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Some Remarks on First and Second Order Stochastic 
Processes Choice 
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Abstract 
A comparison between A(1) and A(2) processes, when used for describing the evolution 

in time of the global rate of return on investments made by an insurance company, is proposed. In 
particular, we compare the two processes analysing the parameter sensibility to the size of the 
sampling interval. An application shows the results. Finally the impact on the global riskiness of a 
whole life annuity portfolio is evaluated for both the two models. 
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1. Introduction 
The investment risk constitues a tool of great interest in financial and actuarial field; to 

approach the problem the use of appropriate and suitable stochastic models is obviously necessary. 
Many contributions in the recent actuarial literature, dealing with the study of life insur-

ance portfolios, propose valuation models based on actuarial techniques, in a stochastic mortality 
and interest environment. In the actuarial context, many authors consider the use of existing actu-
arial techniques more appropriate than the use of financial models (APT, CAPM, and the like). In 
fact, the assumptions holding in these models, such as frictionless trading, efficient markets and so 
on, are not satisfied in the insurance context (cfr. [5]). Moreover even if all the key assumptions 
were satisfied, they might be suitable only to put a market value on the liabilities and not for 
measuring the riskiness of a portfolio of policies (cfr. [16]). 

In this framework, the study of the global riskiness connected to a portfolio of policies 
and its components, is one of the most discussed topics. As well known, the global riskiness of a 
portfolio of policies is due to the insurance risk and to the investment risk. The mortality risk tends 
to zero as the number of contracts in the portfolio increases but the investment risk does not, 
stemming from the random nature of the rate of return on investments made by the Company. That 
is the reason why many authors stress the importance of this component of risk. 

We can recall [12], in which the interest rate is modelled by stationary autoregressive 
models of order one and two, [8], in which ARIMA (p,0,q) and ARIMA(p,1,q) processes are used 
to analyze actuarial functions, [4], in which the moments of the present value functions are com-
puted when the force of interest is described by an ARIMA(p, d, q) process. 

One of the most followed approaches for the investment risk component is to study the 
evolution in time of a unique global rate of return, that is the rate of return obtained by the invest-
ment of all the revenues according to a defined strategy made by the Insurance Company. The 
assets can be invested in common shares, bonds, mutual funds and the like obviously, because at 
any given time not all of the assets are subject to market fluctuations, the global rate of return will 
tend to be less volatile than the market in which the assets are invested [cfr. 16].  

In this context, A(1) and A(2) models are largely used because of their characteristics of 
flexibility and manageability. Indeed those models depict very well the evolution in time of the 
global rate of return on investments and they are characterized by the mean reverting property 
which is significant in this kind of applications (cfr. 13,14). 

The use of continuous stochastic models (working with stochastic differential equations) 
rather than discrete ones (working with difference equations) is more convenient because of the 
easier formalism and the better readability of the results.  
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  First order continuous processes are proposed in many papers:  [1] and [2] model the in-
tegral of the force of interest by an Ornestein - Uhlenbeck process and a Wiener process respec-
tively; in [4] an Ornestein - Uhlenbeck process is used to analyze the measures of the investment 
and insurance risk for a homogeneous life annuity portfolio; in [13] the first three moments of the 
present value of benefits for a portfolio of identical policies are proposed modelling the force of 
interest by an Ornestein- Uhlenbeck process.  

Some contributions make use of the second order processes to model the global rate of re-
turn (cfr.[14] and [9]). Those processes, described by a second order linear stochastic differential 
equation, “combine the two effects of a tendency to continue a recent trend and of a mean revert-
ing property” (cfr. 14), offering additional valuable information characterizing the system. 

 1.1. Aim and structure of the paper 

Aim of this paper is to furnish some elements useful in the choice between A(1) and A(2) 
processes, when used for describing the evolution in time of the global rate of return on invest-
ments made by an insurance company. 

We propose a comparison between the two models, studied when the size of the sampling 
interval varies. We prove that the same process, observed at different sampling intervals, shows a 
very different capacity to describe the analyzed phenomenon: in particular we note that if the size 
of the sampling interval decreases, a higher order of the process has to be preferred. From an eco-
nomic point of view this can be explained considering that the value of the global rate of return at 
time t has a weaken relation with previous data at time t-1, t-2, etc.; vice-versa. When we consider 
closer data, the process shows a higher “memory” of the preceding observations which can be de-
picted by means of a higher order model.  

The study is based on the analysis of the parameters of the model. As well known, each 
model is completely defined by its parameters; they are estimated by means of the historical data 
series. In our case, the past data are assumed to reflect the whole investment strategy of the com-
pany, including the allocation of assets and the degree of asset/liability matching (cfr. [16]). The 
problem we consider seems to be relevant when thinking that using a superior order continuous 
stochastic process involves many complicating elements both in analytical terms and in terms of 
the parameter calculation. 

The research of the “minimum order” the stochastic process should have in order to con-
sider it as a satisfactory representation of the analyzed phenomenon is, in this order of ideas, useful 
in the choice of the process to use: for this purpose we take into account the amplitude of the sam-
pling interval available by the actuary in the time horizon he considers. 

The paper is structured as follows: in section 2 the main features of A(1) and A(2) models 
are described, in section 3 the methodology adopted to estimate parameters is presented. Section 4 
illustrates the procedure to choose the preferable model, in section 5 an application to compare the 
two models is proposed and finally, on the basis of the obtained results, in section 6 the total riski-
ness connected to a life annuity portfolio is computed.      

2. A(1) and A(2) models for the global rate of return 
2.1. The A(1) model: the Ornstein-Uhlenbeck process 

Let us assume that the force of interest ( )tδ  is governed by an A(1) process of the Orn-
stein-Uhlenbeck type.  

Let ( ){ }∞<≤ tt 0,δ  have parameters β >0 and σ >0 and initial position 0δ , the proc-
ess is given by the following differential equation: 

 ( )tdWdtd tt σδδβδδ +−−=− )()( , (1) 
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where tW  is a Wiener process, β  represents the force that brings the process towards 

the equilibrium position (mean reverting property), δ is the long term mean of the process, σ is 
the diffusion coefficient. 

The solution of equation (1) is (cfr. [7]): 
 

 )( δδ −t ( )tdWee
t st ∫−=
0

ββσ  (2) 

 
and, given the position 0δδ =t  (cfr. [17]), st+δ is a gaussian variable with mean: 

 [ ] s
tst eE βδδδδ −

+ == 00/  (3) 

 [ ][ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
==

−

+ β
σδδδ

β

2
1/var

2
2

0

s

tst
e  (4) 

and: 

 

[ ] ( ) ( ) ( )

( ) ( ) ( )
( )

.22

2

β
σσ

σδδ

β
βββ

βββ

2
1eeudWeEe

udWeudWeeE,cov

ts,min2
ts

2t)min(s,

0

uts

t

0

us

0

uts
st

−
=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛=

=⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛⎟
⎠
⎞⎜

⎝
⎛=

+−+−

+−

∫

∫∫
 (5) 

We can write: 

    [ ]
β

σδ
2

var
2

=t  when ∞→t . (6) 

2.2. The A(2) model 

Let us consider a second order stochastic process to model the force of interest, tδ , gov-
erned by the stochastic differential equation (cfr. [14]): 

 

 tttt dW
dt
d

dt
d σδδαδδαδδ =−+−+− )()()( 01

2
) (7) 

 
with initial conditions 0δ  and '

0δ , where tδ  is known for t<0, δ  is the long term mean 

of the process, tW  is a standard Wiener process and σ  is the diffusion coefficient. 
Equivalently we can write equation (7) as follows: 
 
 )( ))(( 01

2 tZDD t =−−− δδαα , (8) 
 

where tW
dt
dtZ σ )( =  is a stochastic process whose characteristics are: 

• E[Z(t)]=0 
• )( )]()([ 2 uutZtZE δσ=− . 
The homogeneous equation related to (8): 
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 0))(( 01
2 =−−− δδαα tDD , (9) 

 
has the following solutions: 
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The solutions given by (10) can be real and distinct ( 0
2
1 4αα −> ), real and equal 

( 0
2
1 4αα −= ) or complex conjugate ( 0

2
1 4αα −> ). 

The autocovariance function is given by the following expression: 
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The main feature of this model is the tendency to continue the recent trend of the time se-

ries used to estimate parameters. Moreover, the meaning of the parameters 0α  and 1α are interest-

ing: 0α  represents the restoring force bringing the process back to the equilibrium position and 

1α  is a damping force which, for large values of t, brings the process back to its equilibrium posi-
tion. Then we can argue that the process has a mean reverting property stronger than the one we 
find in first order models.   

3. The parameter estimation 

In this section we estimate the parameters of the continuous A(1) model ( β , 2σ  ) and  

of the A(2) one ( 0α , 1α  , 2σ ). 
On the basis of the data observed at uniform sampled intervals, we need first to find the 

discrete representation of the chosen continuous processes, then we must establish the appropriate 
parametric relations between the discrete and the continuous models. For this purpose, we remem-
ber that the autocovariance function of the sampled discrete models must coincide with that of the 
continuous process at all sampling points. It can be shown (cfr. [11]) that the discrete models cor-
responding to the chosen A(1) model and to the A(2) one are an AR(1) process and an  
ARMA(2,1) model respectively.  

The estimation of AR(1) and ARMA(2,1) parameters allows us to calculate the parame-
ters of the continuous processes  by means of the established parametric relations. 

3.1. The discrete representation of the A(1) model: the AR(1) model 

The AR1 model is described by the following non homogeneous difference equation: 
 

 tatt a2
1 )()( σδδφδδ +−=− − , (13) 
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which expresses the auto-regressive dependence of order one; sat

' are normal mutually 

independent variables with zero mean and variance 2
aσ .  

Looking at (13) we can understand the meaning of the parameterφ : if φ  takes low (high) 
values, the process will be characterized by a weak (strong) auto-regressive dependence. 

3.2. The discrete representation of the A(2) model: the ARMA(2,1) model 

The ARMA (2, 1) model is described by the following difference equation: 

 ,)()()( 112211 −−− −+−+−=− ttttt aa θδδφδδφδδ  (14) 

where ta expresses the “shock” affecting the system at time t and causes a difference be-
tween the previewed values and the effectively observed ones. 

The set of the N random variables ta  (t =0 1, 2,….N) is characterised by a multivariate 

normal distribution, and each variable has zero mean and variance equal to 2
aσ . 

Looking at (14), we observe that tδ  is characterised by an “auto-regressive” dependence 

of order two expressed by the addends 11 −tδφ  e 22 −tδφ . We observe, moreover, a dependence of 

order one of the process tδ  on ta , expressed by the addend 11 −taθ . 
The solution of (14) can be written as follows (cfr.[11]): 
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where: 
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3.3. Parametric relations between discrete and continuous processes 

a) AR(1) and A(1) models 
On the basis of the well known covariance equivalence principle and being ∆  the size of 

the sampling interval, (for more details see [11] and [17]), it happens that: 
 

 ∆−= βφ e  (18) 
 

and 

 )1(
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. (19) 

From (18) and (19) we easily obtain the parameters of the A(1) process : 
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b) ARMA(2,1) and A(2) models 
 

On the basis of the covariance equivalence principle, we can assert that the ARMA(2,1)  
and the A(2) models  are equivalent if , being ∆  the size of the sampling interval (cfr. [11] and 
[15]), it happens that:  
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where, on the basis of (10) 

2
1α=a    and    

2
4 0

2
1 αα +

=b  

To assure that the process is invertible, the parameter 1θ  must take value between –1 and 
1 (cfr. [11]). 

From (22) and (10) it follows: 
 
 )ln( 21 φα −−= , (25) 

 
being, from (22), 02 <φ    
Finally, for the diffusion coefficient we have: 
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3.3. The methodology to estimate parameters 

a) AR(1) model 
In order to estimate the parameters of the AR(1) model we can apply the conditional least 

squares method (cfr. [11]) obtaining for the two parameters, respectively: 
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where N represents the number of observations,  δ is the long term mean of the process 

and RSS is the residual sum of squares of '
ta .ϕ̂  and 2ˆ aσ  completely describe the model. The es-

timation of the discrete parameters allows us to calculate, using (20), the parameters of the A(1) 
model. 

b) ARMA(2,1) model 
 

Considering an ARMA(2,1) model, the residual sum of squares of ta  (t = 1,2,3….N)  is 
given by the following expression: 
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The procedure to estimate the parameters of the ARMA(2,1) model is more elaborate than 
the AR(1) one because, in order to calculate the minimal value of the RSS, it is necessary to oper-
ate a non-linear regression method. The reason is that the second order auto-regressive depend-
ence, which characterises the ARMA(2,1) model, involves that the difference equation (14) is not 
linear in the parameters 21,φφ  e 1θ . 

The non-linear regression implies the application of an iterating method: the procedure, 
in fact, begins with the choice of two values of  0α  and 1α . Those values will have to be negative 
to make the system stable (cfr.[15]).  

On the basis of (21), (22) and (23) we can calculate the parameters 1φ , 2φ  e 1θ and, ap-

proximating the value of δ  by the simple average of the observed data, it is possible to compute 
the RSS value using (29). 

The procedure stops when the values of 0α  and 1α , minimising the residual sum of the 

squares of ta (t = 1,2,3….N), are found.  

Being the estimated value of 2
aσ  given by the following expression: 
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On the basis of (26) we can calculate the value of the diffusion coefficient σ . 
To implement the estimation algorithm we developed a software using GUPTA Sql 32, a 

well known language for rapid prototyping. 

4. The choice of the preferable model: methodological issues 
As said before, obtaining a superior order in continuous stochastic processes involves 

many complicating elements, both for the analytical complexity and for the calculus of the pa-
rameters of the model. The increasing analytical difficulty can be seen in the previous section 
comparing the first two orders: the recursive research of the parameters becomes more and more 
complex as far as the computational profile is concerned too.  

For this reason in the present contribution our aim is the research of the “minimum order” 
the stochastic process should have to be considered a satisfactory representation of the analysed 
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phenomena. The following applications refer only to the first two orders, with the possibility of 
extending this type of analysis to the first generic n orders. 

To establish a preferability order between A(1) and A(2) models, we use the same histori-
cal data series considering different sampling intervals and comparing the values of the character-
istic parameters for each sampling interval taken into consideration.  

As the first step we must verify that the parameter values observe the basic assumptions 
of each model. To this aim we must study the sensibility of the parameters to the sampling interval 
(cfr. [11]). 

Let us consider the limiting cases of the sampled discrete AR(1) model for extreme values 
of ∆. 

Looking at equation (18) we observe that 0→φ   as ∞→∆ and in this case the equa-
tion (13) becomes a sequence of uncorrelated variables that is an AR(0) model: 

 
 tt a=−δδ , (31) 

with variance 
β

σσ
2

2
2 →a  (see equation 20).      

On the other hand, as 0→∆ , 1→φ  and equation (13) becomes: 
 tt a=−∇ )( δδ  (32) 

 

that is a random walk with variance 02 →aσ .  

Another important matter is to analyse the behaviour of the parameter β.   
In fact, as the parameter φ  measures the auto-regressive dependence of order one in the 

AR(1) model, the parameter β expresses the capability of the continuous process A(1) to return to 
its equilibrium position, the speed depending on the magnitude of β . Looking at (18) we observe 
that 0→φ as ∞→β  and equation (13) becomes a sequence of uncorrelated variables with 

variance 02 →aσ  . It follows that, when β   increases, the resistance of the system to change 
increases too and a single disturbance affects the system for a short time; in other words, observa-
tions at even short intervals will be uncorrelated. On the other hand, as 0→β , 1→φ and the 

process become a random walk with variance ∆→ 22 σσ a . In fact, when β  decreases, the re-
sistance of the system to change decreases too, that is a single disturbance affects the response for 
a long time (the process has a “long memory”) and observations will be highly correlated 
( 1→φ ). 

Moreover, comparing (1) and (13) we can observe that AR(1) and A(1) processes are 
equivalent as )1( βϕ −→ and the development in series of (18) confirms that β  must take low 
values different from zero, in order to have the same process.  

Let us now consider the limiting cases of the sampled discrete ARMA(2,1) model for ex-
treme values of ∆. Looking at (21) and (22) we observe that if 0→∆  , 21 →φ  , 12 −→φ   

and it is demonstrated that (cfr. [11]) 321 +−→θ  and 
)32(6

32
2

−

∆
→ z

a
σ

σ . In this case, the 

values of 1φ  and 2φ  parameters describe a boundary stability condition of the system, static and 

dynamic stability occurring when  12 −>φ  and 121 <±φφ  (cfr.[11]) 
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On the other hand, if ∞→∆ , 01 →φ , 02 →φ , equation (14) takes the form 

 tt a=−δδ  (33) 

that is a white noise with variance 
)(2 2121

2
2

λλλλ
σσ

±
−

→a  and 01 →θ . 

It is interesting the behaviour of the parameter 1α . In fact, as underlined in section 2.2, it 
represents a damping force which, for large values of t, brings the process to its equilibrium posi-
tion giving the process a mean reverting property stronger than the one we find in first order mod-
els because it acts along with a restoring force )( 0α  bringing the process back to its equilibrium 
too.   

Looking at (25) we observe that if −∞→1α , 02 →φ , 11 →φ , equation (14) is a 

random walk. It follows that, as 1α  increases in absolute value, the damping effect increases too 
and a stochastic shock will be quickly damped by the system. The consequence is that the process 
will have a short memory and the auto regressive dependence of order 2 tends to be null. 

On the other hand, if 01 →α , 12 −→φ  and ∆→ 021
αφ e , the damping effect de-

creases and parameter 2φ  takes a high value. 
On the basis of the previous considerations with the following table we report the inter-

vals for the parameters observing the basic assumptions: 
 

A(1) AR(1) A(2) ARMA(2,1) 

10 << β  10 << φ  01 <<∞− α  01 2 <<− φ  
 

The second step of our analysis is to consider the value of the parameters φ  and 2φ  pa-
rameters of AR(1) and ARMA(2,1) model respectively. If the analysis shows a strong memory 
effect, that is the second order parameter 2φ  takes significant values, the A(2) model will be pref-
erable. Otherwise the A(1) model will be considered sufficient because in this case  the use of the 
A(2) model would require more elements of complications in term of calculus, and this without 
considerable benefits. Referring to a generic n orders models, a limit for the parameter nφ  often 

used in the practice is 0.1 (cfr.[10]  and [11]): if  nφ  takes positive values, an AR(n-1) model will 

be chosen when 1.0<nφ , the AR(n-1) model will be chosen if 1.0−>nφ , otherwise.  In our 

case, if 1.02 −>φ  the A(1) model will be considered sufficient. 

5. Applications 
 

5.1. A(1) and A(2) models: a comparison 

In this section we propose some applications to test the parameter sensibility to the size of 
the sampling interval ∆  and, therefore, to compare the two models. For this purpose we collected 
the data relating to annual bond funds rates for the period of 1988-98 and we worked with seven 
historical data  series referring to bond fund rates; they are related respectively to half-yearly, four-
monthly, quarterly, bimonthly, monthly, weekly, daily plotted bond fund rates. 

Using the estimation procedure described in section 3, we obtained the results resumed in 
the following tables: Table 1 illustrates the parameter values of AR(1) and A(1) models respec-
tively while Table 2 shows the parameter values of ARMA(2,1) and A(2) models.  
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Table1 

Parameters value of A1 and AR1 models estimated using annual bond fund rates for the period of 1988-98 

Surveys: φ  β 2
aσ  2σ  

Daily 0.996 0.0043 0.1436 0.1442 
Weekly 0.965 0.0356 0.0196 0.0203 
Monthly 0.909 0.0949 0.0063 0.0069 
Bimonthly 0.795 0.2289 0.0046 0.0057 
Four-monthly 0.642 0.4439 0.0036 0.0055 
Quarterly 0.590 0.5273 0.0034 0.0055 
Half-yearly 0.316 1.1519 0.0017 0.0045 

Table2 

Parameters value of A2 and ARMA(2,1) models estimated using annual bond fund rates for the 
period of 1988-98 

Surveys: 0α  
1α  φ1 φ2 θ1 σ2

a σ2 

Daily -0.1388 -0.1388 1.658294 -0.65924 -0.26794 0.646739 0.67383 
Weekly -0.9615 -0.9615 1.035798 -0.5411 -0.26790 0.49128 0.0020995 
Monthly -4.1667 -1.25 0.724958 -0.09697 -0.26793 0.00926 0.0010431 
Bimonthly -8.333 -2.5 0.027096 -0.01550 -0.26790 0.00529 0.00005534 
Four-monthly -12.5 -3.5 0.099568 -0.00247 -0.26786 0.0039 2.7292*10-6 

Quarterly -16.667 -4.667 0.036627 -0.00033 -0.26780 0.0036 1.1616*10-7 

Half-yearly -25.0 -7.0 0.008164 -0.00001 -0.26773 0.001798 7.4485*10-10 

 
The obtained results relieve and confirm the theoretical observations of section 4. 
Referring to Table 1 we can observe that: 
a) the parameter ϕ̂  decreases as the number of surveys considered in the decade dimin-

ishes. Therefore, on the basis of (18) the parameter β increases; 

b) the parameters 
2ˆ aσ  and σ2 decrease when the size of the sampling interval increases. 

The consideration (a) underlines and confirms the influence of the size of the sampling in-
terval on the structure of the model: as the sampling interval decreases the process tends to a random-
walk, on the other hand as the sampling interval increases the process tends to an AR(0) model. 

Also the behaviour of parameter β confirms the observations in section 4: as β increases, 
parameter φ  decreases and the process is characterized by a “short memory”. On the other hand, 
as the parameter β decreases the processes has a “long memory” because it will be influenced for a 
long time by a stochastic shock and parameter 1→φ .  

The consideration (b) implies that as the number of observations decreases we have (see 
equation (31)): 

22 2 aβσσ → . 

Moreover, increasing the number of observations, we verified that ∆→ 22 σσ a  being ∆  
the size of the sampling interval. 

Referring to Table 2, we can notice that: 
a) both values of the parameters φ1 and φ2 tend to zero as the number of the surveys 

considered in the decade diminishes and parameter 1α  increases in absolute value; 
b) the values of the parameters 2

aσ and 2σ  decrease when the size of the sampling inter-
val gets larger. 
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Also in this case the consideration (a) points out the influence of the sampling interval 
size on the structure of the model. The values in Table 1 point out that the random component pre-
vails the auto-regressive one, as the sampling interval gets larger and the process tends to be a 
white noise (see equation (33)). 

The behaviour of parameter α  confirms that as it increases in absolute value, the auto-
regressive dependence of order two gets weaker ( 02 →φ ). 

The consideration (b) allows us to observe that, as the number of the observations in-
creases, the value of the parameter 2σ increases too. We can observe that, in this case, 

)32(6

32
2

−

∆
→

σ
σ a  (see section 4). 

Remarks 

On the basis of the previous results, now we want to compare the two models for setting 
an order of preferability. The first consideration we can do is that if the second order parameters 
take high values, showing a strong memory effect, the A (2) model is preferable. Otherwise the A 
(1) model can be considered sufficient to describe the phenomenon.  

Looking at Table 2 we observe that closer surveys show a higher “memory effect” and a 
tendency of the process to continue the recent trend (it depends not only by the last value but also 
by the preceding ones). In fact, we observe that 12 −→φ  as the sampling interval gets smaller, 
being –1 the value expressing the higher second order auto-regressive dependence. In particular, if 
we look at daily and weekly observations, parameter 2φ  takes values lower than -0.1 showing a 

high memory effect (see section 4). Even if we consider monthly observations, the parameter 2φ  
takes a high value ( 1.0−≅ ). On the other hand, looking at bimonthly, four-monthly, quarterly 
and half yearly observations, we point out a quite null value of parameter 2φ  (> 1.0− ).  

We can conclude that for daily, weekly and monthly observations, the A(2) model is prefer-
able.  On the other hand, as the sampling interval increases (bimonthly, four-monthly, quarterly and half 
yearly observations) the use of an A(1) model can be considered sufficient being 1.0>φ .  

Moreover, we observe that, when the sampling interval is too large (one year), the mean 
reverting property is too weak and the A(1) model does not work well too. 

As said above, the proposed applications refer only to the first two orders, but it is possi-
ble to extend this type of analysis to the first generic n orders. 

Several methods are used with the intent of carrying out an ex-ante analysis of preference 
among estimated orders without the calculus of continuous parameters (cfr. [3], [10] and [11]). 
However the parameter values of the continuous processes are extremely important because they 
give additional information about the memory of the process. 

5.2. A whole life annuity portfolio: the total riskiness evaluation 

In this section we evaluate the total riskiness connected to a whole life annuity portfolio. 
It is well known that the global riskiness connected to a portfolio is the sum of two components: 
insurance risk, depending on the mortality of policy-owners, and investment risk, related to the 
random nature of rate of return on investments. 

We describe the evolution in time of the rate of return on investments by means of A(1) 
and A(2) models, in order to put in evidence the different impact the two models present on the 
portfolio global riskiness valuation.  

  Let us consider a portfolio of c identical whole life annuity policies issued to c inde-
pendent lives aged x paying a unique premium at issue. The benefit payable by the\ \at the end of 
each year, if the life insured is alive, is supposed to be equal to 1.   
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Let iZ  be the random variable denoting the present value of the i-th (i=1, 2,….c) policy 
(cfr.[4]), we can write: 
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where: 
- iT  is the random variable representing the curtate future life time of the i-th life insured . 

- ∫=
t

s dsty
0

)( δ , sδ  being the stochastic instantaneous rate of return used to discount payments. 

We suppose that the following assumptions hold (cfr. [13]): 
the random variables  iT  are independent and identically distributed; 

given the knowledge of y(h) for h=1,2,3... ,the sZ i  
'   are independent and identically dis-

tributed; 
the random variables sTi

'  are independent of y(h). 
We indicate by Z(c) the total present value for the entire portfolio of c annuities: 
 ∑

=

=
c

i
iZcZ

1
)( . (35) 

It is well known that the global riskiness connected to the portfolio can be measured by 
the variance of Z(c) (cfr. [13], [16]). Therefore we need the first two moments of Z(c), given by the 
following expressions (cfr. [4]): 
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Whether we use an A(2) model or an A(1) one, the random variable y(k) is normally dis-
tributed and the discounting factor )(kye−  is log- normally distributed with parameters E[y(k)] and 
Var[y(k)] . 

Consequently we get: 

 )]([5.0)]([(exp(][ 2)( kyVmkymEeE kmy +−=−  (37) 
and: 
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 (38) 

varying the expressions for the parameters E[y(k)] and V[y(k)] in dependence of  the 
model for the rate of return used in the application.  

In the first case, considering the A1 model (cfr.[13]) we get: 
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 E[y(k)]= )1)(( 0 β
δδδ

β−−
−+

et  (39) 

 cov (y(h),y(k)= )222(
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where δ  is the long term mean of the process which can be approximated by the simple 
average of the observed data and 0δ  can be approximated by the last known value of the historical 
data series used for valuation (cfr. [15]). 

On the other hand, considering an A2 model we have (cfr.[14]): 
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where 1λ  and 2λ are the solutions of the equation (8), δ is the long term mean of the 

process approximated by the simple average of the observed data, 0δ  is the last known value of 

the historical data series and '
0δ can be approximated by the difference of the two most recent val-

ues of the historical data series (cfr. [15]). 
Using formula (40) we can easily calculate the parameter var(y(k). 
In our applications, we recalled only formulas (41) and (42) referring to the case of real 

and distinct roots (for the case of equal and real roots and complex roots see [14]). 
Combining the results about the discounting factors and formulas (36) we can calculate 

the total variance of Z( c) in the case of both a stochastic rate of return described by an A(1) proc-
ess and by an A(2) one. 

Numerical illustrations 

Let us consider an illustrative whole life annuity portfolio of 1000 policies with age at is-
sue equal to 45. The mortality table used are “Italian male 1970-72”.   

The following table shows the values of the total variance connected to illustrative portfo-
lio, computed by means of the previous formulas.  

Considering one year time horizon, we calculate seven values of the variance corresponding 
to the seven historical data series used to estimate the parameters of the two models  in section 5.1. 
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Table3 

The values of the total variance connected to illustrative portfolio  

Surveys Var[Z( c)] Model 
Daily 656 974 A(2) 
Weekly 897 790 A(2) 
Monthly 882 072 A(2) 
Bimonthly 3 900 410 A(1) 
Four-monthly 1 268 060 A(1) 
Quarterly 1 223 380 A(1) 
Half yearly 995 229 A(1) 

 
In particular we calculate each value of the variance using the preferable model on the ba-

sis of the results of section 5.1. Indeed we use the A(2) model for daily, weekly and monthly ob-
servations and the A(1) model for bimonthly, four-monthly quarterly and half yearly observations.  
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