, 1979). Following this line of research, I postulate that  
 
 ttt uXZ += '1 β , (36) 
 
where b is a vector of regression coefficients and tX  includes past R&D expenditures, and other 

technological variables such as royalty and technical fee payments domestically and abroad, the 

number of scientific and engineering personnel, etc., and ( )2,0 σiidut ≈ . The stock of knowl-

edge variable tZ1  is not observed, what one observes is tP  the total number of patents the firm 
has applied for up to period t. Assume that  
 
 kPt =  if and only if 11 +<< ktk Z αα ,  (37) 
 
where mk ,...32,1,0=  (a large positive number), 00 =α , 1+≤ jj αα , mj ,...2,1= , and 

∞=+1mα . 
Let F be the distribution function of u. From equations (36) and (37), it follows that  
 
 { } ( ) ( )tmtmt XFXFmPob ''Pr 1 βαβα −−−== − . (38) 
 
These models are known as ordered qualitative response models (see Amemiya, 1985 and 

Maddala, 1983). 
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One can use Logit or Probit specification to estimate equation (38). The parameter β in 
equation (38) could, however, be estimated only up to a scale factor, i.e., one can estimate only 
β/σ. 

7. Estimation and Testing of the Model 
I discuss the estimation and testing issues for the model (22) and (23). Equation (23) is 

not a regression equation since it does not involve an error term. An error term naturally arises, 
however, as follows: View tζ  as a random process which is observed by the manager of the firm 

but not by the econometrician. Assume that 04 =c  and that tζ  follows a first order auto-

regressive process, i.e., ( ) 44 aL =δ . So, the disturbance term in equation (23) is  
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a
beLa 4414

1
4 11 λ

θ
λ

−−=− . (39) 

 
It is clear that the error term in equation (23) follows a first order auto-regressive process. 

For higher order auto-regressive processes, ( )L4δ , it is straightforward to derive expressions 

similar to equation (39). Treating estimated tZ1  as observed technological knowledge, one can 
now use the method of maximum likelihood to estimate all the parameters. 

Assuming that the model (22) is true for the −t
Z  processes, the cross equation parameter 

restrictions could be used to test the hypothesis of rational expectations. Let 1L  be the likelihood of 

the sample of observations on tR 's when α 's and g are unrestricted in equation (23). This involves 

estimating 9 parameters. Let 2L  be the likelihood of the sample on tR 's when α 's and g are esti-
mated as function of the structural parameters in equation (23). There are now 6 parameters to be 
estimated. Note that the Neyman - Pearson's likelihood ratio test criterion  
 

( ) 2
6912 ~loglog2 −−− χLL  

 
9 – 6 = number of restrictions under the hypothesis that the cross equation parameter re-

strictions are true. In fact, the same test could also be used for testing the specifications of the 
model (22), under the assumption that the rational expectations hypothesis is true. 
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