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Abstract 
In this paper we basically make two propositions – first, a non-linear feedback process 

that is primarily fuelled by mass cognitive dissonance could generate systematic deviations be-
tween the theoretical and market prices of long-term options, and second, such deviations are best 
reconciled in terms of neutrosophic rather than rule-based reasoning, especially in the context of 
the users of automated trading systems designed to generate trading signals based on analysis of 
information from conflicting sources. 
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Introduction 
The efficient market hypothesis based primarily on the statistical principle of Bayesian in-

ference has been proved to be only a special-case scenario. The generalized financial market, 
modelled as a binary, stochastic system capable of attaining one of two possible states (High → 1, 
Low → 0) with finite probabilities, is shown to reach efficient equilibrium with p . M = p if and 
only if the transition probability matrix M2x2 obeys the additionally imposed condition {m11 = m22, 
m12 = m21}, where mij is an element of M (Bhattacharya, 2001) [1]. 

Efficient equilibrium is defined as the stationary condition p = [0.50, 0.50] i.e. the state in 
t + 1 is equi-probable between the two possible states given the market vector in time t. However, 
if this restriction {m11 = m22, m12 = m21} is removed, we get inefficient equilibrium p* = [m21/(1-v), 
m12/(1-v)], where v = m11 – m21 may be derived as the eigenvalue of M and p* is a generalized ver-
sion of p whereby the elements of the market vector are no longer restricted to their efficient equi-
librium values. Though this proves that the generalized financial market cannot possibly get re-
duced to pure random walk if we do away with the assumption of normality, it does not necessar-
ily rule out the possibility of mean reversion as M itself undergoes transition over time implying a 
probable reestablishment of the condition {m11 = m22, m12 = m21} at some point of time in the fore-
seeable future. The temporal drift rate may be viewed as the mean reversion parameter k such that 
kjMt → Mt+j. In particular, the options market demonstrates a rather perplexing departure from 
efficiency. In a Black-Scholes type world, if stock price volatility is known a priori, the option 
prices are completely determined and any deviations are quickly arbitraged away. Therefore, sta-
tistically significant mispricings in the options market are somewhat unique as the only non-
deterministic variable in option pricing theory is volatility. Moreover, given the knowledge of im-
plied volatility on the short-term options, the miscalibration in implied volatility on the longer 
term options seem odd as the parameters of the process driving volatility over time can simply be 
estimated by an AR1 model (Stein, 1993) [2]. 

Clearly, the process is not quite as straightforward as a simple parameter estimation rou-
tine from an autoregressive process. Something does seem to affect the market players’ collective 
pricing oflonger term options, which clearly overshadows the straightforward considerations of 
implied volatility on the short-term options. One clear reason for inefficiencies to exist is through 
overreaction of the market players to new information. Some inefficiency however may also be 
attributed to purely random white noise unrelated to any coherent market information. If the proc-
ess driving volatility is indeed mean reverting then a low implied volatility on an option with a 
shorter time to expiration will be indicative of a higher implied volatility on an option with a 
longer time to expiration. Again, a high implied volatility on an option with a shorter time to expi-
ration will be indicative of a lower implied volatility on an option with a longer time to expiration. 
However statistical evidence often contradicts this rational expectations hypothesis for the implied 
volatility term structure. Denoted by σ’t (t), (where the symbol ’ indicates first derivative) the im-
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plied volatility at time t of an option expiring at time T is given in a Black-Scholes type world as 
follows: 

σ’t (t) = ∫
=

T

j 0

{ σM + kj (σt - σM)}/T] dj, 

 σ’t (t) = σM + (kT – 1)(σt - σM)/(T loge k). (1)  

Here σt evolves according to a continuous-time, first-order Wiener process as follows: 

 dσt = -β0 (σt - σM) dt + β1σt∈√dt .  (2) 

β0 = - loge k, where k is the mean reversion parameter. Considering this as a mean revert-
ing AR1 process yields the expectation at time t as Et (σt+j), of the instantaneous volatility at time 
t+j, in the required form as it appears under the integral sign in equation (1). This theorizes that 
volatility is rationally expected to gravitate geometrically back towards its longterm mean level of 
σM. That is, when instantaneous volatility is above its mean level (σt > σM), the implied volatility 
on an option should be decreasing as t → T. Again, when instantaneous volatility is below the 
long-term mean, it should be rationally expected to be increasing as t → T. That this theorization 
does not satisfactorily reflect reality is attributable to some kind combined effect of overreaction of 
the market players to excursions in implied volatility of short-term options and their corresponding 
underreaction to the historical propensity of these excursions to be rather shortlived. 

2. A Cognitive Dissonance Model of Behavioral Market Dynamics 
Whenever a group of people starts acting in unison guided by their hearts rather than their 

heads, two things are seen to happen. Their individual suggestibilities decrease rapidly while the 
suggestibility of the group as a whole increases even more rapidly. The ‘leader’, who may be no 
more than just the most vociferous agitator, then primarily shapes the groupthink. He ultimately 
becomes the focus of the group opinion. In any financial market, it is the gurus and the experts 
who often play this role. The crowd hangs on their every word and makes them the uncontested 
Oracles of the marketplace. 

 If figures and formulae continue to speak against the prevailing groupthink, this could re-
sult in a mass cognitive dissonance calling for reinforcing self-rationalizations to be strenuously 
developed to suppress this dissonance. As individual suggestibilities are at a lower level compared 
to the group suggestibility, these self-rationalizations can actually further fuel the prevailing 
groupthink. This groupthink can even crystallize into something stronger if there is also a simulta-
neous vigilance depression effect caused by a tendency to filter out the dissonance-causing infor-
mation. The non-linear feedback process keeps blowing up the bubble until a critical point is 
reached and the bubble bursts ending the prevailing groupthink with a recalibration of the position 
by the experts. Our proposed model has two distinct components – a linear feedback process con-
taining no looping and a non-linear feedback process fuelled by an unstable rationalization loop. 
It is due to this loop that perceived true value of an option might be pushed away from its theoreti-
cal true value. The market price of an option will follow its perceived true value rather than its 
theoretical true value and hence the inefficiencies arise. This does not mean that the market as a 
whole has to be inefficient – the market can very well be close to strong efficiency! Only it is the 
perceived true value that determines the actual price-path meaning that all market information (as 
well as some of the random white noise) gets automatically anchored to this perceived true value. 
This would also explain why excursions in short-term implied volatilities tend to dominate the 
historical considerations of mean reversion – the perceived term structure simply becomes an-
chored to the prevailing groupthink about the nature of the implied volatility. Our conceptual 
model is based on the two following primary assumptions: 

The unstable rationalization loop comes into effect if and only if the group is a reasona-
bly well-bonded one, i.e. if the initial group suggestibility has already attained a certain minimum 
level as, for example, in cases of strong cartel formations; and 
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The unstable rationalization loop stays in force till some critical point in time t* is reached 
in the life of the option. Obviously t* will tend to be quite close to T – the time of expiration. 

At that critical point any further divergence becomes unsustainable due to the extreme 
pressure exerted by real economic forces ‘gone out of sync’ and the gap between perceived and 
theoretical true values close very rapidly. 

2.1. The Classical Cognitive Dissonance Paradigm 

Since Leon Festinger presented it well over four decades ago, cognitive dissonance theory 
has continued to generate a lot of interest as well as controversy [3] [4]. This was mainly due to 
the fact that the theory was originally stated in very generalized, abstract terms. As a consequence, 
it presented possible areas of application covering a number of psychological issues involving the 
interaction of cognitive, motivational, and emotional factors. Festinger’s dissonance theory began 
by postulating that pairs of cognitions (elements of knowledge), given that they are relevant to one 
another, can either be in agreement with each other or otherwise. If they are in agreement they are 
said to be consonant, otherwise they are termed dissonant. The mental condition that forms out of 
a pair of dissonant cognitions is what Festinger calls cognitive dissonance. The existence of disso-
nance, being psychologically uncomfortable, motivates the person to reduce the dissonance by a 
process of filtering out information that are likely to increase the dissonance. The greater the de-
gree of the dissonance is, the greater the pressure to reduce dissonance and change a particular 
cognition appears to be. The likelihood that a particular cognition will change is determined by the 
resistance to change of the cognition. Again, resistance to change is based on the responsiveness 
of the cognition to reality and on the extent to which the particular cognition is in line with various 
other cognitions. Resistance to change of cognition depends on the extent of loss or suffering that 
must be endured and the satisfaction or pleasure obtained from the behavior [5] [6] [7] [8] [9] [10] 
[11] [12]. 

We propose the conjecture that cognitive dissonance is one possible (indeed highly likely) 
critical behavioral trigger [13] that sets off the rationalization loop and subsequently feeds it.  

2.2. Non-linear Feedback Statistics Generating a Rationalization Loop 

In a linear autoregressive model of order R, a time series yn is modelled as a linear com-
bination of N earlier values in the time series, with an added correction term xn: 

 yn = xn - Σaj yn-j.  (3) 

The autoregressive coefficients aj (j = 1, ... N) are fitted by minimizing the mean-squared 
difference between the modelled time series yn and the observed time series yn. The minimization 
process results in a system of linear equations for the coefficients an, known as the Yule-Walker 
equations. Conceptually, the time series yn is considered to be the output of a discrete linear feed-
back circuit driven by a noise xn, in which delay loops of lag j have feedback strength aj. For Gaus-
sian signals, an autoregressive model often provides a concise description of the time series yn, and 
calculation of the coefficients aj provides an indirect but highly efficient method of spectral estima-
tion. In a full nonlinear autoregressive model, quadratic (or higher-order) terms are added to the 
linear autoregressive model. A constant term is also added, to counteract any net offset due to the 
quadratic terms: 

 yn = xn - a0 - Σajyn-j - Σbj,k yn-jyn-k .  (4) 

The autoregressive coefficients aj (j = 0, ... N) and bj, k (j, k = 1, ... N) are fit by minimiz-
ing the meansquared difference between the modeled time series yn and the observed time series 
yn*. The minimization process also results in a system of linear equations, which are generaliza-
tions of the Yule-Walker equations for the linear autoregressive model. 

Conceptually, the time series yn is considered to be the output of a circuit with nonlinear 
feedback, driven by a noise xn. In principle, the coefficient bj,k describes dynamical features that 
are not evident in the power spectrum or related measures. Although the equations for the autore-
gressive coefficients aj and bj k are linear, the estimates of these parameters are often unstable, es-
sentially because a large number of them must be estimated often resulting in significant estima-
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tion errors. This means that all linear predictive systems tend to break down once a rationalization 
loop has been generated. As parameters of the volatility driving process, which are used to extri-
cate the implied volatility on the longer term options from the implied volatility on the short-term 
ones, are estimated by an AR1 model, which belongs to the class of regression models collectively 
referred to as the GLIM (General Linear Model), the parameter estimates go ‘out of sync’ with 
those predicted by a theoretical pricing model. 

3. The Zadeh argument revisited 
In the face of non-linear feedback processes generated by dissonant information sources, 

even mathematically sound rule-based reasoning schemes often tend to break down. As a pertinent 
illustration, we take Zadeh’s argument against Dempster’s rule [14] [15]. Let Θ = {θ1, θ2 … θn} 
stand for a set of n mutually exhaustive, elementary events that cannot be precisely defined and 
classified making it impossible to construct a larger set Θref of disjoint elementary hypotheses. The 
assumption of exhaustiveness is not a strong one because whenever θj, j = 1, 2 … n does not con-
stitute an exhaustive set of elementary events, one can always add an extra element θ0 such that θj, 
j = 0, 1 … n describes an exhaustive set. Then, if Θ is considered to be a general frame of dis-
cernment of the problem under consideration, a map m (.): DΘ → [0, 1] may be defined associated 
with a given body of evidence B that can support paradoxical information as follows: 

 , (5) 

 . (6) 

Then m (A) is called A’s basic probability number. In line with the Dempster-Shafer The-
ory, the belief and plausibility functions are defined as follows: 

  , (7) 

  

 . (8) 

Now let Bel1 (.) and Bel2 (.) be two belief functions over the same frame of discernment Θ 
and their corresponding information granules m1 (.) and m2 (.). Then the combined global belief 
function is obtained as Bel1 (.) = Bel1 (.) ⊕ Bel2 (.) by combining the information granules m1 (.) 
and m2 (.) as follows for m (φ) = 0 and for any C ≠ 0 and C ⊆ Θ; 

  , (9) 

The summation notation ΣA∩B=C is necessarily interpreted as the sum over all A, B ⊆ Θ 
such that A ∩ B = C. The orthogonal sum m (.) is considered a basic probability assignment if and 
only if the denominator in equation (5) is non-zero. Otherwise the orthogonal sum m (.) does not 
exist and the bodies of evidences B1 and B2 are said to be in full contradiction. Such a case can 
arise when there exists A ⊂ Θ such that Bel1 (A) =1 and Bel2 (Ac) = 1, which is a problem associ-
ated with optimal Bayesian information fusion rule (Dezert, 2001). Extending Zadeh’s argument to 
option market anomalies, if we now assume that under conditionsunder conditions of asymmetric 
market information, two market players with homogeneous expectations view implied volatility on 
the long-term options. 

One of them sees it as either arising out of (A) current excursion in implied volatility on 
short-term options with probability 0.99 or out of (C) random white noise with probability of 0.01. 
The other sees it as either arising out of (B) historical pattern of implied volatility on short-run 
options with probability 0.99 or out of (C) random white noise with probability of 0.01. Using 
Dempster’s rule of combination, the unexpected final conclusion boils down to the expression m 
(C) = [m1 ⊕ m2] (C) = 0.0001/(1 – 0.0099 – 0.0099 – 0.9801) = 1 i.e. the determinant of implied 
volatility on long-run options is random white noise with absolute certainty! 
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To deal with this information fusion problem a new combination rule has been proposed 
under the name of Dezert-Smarandache combination rule of paradoxical sources of evidence, 
which looks for the optimal combination i.e. the basic probability assignment given by m (.) = m1 
(.) ⊕ m2 (.) that maximizes the joint entropy of the two information sources [16]. 

The Zadeh illustration originally sought to bring out the fallacy of automated reasoning 
based on the Dempster’s rule and showed that some form of the degree of conflict between the 
sources must be considered before applying the rule. However, in the context of financial markets 
this assumes a great amount of practical significance in terms of how it might explain some of the 
recurrent anomalies in rule-based information processing by inter-related market players in the 
face of apparently conflicting knowledge sources. The traditional conflict between the fundamen-
tal analysts and the technical analysts over the credibility of their respective knowledge sources is 
of course all too well known! 

4. Market Information Reconciliation Based on Neutrosophic Reasoning 
Neutrosophy is a new branch of philosophy that isconcerned with neutralities and their 

interaction with various ideational spectra. Let T, I, F be real subsets of the non-standard interval 
]-0, 1+[. If ∈ > 0 is an infinitesimal such that for all positive integers n and we have |∈| < 1/n, then 
the non-standard finite numbers 1+ = 1+∈ and 0- = 0-∈ form the boundaries of the non-standard 
interval ]-0, 1+[. Statically, T, I, F are subsets while dynamically they may be viewed as set-valued 
vector functions. If a logical proposition is said to be t% true in T, i% indeterminate in I and f% 
false in F then T, I, F are referred to as the neutrosophic components. Neutrosophic probability is 
useful to events that are shrouded in a veil of indeterminacy like the actual implied volatility of 
long-term options. As this approach uses a subset-approximation for truth values, indeterminacy 
and falsity-values it provides a better approximation than classical probability to uncertain events. 

The neutrosophic probability approach also makes a distinction between “relative sure 
event”, event that is true only in certain world(s): NP (rse) = 1, and “absolute sure event”, event 
that is true for all possible world(s): NP (ase) =1+. Similar relations can be drawn for “relative 
impossible event”/“absolute impossible event” and “relative indeterminate event”/“absolute inde-
terminate event”. In case where the truth- and falsity components are complimentary i.e. they sum 
up to unity, and there is no indeterminacy and one is reduced to classical probability. Therefore, 
neutrosophic probability may be viewed as a generalization of classical and imprecise probabilities 
[17]. 

When a long-term option priced by the collective action of the market players is observed 
to be deviating from the theoretical price, three possibilities must be considered: 

1. The theoretical price is obtained by an inadequate pricing model, which means that 
the market price may well be the true price, 

2. An unstable rationalization loop has taken shape that has pushed the market price of 
the option ‘out of sync’ with its true price, or 

3. The nature of the deviation is indeterminate and could be due to either (a) or (b) or a 
super-position of both (a) and (b) and/or due to some random white noise. 

However, it should be noted that in none of these three possible cases we are referring to 
the efficiency or otherwise of the market as a whole. The market can only be as efficient as the 
information it gets to process. Therefore, if the information about the true price of the option is 
misleading (perhaps because of an inadequate pricing model), the market cannot be expected to 
process it into something useful – after all, the markets can’t be expected to pull jack-rabbits out of 
empty hats! 

With T, I, F as the neutrosophic components, let us now define the following events: 
 

H = {p: p is the true option price  
    determined by the theoretical  
     pricing model},  

 
and 
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M = {p: p is the true option price  

    determined by the  
    current market price}. (10) 
 
Then there is a t% chance that the event (H ∩ Mc) is true, or corollarily, the corresponding 

complimentary event (Hc ∩ M) is untrue, there is a f% chance that the event (Mc ∩ H) is untrue, or 
corollarily, the complimentary event (M ∩ Hc) is true and there is a i% chance that neither of the 
events (H ∩ Mc) nor (M ∩ Hc) is true/untrue; i.e. the determinant of the true market price is inde-
terminate. This would fit in nicely with possibility (c) enumerated above – that the nature of the 
deviation could be due to either (a) or (b) or a super-position of both (a) and (b) and/or due to 
some random white noise. 

Illustratively, a set of AR1 models used to extract the mean reversion parameter driving 
the volatility process over time have coefficients of determination in the range say between 50%-
70%, then we can say that t varies in the set T (50% - 70%). If the subjective probability assess-
ments of market players well-informed about the weight of the current excursions in implied vola-
tility on short-term options lie in the range say between 40%-60%, then f varies in the set F (40% - 
60%). Then unexplained variation in the temporal volatility driving process along with the subjec-
tive assessment by the market players will make the event indeterminate by either 30% or 40%. 
Then the neutrosophic probability of the true price of the option being determined by the theoreti-
cal pricing model is given by NP (H ∩ Mc) = [(50 – 70), (40 – 60), {30, 40}]. 

5. Conclusion 
Finally, in terms of our behavioral conceptualization of the market anomaly primarily as 

manifestation of mass cognitive dissonance, the joint neutrosophic probability NP (H ∩ Mc) will 
also be indicative of the extent to which an unstable rationalization loop has formed out of such 
mass cognitive dissonance that is causing the market price to deviate from the true price of the 
option. Obviously increasing strength of the non-linear feedback process fuelling the rationaliza-
tion loop may tend to increase this deviation. As human psychology, and consequently a lot of 
subjectivity, is involved in the process of determining what drives the market prices, neutrosophic 
reasoning will tend to reconcile market information much more realistically than classical prob-
ability theory. Neutrosophic reasoning approach will also be an improvement over rule-based rea-
soning possibly avoiding pitfalls like that brought out by Zadeh’s argument. This has particularly 
significant implications for the vast majority of market players who rely on signals generated by 
some automated trading system following simple rule-based logic. 
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