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A Coincident Financial Indicator for the Australian Stock Market 

 Ramaprasad Bhar, Shigeyuki Hamori   

Abstract 
The stock market investment requires recognising the financial risk. Different economic 

indicators are normally used in this context. In this article we focus on developing a coincident 
financial indicator for the stock market, which can summarise the market participants’ assessment 
of the state of the economy. This indicator is shown to have all the desirable characteristics and is 
suitable for investment decision making process. The methodology is illustrated using the Austra-
lian stock market as an example.   

Introduction 
The stock market has long been viewed as an indicator of the economic activity. Some re-

searchers believe that large changes in stock prices are signals of subsequent economic swings. 
Hamilton and Lin (1996) empirically capture, in a non-linear framework, the basic precept that the 
anticipation of an economic downturn affects the stock market before the industrial output actually 
starts to decline. The theoretical reason why stock market might anticipate economic activity in-
cludes the underlying principle of stock price valuation. This suggests that the stock price reflects 
the expectations of the future of the economy. However, there are some researchers who do not 
support this notion. They point out the strong economic growth following the 1987 stock market 
crash.  

In spite of this controversy it is important to understand the nature of interaction of the 
stock market and the business cycle. From the stock market investors’ point of view the assess-
ment of risk is very important and this risk changes as the business cycle passes through the differ-
ent phases. The cornerstone of an investment process is the development of an investment strategy 
to take advantage of the changing risk of the financial market. An understanding of the major 
trends is, therefore, crucial for developing investment strategies.  

In this context the investors rely on economic indicators. The indicators are identified as 
leading, coincident and lagging indicators of the business cycle. The aim of this article is to de-
velop a coincident financial market indicator which can encapsulate the state of the economy in a 
single dynamic factor. This indicator would essentially proxy the state of the aggregate knowledge 
about the economy. The dynamic model we propose would also help extend the framework to 
generate one-step ahead forecast of the state of the economy. We demonstrate the statistical prop-
erty of such a coincident indicator by applying it to the Australian stock market.      

To build a coincident indicator of the kind mentioned above, we must extract information 
from several variables. Many economic and/or financial time series are found to be highly corre-
lated, but not necessarily cointegrated. Economists have attempted to make use such observation to 
develop models that might be able to predict the likely direction of the particular market being 
investigated. It has also been found useful to be able to summarise a number of series into a 
smaller number and use that for prediction purposes. In this background the factor structure has 
been employed. Stock and Watson (1991) model of coincident economic indicator is a classic ex-
ample. Since such a factor is essentially unobservable, it is well suited for modelling by an appro-
priate state space system.   

In the next section we describe the process for building the coincident indicator along 
with the technical details (given in the appendix) for estimating such a model. This will be fol-
lowed by a short description of the data set used for empirical study of the Australian stock mar-
ket, analysis of the results and a summary of the article.   
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Model 
One of the key decisions we have to make in modelling time series is the appropriate 

specification of the variance of the process. Several studies have applied the time varying condi-
tional variance to capture the stylised facts. ARCH and GARCH or some variation of these models 
has been employed for this purpose. One important point to remember that in these set up the un-
conditional variance remains constant. Alternative specification of the time varying variance re-
quires an unobserved Markov chain driving this and it can take on one of several possible values 
depending on the state that might occur. This specification also accounts for heteroscedasticity, but 
here the unconditional variance itself is changing. Thus the intuition behind the ARCH/GARCH 
processes and the state changing variance process are quite different.      

We already indicated that the kind of dynamic factor structure we have in mind requires 
the use of state space framework to infer the unobserved component. Most traditional implementa-
tion of such a strategy assumes constant variance process. More recently, though, Chauvet (1998) 
and Chauvet and Potter (2000) have enhanced such a modelling strategy by incorporating hetero-
scedastic innovations. This not only allows them to incorporate different regimes the economy 
might pass through over a long period of time, say twenty years or more. In the following para-
graphs we outline this modelling approach and apply that to infer the indicator variable for the 
financial market.  Chauvet and Potter (2000) also exploit this inferred variable to alter portfolio 
composition in order to earn additional return. In this article, however, we simply focus on the 
statistical properties of the extracted coincident indicator.   

Based upon the related literature we rely on four financial market variables that have been 
reported to be commoving and these are, equity market excess return, proxy for the market volatil-
ity, short-term interest rate and the price-earning ratio. These four variables are believed to be col-
lectively summarising the state of the economy. As we find the short-term interest rate and the 
price-earning ratios are non-stationary, we use the first difference of the log of these variables in 
the model. The preliminary analysis of the principal component of these four variables indicate 
one dominant factor, hence we set up the model to account for this unobserved factor with a given 
dynamic characteristic. Additional details of the data and their sources are given the data section.  

The model is, thus, based around the unobserved dynamic factor with the following struc-
ture:  

 ( )2
110 ,0~ , StSSttt NS

tt
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where, { } 1,0=tS is 1 is the Markov switching variable indicating the state of the financial 
market at any given month. This evolves with its own transition probability property. This is dis-
cussed further in the appendix. The innovation variance also depends on the state of the financial 
market as does the mean of the unobserved factor. This factor is essentially a non-linear proxy of 
the stock market risk. It captures the swings in the stock market at the monthly frequency based 
upon the participants’ perception about the changes in the state of the market.  

Our model assumes that the observations of the four financial market variables are related 
to this dynamic factor as well as its own idiosyncratic innovations. Under this proposal the meas-
urement process is given by,  
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The idiosyncratic innovations are assumed to have an AR(1) structure of their own as de-
scribed by,  
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Here either return, volatility, interest rate or the price-earning variables are represented. 
We also assume that these innovations are uncorrelated between themselves as well as with the i 
innovation of the factor.  With a little thought we could put this set of equations in the state space 
form which is then directly comparable to the model estimation procedure discussed in the appen-
dix. The measurement equation of the state space form is, therefore,  
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 and the state transition equation becomes,  
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The estimation of the unknown parameters of this model is achieved via the numerical 
maximisation of the prediction error form of the likelihood function as described in the appendix.   

Data  
The main sources of the data are tabulated below. The data spans the period from January 

1980 to September 2004.   
  

Data Set Codes from DataStream   

  Price Index  Dividend Yield  P/E Ratio  Interest Rate  

  (PI)  (DY)  (PE)  (IR)  

Australia  TOTXTAU(PI) TOTXTAU(DY) TOTXTAU(PE) ADBR090(IR)  

 
Excess return = [ ] [ ] [ ]( ) 12*12/1lnln*ln 11 tttttt IRPIDYPIPIxs +−−+≡ −−   

Volatility = ( )2
avgt xsxs −    

Empirical Results  
The model outlined above has nineteen unknown parameters to be estimated. We find it 

convenient for the likelihood maximisation if we standardise the response parameter for the excess 
return i.e. in that case other response parameters are essentially relative values with respect to that 
of the excess return series. It is also intuitively meaningful to standardise against the excess return 
series since it is one of the most important quantities for investment managers. Thus, the number 
of parameters to be estimated is reduced to eighteen. 1=retβ . 
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In Table 1 we show all the eighteen parameter estimates along with their standard errors. 
The AR(1) coefficient (φ) of the coincident index is not statically significant. It tends to indicate 
that the mean of this indicator series switches between 0.08 in state 0 to -0.53 in state 1. The state 
0 is easily identified as the low variance regime and the state 1 represents the high variance re-
gime. The difference in the variances in these two states is quite large. The transition probabilities 
suggest that the average duration of state 0 is 13.5 months and that of the state 1 is 3.1 months. 
This observation compares well with empirical regularity that the episodes of instability do not last 
long. From the properties of the ergodic Markov chain we estimate the steady state probabilities of 
the state 0 as 0.81 and that of state 1 as 0.19.   

Since we set, it implies that the scale of the coincident indicator is same as that of the ex-
cess return. The signs of the response coefficients for change in interest rate and volatility suggest 
that positive changes in these variables would impact negatively the coincident indicator. Similarly 
positive change in price-earnings ratio would impact positively the indicator. These are all intui-
tive as well as empirically consistent behaviour of the market. The estimated variances of the four 
financial market variables are close to their sample values. This establishes the correctness of the 
model estimation process. 1=retβ . 

Table 2 lists several diagnostic statistics and the interpretation of these entries are in the 
notes below the table. It shows that the model captures the heteroscedasticity in the series and the 
recursive t statistics support the model specification. As expected the extracted coincident indica-
tor is highly correlated with all the components. It is particularly high with the excess return and 
the market volatility. The signs of the correlations are also intuitively correct. This result confirms 
the efficacy of the non-linear model from which we inferred the unobserved coincident indicator.   

We now focus on the graphs in Figure 1. The probability plot of the state variable being 0 
reveals some interesting facts. The global macro events that affected the stock markets have been 
clearly identified. For example, during the October 1987 stock market crash the probability of the 
stock market being in low volatility state is very low and it shows up in the plot. Also, for the Aus-
tralian stock market the September 1997 Asian financial crisis is a major event and the plot reveals 
that the probability at that time to be in a low volatility state is quite low. Similarly, following the 
event of September 2001, this probability is also very low.  Along with this probability plot the 
coincident indicator is also behaving as intuitively expected. During the major events mentioned 
above the indicator dives quite low. Since the indicator is in the same scale as that of the excess 
return, it implies that the model is picking up the current economic trends quite successfully.   

In order to understand how this coincident indicator may help in investment management 
we need to look at the expression from which this coincident indicator plot has been constructed. 
The equation (A.5) of the appendix shows the way it has been recursively computed. It has the 
characteristic of being one-step ahead projection and thus might be useful in formulating portfolio 
rebalancing strategy in order to gain additional excess return from the stock market. In this article 
we do not pursue this aspect of the investigation. However the analysis and the methodological 
contribution of this article can be adopted and extended in that regard.   

Summary 
Investment strategy in stock markets requires a clear understanding of the state of the 

economy and the likely move in the following period. In this respect the coincident indicator plays 
an important role by not only encapsulating the aggregate knowledge of the economy, but it also 
helps reducing the number of variables required for the decision making process. In this article we 
illustrate the process of building a coincident financial indicator for the stock market in a non-
linear environment. The statistical properties of the indicator support the expected characteristics 
and its possible role in investment decision making process. We also outline the necessary algo-
rithmic details with emphasis on intuition.   
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 Table 1  

Parameter Estimates for the Markov Switching Coincidence Index Model 

  Australia  

Cα   0.08526 
(0.03008)  

1α    -0.52703  
(0.15946)  

φ   -0.03824  
(0.03644)  

2
Cησ    2.8E-06  

(2.2E-07)  

2
1ησ    1.14823  

(0.25991)  

2
retσ    0.21389  

(0.02039)  

2
volσ    0.16100  

(0.01589)  

2
irσ    0.00170  

(0.00022)  

2
peσ    0.00235  

(0.00021)  

volβ    -0.76517  
(0.05383)  

irβ    -0.03439  
(0.00800)  

peβ    0.08096  
(0.00651)  

retθ    -0.09521  
(0.06083)  

volθ    0.68059  
(0.04396)  

irθ    0.37921  
(0.03245)  

peθ    -0.01978  
(0.02411)  

00p   0.92571  
(0.02335)  

11p    
0.67860  

(0.08618)  

Maximum likelihood estimates of the parameters are reported here. The numbers in parentheses are 
the standard errors computed from the diagonal elements of the final covariance matrix.   

 Table 2  

Diagnostic Statistics for the Residuals of the Measurement Equations 

  Portmanteau  ARCH  KS Test  Recursive T  

Australia          

Return  0.211  0.999  0.082  0.560  

Volatility  0.005  0.990  0.118  0.620  

T Bill  0.001  0.015  0.150  0.620  

P/E  0.767  0.991  0.062  0.460  
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Entries are p-values for the respective statistics except for the KS statistic. These diagnostics are 
computed from the recursive residual of the corresponding measurement equation. The null hypothesis in 
portmanteau test is that the residuals are serially uncorrelated. The ARCH test checks for no serial correla-
tions in the squared residual up to lag 26. Both these tests are applicable to recursive residuals as explained in 
Wells (1996, page 27). If the model is correctly specified then Recursive T has a Student’s t-distribution (see 
Harvey (1990, page 157)).  KS statistic represents the Kolmogorov-Smirnov test statistic for normality. 95% 
significance level in this test is 0.079. When KS statistic is less than 0.079 the null hypothesis of normality 
cannot be rejected at the indicated level of significance.  

 Table 3 

 Descriptive Statistics 

  CI  Excess Ret.  Volatility  ∆(P/E)  ∆(IR)  

Sample Mean  -0.0471  0.0191  0.4573  0.0010  -0.0021  

Std. Deviation  0.4976  0.6774  2.2090  0.0642  0.0706  

Corr. with CI    0.813  -0.822  0.727  -0.252  

 
 CI : Coincident Indicator 

 

 
Fig. 1. Estimated State Probabilities and the Coincident Indicator 
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Appendix A 

State Space Model Estimation Algorithm  
State Dynamic Subject to First Order Markov Chain Evolution   

We discuss the problem of estimation of a state space model when only the state equation 
is subjected to multiple regimes and the switch between regimes takes place according to a first 
order Markov chain. Both the mean and the variance part of the state equation may be subjected to 
this influence. Following the steps of this algorithm is important in understanding the accompany-
ing program logic. Without the presence of this Markov chain, the state space system can be esti-
mated by using the standard Kalman filter recursion and updating algorithms that would be used to 
derive the prediction error form of the likelihood function.  

The main issues that have to be addressed due to the Markov chain driving the state tran-
sition are: 1) The probabilities of being in a particular state assuming that the system was in a 
given state in the previous time step, 2) How to cope with the exploding number of states to be 
accounted for as each observation is processed. For example, given that there are only two states 
possible, then at each time step there is a two-fold increase of number of state to account for. This 
implies that for a 100-time step observation of a given system there will be at the end states to be 
dealt with. This is clearly impractical. Hence, there is a need for approximating the system with a 
sensible approach. The algorithm discussed below deals with the first issue following the approach 
suggested in Hamilton (1989) and the second issue is addressed by the algorithm suggested in Kim 
(1994). Kim’s procedure collapses the number of states to the previous number by a probability 
weighting scheme. Thus for a two-state Markov chain, we will always deal with two states after 
each observation input is processed. 2100   

 The general structures to reference with respect to these algorithms we focus on the sys-
tem given in equation (A.1) as the measurement equation and the equation (A.2) as the state equa-
tion. Obviously, all the matrices and vectors are of compatible dimensions. The 2-state Markov 
chain { } 1 is 1,0=tS is used as a suffix to explicitly recognise those variables that may depend on 
the state we are in at any time. The equation (A.3) also states that the innovations of the measure-
ment and the state equations are uncorrelated.   

 tttt eAzHy ++= β , (A.1) 

 tStSSt ttt
GFM νββ ++= −1 , and (A.2) 
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The covariance matrix of the innovations in measurement equation is given by R and that 
of the state equation is given by. This representation is somewhat general and not all the elements 
of the system could be present for a given problem. For example, the component  is the measure-
ment equation suggests possible presence of endogenous variables entering the measurement proc-
ess through the coefficient matrix. AzAzQ ttSt

. 
We next focus on the prediction and the updating equation of the basic Kalman filter as-

suming that in the previous time slot =−1tS  and the next time step it is. At this stage we define 

the probability transition matrix for the Markov chain variable. This is given by, =−1tS . 
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Following Harvey (1991) and Kim and Nelson (1999) and assuming that we are moving 
from state realisation of  to state realisation, the relevant equations are given below. ij 

 Prediction:  
i
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In the above equations, is the state vector estimated based upon information at time (t-1), 
and the equation (A.5) states how it would evolve if at time t the state realisation happens to be j. 
Similar interpretation applies to the estimate of the state covariance matrix, with respect to the 
equation (A.6). The equation (A.7) describes the forecast error at time t when the state realisation 
is j assuming the previous state was i at time (t-1). The equation (A.8) gives the covariance of the 
forecast error just discussed above. Thus, the equations (A.7) and (A.8) would provide the input 
required to build the state dependent conditional density of observations. The updating equations 
propel the equations (A.5) and (A.6) based upon the observations just made and makes it ready for 
use at the next time step. Thus, the basic nature of the Kalman filter is preserved; only these are 
now state contingent. Obviously, for this recursive procedure to work, we need to supply the prior 
starting values for. We use the method discussed in Kim and Nelson (1999, p. 27).  

i
tt 11 −−β i

ttP 11 −− 00β , 00P . 

For a two state Markov process, this recursion in the filter produces (posteriors for  and  
when moving from (t-1) to t. Kim (1994) develops the following approximation where by taking 
appropriate weighted average over the states at (t-1) from which the particular state at t could be 
reached, this can be reduced to. (We define the probability weighting as, 2×2) ji

tt
,β ji

ttP , 2). 
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where, is the information available at time t. Therefore, the approximation for the state 
vector is, tψ  
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and the approximation for  is, j
ttP  
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 The equations (A.12) and (A.13) describe the nature of approximation applied to collapse 
the  posteriors to  posteriors with the help of the probability weighting factor. The detailed deriva-
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tion of this could be found in Kim and Nelson (1999, p. 101). The probability terms necessary to 
achieve this can be obtained as follows: (2×2)(2) 
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where as before i. With the help of the forecast error in the prediction relations we can 
now construct the numerator (in the parentheses) of the last term of equation (A.14) as, = 0, 1 and j 
= 0, 1. Wit 
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and [ ]my tt 1Pr −ψ may be expressed as,  
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It may be recognised that the last product term in equation (A.14) is the transition prob-
ability. Furthermore, the separation of the joint probability in equation (A.14) is possible due to the 
Markov assumption. The equation (A.16) shows how to propagate the probability information as 
new observation is processed. This also gives the log likelihood function that has to be maximised 
with respect to all the unknown parameters in the model by using some suitable numerical optimi-
sation routine. 

The logic of propagation of the probability information requires starting values at time 0. 
This is based on steady state probabilities of the assumed ergodic Markov chain. In this context we 
adopt the steps outlined in Kim and Nelson (1999, p. 71).   

This Markov switching state space model generate, during the estimation process, the 
conditional variance of the forecast error given by equation (A.8) based upon a given state realisa-
tion. Using the probability of the state occurring as discussed above, we could easily construct the 
conditional variance of the state process. The conditional variance is thus given by,  
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In a similar manner the estimate of probability weighted forecast error could be generated 
by using (A.7). This generated error series may then be analysed for model diagnostics tests. Fur-
thermore, we make inference of the expected state vector based on the relation given by equation 
(A.17) but the last term is replaced by ji

tt
,β  from the equation (A.9).   


