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Stable Modeling of different European Power Markets 
Christian Mugele, Svetlozar T. Rachev and Stefan Trück  

Abstract 
In this paper we address the issue of modeling spot prices of different European power 

markets. With the German, Nordic and Polish power markets we consider three markets at a very 
different stage of liberalization. After summarizing the stylized facts about spot electricity prices, 
we provide a comparison of the considered markets in terms of price behavior. We find that there 
are striking differences: while for the Nordic and German power exchange prices show heavy tails, 
spikes, high volatility and heteroscedasticity, returns of spot prices in the Polish market can be 
modeled adequately by the Gaussian distribution. We introduce the stable Paretian distribution to 
capture heavy tails, high kurtosis and asymmetries in electricity spot prices. We further provide 
ARMA/GARCH time series models with Gaussian and stable innovations for modeling the behav-
ior of the different markets. 

 
AMS Classification: 62P20; 62-07; 91B70; 62M10.  
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1. Introduction 
The last decade has witnessed radical changes in the structure of the power markets in 

Europe. While the process of regulation and liberalization in some countries is still subject to current 
debate and legislation, market integration in the European Union requires harmonizing electricity 
markets. The first to start liberalizing their electricity markets in Europe, were England and Wales in 
1990 (see Bundesministerium für Wirtschaft und Arbeit, 2003)). Thereby, power exchanges play an 
increasingly important role, since electricity has transformed from a primarily technical business, to 
one in which the product is treated in much the same way as any other commodity (Pilipovic, 1998). 
However, for the modeling of electricity prices and the valuation of electricity derivatives we cannot 
simply rely on models developed for financial or other commodity markets. Electricity is non-
storable (at least not economically), which causes demand and supply to be balanced on a knife-edge. 
Relatively small changes in load or generation can cause large changes in price and all in a matter of 
hours, if not minutes. In this respect there is no other market like it. The special characteristics of 
electricity spot market prices are the motivation for this paper. More precisely, we describe and com-
pare electricity spot markets’ data of Nord Pool, the European Energy Exchange and Gielda Energii 
SA. Adequate models of price dynamics capturing the main characteristics of electricity prices are a 
key issue, since spot prices are one of the main factors not only for risk management but also for stra-
tegic planning and decision support systems of the market players.  

The paper is set up as follows. Section 2 summarizes the stylized facts about spot electric-
ity prices. In section 3 we compare the data by using descriptive statistics. We find that the data 
exhibit high kurtosis and heavy tails and remove deterministic effects and outliers. Section 4 re-
views the most important facts on the stable distribution and illustrates the superior fit of the dis-
tribution to spot prices in comparison to the normal distribution. In section 5 we provide ARMA 
and GARCH models with focus on the different performance of Gaussian and stable Paretian 
processes for the innovations. We find evidence that the latter also performs better in time series 
modeling of energy price data. Section 6 concludes and makes some suggestions for future work. 

2. Particularities of electricity spot prices 
In contrast to other financial markets the spot electricity market is actually a day-ahead 

market. A classical spot market would not be possible, since the system operator needs advanced 
notice to verify that the schedule is feasible and lies within transmission constraints. The spot is nor-
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mally an hourly contract with physical delivery and is not traded on a continuous basis, but rather in 
the form of a conducted once per day auction. It is the underlying of most electricity derivatives.  

Several countries have deregulated their power markets in the last decade. Among the 
considered countries the process started in the Nordic region in 1995. The last Nordic country to 
fully open its power market was Denmark in 2003. As a reply to EU Directive 96/92/EC Germany 
liberalised its market in 1998. Still, this shift in regulation and the idea of separating monopolistic 
and competitive activities are not completely implemented. Access to the network is still an obsta-
cle to free trade, market concentration is high and state interventions persist for environmental 
reasons or as special economic help for former Eastern Germany. The latter results from the Ger-
man reunification. This economic transition to capitalism is even more pronounced in Poland. The 
existence of long-term power purchase agreements that account for 54% of electricity purchases is 
the most prominent example. The liberalisation of the Polish power market is still in progress. It 
started in 2003 for consumers with a yearly purchase of over 10 GWh and will be finished in 2006 
only. The differences in market matureness and liberalisation are also reflected in the establish-
ment of the power exchanges. Nord Pool was established as soon as 1993 while GE SA and EEX 
followed in 2000 and 2002.  

2.1. Seasonality 

Due to the realtime balancing needs of electricity and the resulting strong dependency on 
cyclical demand electricity prices are very cyclical itself. This seasonal component in electricity 
prices is more pronounced than in any other commodity and several different seasonal patterns can 
be found in electricity prices during the course of a day, week and year. They mostly arise due to 
changing climate conditions, like temperature and the number of daylight hours. Also in some coun-
tries the supply side shows seasonal variations in output. Hydro units, for example, are heavily de-
pendent on precipitation and snow melting, which varies from season to season. Thus, the seasonal 
fluctuations in demand and supply translate into the seasonal behavior of spot electricity prices.  

 

 

Fig. 1. EEX – Hourly spot prices from September 23 to September 25, 2002 

An exemplary intraday pattern for the EEX can be seen in Figure 1 where the intraday 
evolution of hourly spot prices for a sample of three days from September 23 to September 25, 
2002 at the EEX is plotted. Prices always start rising between 6 a.m. and 8 a.m. and peak during 
midday. Starting at about 6 p.m. to 8 p.m. prices start falling again. Similar effects can also be ob-
served for a weekly as well as an annual seasonal pattern.  

2.2. Volatility 

Another stylized fact about electricity spot prices is the unusually high volatility of prices. 
The volatility seen in electricity prices is unprecedented in financial and other commodity markets. 
It is not unusual to observe annualized volatilities of more than 1000% on hourly spot. The high 



Investment Management and Financial Innovations, 3/2005 

 

67

volatility can be traced back to the storage and transmission problems and the need for markets to 
be balanced in real time. Inventories cannot be used to smooth price fluctuations. Temporary de-
mand and supply imbalances in the market are difficult to correct in the short-term. Therefore 
price movements in electricity markets are more extreme than in other commodity markets.  

2.3. Mean reversion 

Besides seasonality, electricity spot prices are in general regarded to be mean reverting 
(Schwartz, 1997). Mean reversion is a critical difference between the electricity and most financial 
markets. While interest rate markets exhibit mean reversion in a weak form, the actual rate of re-
version appears to be related to economic cycles and is therefore slow. In electricity markets, how-
ever, the rate of reversion is very strong. The mean reverting nature of electricity spot prices can 
be explained by the markets fundamentals. When there is an increase in demand generation assets 
with higher marginal costs will enter the market on the supply side, pushing prices higher. When 
demand returns to normal levels, these generation assets with relatively high marginal costs will be 
turned off and prices will fall. It is this rational operating policies for generation assets that support 
the assumption of mean reversion of electricity spot prices. Thus, in the short-run, mean reversion 
results from the cyclical mean reverting nature of demand as the determinants of demand, the 
weather and climate are cyclical as well.  

2.4. Jumps and Spikes 

In addition to mean reversion and strong seasonality on the annual, weekly and daily 
level, spot electricity prices exhibit infrequent, but large jumps. The spot price can increase tenfold 
during a single hour. These spikes are the result of occasional outages or capacity limits of genera-
tion or transmission assets or a sudden, unexpected and substantial change in demand. Then de-
mand reaches the limit of available capacity and the electricity prices exhibit positive price spikes. 
When the relevant asset is returned to service or demand recedes, prices rapidly revert to their pre-
vious levels. In periods where demand is reduced, electricity prices fall. Due to the operating cost 
or constraints of generators, who cannot adjust to the new demand level, negative price spikes can 
also occur. Spikes are normally quite short-lived, and as soon as the weather phenomenon or out-
age is over, prices go usually back to a normal level.   

3. Descriptive statistics of the Data 
In this section we will investigate three different markets in terms of spot price behavior. Nord 

Pool1 is one of the best functioning power exchanges we could identify. A high market share compared 
to other non-mandatory exchanges, a high number of participants and a high variety of traded products 
can be observed. Moreover, it interconnects four different countries. The European Energy Exchange 
(EEX) in Leipzig is less developed but growing. Germany is the biggest producer of electricity in the 
European Union and liberalised its market completely in 1998. The least mature power exchange is 
Gielda Energii SA (GE SA). Market activity is still low and market opening is below fifty percent. 
However, electricity consumption in Poland is expected to grow by 2% a year during the next ten years 
(see Finish Energy Industries Federation, 2003). As Poland joined the European Union on May 1, 2004 
an early investigation of the market also seems to be of high interest.  

3.1. The data 

A first comparison of the three data sets already indicates that there are big differences 
between the three markets. Spot prices at EEX and Nord Pool with their excess kurtosis are heavy 
tailed and skewed to the right. The limited number of observations clearly reduces the significance 
of results for GE SA but prices are obviously less ’extreme’ with low kurtosis and a pretty sym-
metric shape.  

Basic descriptive statistics of the observed data can be found in Table 1, while histograms 
for spot prices of Nord Pool and Gielda Energii Power Exchange are plotted in Figure 2. 

                                                           
1Nord Pool operates in the Nordic region that consists of Denmark, Norway, Finland and Sweden. 
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Table 1 

Spot Markets Data 

 EEX Nord Pool GE SA 
Unit Euro/MWh NOK/MWh PLN/MWh 
Mean 22,3338 132,7327 116,9176
Maximum 240,26 633,3642 145,6596
Minimum 3,47 21,2708 82,8708
Std. Dev. 11,5923 44,5758 15,81
Skewness 9,8952 1,271352 -0,2196
Kurtosis 167,3329 11,9688 2,0349
Observations 926 2101 152

Sample range 
19/06/2000 – 
31/12/2002 

30/12/1996 – 
30/09/2002 

01/07/2002 – 
30/11/2002 
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Fig. 2. Histograms of the raw data for the Nord Pool and Gielda Energii Power Exchange 

3.2. Preprocessing 

3.2.1. Outlier detection 
Some of the used methods and measurements to describe and further analyze the data are 

very sensitive against outlying values, e.g. the autocorrelation coefficient. One might also consider 
such outlying values as market anomalies that cannot be captured in our analysis. When identify-
ing seasonal and weekly patterns outliers would also disturb these results. 

To identify an outlying value we create one time series for each weekday to take into ac-
count cyclic effects within one week. Every observation that deviates more than three times the 
standard deviation from the mean is considered to be an outlier. These observations are then re-
placed by the mean of the respective series. After one round we stop. This way we try to balance 
the disturbing influence that outliers have on the analysis and the disturbing influence induced by 
replacing extreme values. 

Nord Pool 
During the sample range nine outliers are identified. They all occur in winter, basically in 

January and February and break the upper constraint. The highest spot market price was reached 
on February 5, 2001. It was 633.36 NOK/ MWh while the average price in February is 152.56 
NOK/ MWh. Outliers do not occur on a special weekday. Three blocks with two or more outliers 
within one week are observed. This gives evidence to heteroscedasticity.  

European Energy Exchange 
At the EEX outliers are also often observed sequently. Two blocks are striking, one in 

mid-January 2001 and another in January 2002. The high loads during the winter seasons are one 
technical explanation. However, high daily average prices were also paid in June, July and August 
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2002. This might be linked to the fact that in Germany short term regulating power is not widely 
available as in the hydro dominated Nordic system. 
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Fig. 3. Spot market prices, GE SA 01.07.2002-30.11.2002 

Gielda Energii SA 
Unalike, none of the daily spot prices as traded at GE SA is an outlier. To illustrate this, 

Figure 3 shows the daily spot prices at GE SA as well as the overall mean ±  three times the sam-
ple standard deviation for all weekdays. However, the visual inspection of the graph gives evi-
dence that there may be a structural break in the data considering the last two months. The short 
observation time makes such interpretations difficult. 

3.2.2. Seasonal fluctuations 
Electricity prices highly depend on cyclic effects such as seasons, weekdays and hours. 

Obviously, temperature, daylight, or rainfall vary and thereby show a cyclic behavior. We remove 
weekly and yearly effects assuming constant patterns of the form  

= ⋅ ⋅t t t tx m s ε , 

where tx  is the observation in time, tm  is the current mean, ts  is the seasonal effect and 

tε  is a random error. This allows us to ignore those fluctuations when estimating the time series later 
on. The short sample range for the Polish power exchange allows to identify weekly effects only.  

Two examples should illustrate the need to take into account those effects. Figure 4 shows 
the monthly average prices for Nord Pool as well as the daily average prices for GE SA.  
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Fig. 4. Seasonal Patterns of Spot Prices (Nord Pool – Monthly average prices, GE SA – Daily average prices) 



Investment Management and Financial Innovations, 3/2005 

 

70 

Shortcomings of this seasonal adjustment are that the fluctuations within one period 
should not be too big and that the number of observations for each period (especially for each 
month) should not differ. It is furthermore assumed that the errors tε  are eliminated by calculating 
the arithmetic mean.  

Weekly pattern 
The weekly patterns are calculated for all three spot markets. The weekly patterns of all 

three markets show strong weekend effects. Prices are lower on Saturdays and Sundays what 
might be little surprising. Tuesday is the day with the highest prices at EEX and Nord Pool.  

Table 2 

Ŝweekday 

 Mon Tue Wed Thu Fri Sat Sun 
Nord Pool  0.965 0.958 0.963 0.967 0.991 1.063 1.094 
EEX  0.895 0.845 0.856 0.850 0.921 1.166 1.467 
GE SA  1.002 0.957 0.938 0.973 0.985 1.053 1.091 

 
Yearly pattern 
The yearly pattern for Nord Pool is most reliable by virtue of the wider sample range. The 

Nord Pool data comprise almost six years whereas for EEX prices of two and a half years are con-
sidered. 

Table 3 

Ŝmonth 

 Jan Feb Mar Apr May Jun 
Nord Pool 0.7866 0.8903 0.9666 0.9902 11.136 10.813 
EEX 0.8243 10.220 10.610 0.9531 11.299 10.345 
 Jul Aug Sep Oct Nov Dec 
Nord Pool 13.566 11.145 0.9996 10.004 0.8866 0.8136 
EEX 11.616 10.962 0.9223 10.334 0.9162 0.8455 

 
Yearly patterns highly depend on the geographic location of the supply area. In Califor-

nia, for example, air-conditioning has a significant effect on electricity demand and as a result in 
prices. In such a region prices are high in summer and low in winter.  

In the Nordic region heating and light lead to high monthly prices in January and Decem-
ber while prices decline during summer. Geography matters not only for the demand side. Using 
natural resources such as water also the electricity generation is affected.  

At the EEX the resulting pattern is different. In April and September the annual effect is 
positive. A wider range might smooth the shape of this pattern as we can see no obvious reason for 
these two little peaks.  

3.2.3. Preprocessed data 
The preprocessing consisted of outlier replacement and seasonal adjustment. The result-

ing time series are the starting point for further modeling and estimations. They are plotted in Fig-
ures 5, 6 and 7 along with their first differences. The first differences are also referred to as returns 
in the course of this study1.  

                                                           
1Some authors, however, use a different notation and define the returns tr   as the first differences of the natural logarithm 

of the prices ( 1lnln −− tt PP ) multiplied with 100, where tP  is the price at time t. 
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Fig. 5. EEX – Pre-processed data (Levels, Returns) 

Volatility at the EEX seems to increase over time. This might be the result of an increas-
ing market activity. The returns of the Nord Pool data as well as the one of the EEX data exhibit 
heteroscedasticity. That means that there are times of higher volatility. The visual inspection of the 
returns underlines the different behavior of the GE SA data in comparison to EEX and Nord Pool. 
The properties of the preprocessed data are summarised in Table 4. 
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Fig. 7. Gielda Energii SA – Pre-processed data (Levels, Returns) 
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Table 4 

Pre-processed data 

 EEX Nord Pool GE SA 

Unit Euro/MWh NOK/MWh PLN/MWh 

Mean 205.388 1.292.929 1.165.638

Maximum 541.636 2.827.303 1.516.295

Minimum 24.794 251.947 806.492

Std. Dev. 48.698 381.894 147.094

Skewness 10.789 0.9116 -0.1778

Kurtosis 83.773 43.111 22.907

Observations 926 2101 152

Sample range 19/06/2000 - 31/12/2002 30/12/1996 - 30/09/2002 01/07/2002 - 30/11/2002 

4. Fit of the Stable and Normal Distributions 
Before applying time series modeling we compare the goodness of fit on the spot market 

data of the normal and the stable distribution. The stable Paretian or α -stable distribution is there-
fore introduced first. In a variety of applications it was proofed that in general the stable distribu-
tion provides a superior fit to financial data compared to the Gaussian distribution, Rachev and 
Mittnik (2000). For risk management in energy markets the stable distribution was already tested 
by Khindanova et al. (2001).  

4.1. Stable Paretian Distribution 

The definition and basic properties of the stable Partian distribution or α -stable distribu-
tion are given in this appendix. A definition of the stable distribution can be found for example in 
Rachev and Mittnik (2000).  

4.1.1. Definition 
Let X be a random variable with stable distribution. The following theorem fully charac-

terizes a random variable with stable distribution. Let X  be a random variable. The following 
conditions are equivalent:  
Let +, ∈a b R  and 1X , 2X  be independent copies of the random variable X . There exist 0>c  

and ∈d R  such that 

 1 2+ +=
d

aX bX cX d , (1) 

where =
d

 denotes equality in distribution.  

Let n  be a positive integer, 2≥n , and 1 2, , , nX X … X  be independent copies of X . 

There exist +∈nc R  and ∈nd R  such that  

 1 2+ + + +=L
d

n n nX X X c X d . (2) 

X  has a domain of attraction, i.e. there is a sequence of i.i.d. random vari-
ables NiwithYi ∈ , a real positive sequence Niwithdi ∈  and a real sequence 

Niwithai ∈  such that  
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The most common ways to define a stable Paretian distribution are definitions one and 
four. 

4.1.2. Basic Properties 
The parameters of a stable Paretian distribution describe the stability, skewness, scale and 

drift. Referring to Definition 4 these characteristics are represented by α , β , σ  and µ .  
These parameters satisfy the following constraints:  

α  is the index of stability (0 2)< ≤α . 
For values of α  lower than 2  the distribution is becoming more leptocurtic in compari-

son to the Normal distribution. That means that the peak of the density becomes higher and the 
tails heavier.  

When 1>α , the location parameter µ  is the mean of the distribution.  
β  is the skewness parameter ( 1 1)− ≤ ≤β . 
A stable distribution with 0= =β µ  is called symmetric α -stable ( S Sα ). If 0>β , 

the distribution is skewed to the right. If 0<β , the distribution is skewed to the left.  
σ  is the scale parameter ( 0)≥σ . 

The scale parameter σ  allows to write any stable random variable X  as 0=X Xσ  

where 0X  has a unit scale parameter and α  and β  are the same for X  and 0X .  

µ  is the drift ( )∈ Rµ .   
To indicate the dependence of a stable random variable X  from its parameters, we write:  

),,(~ µσβαSX . 

The stable Paretian distribution is reduced to the Normal distribution if 2=α  and 
0=β . Obviously the stable distribution offers more parameters to fit it to the actual data than 

e.g. the normal distribution.  
The word stable is used because the shape is preserved (apart from scale and shift) under 

addition such as in Equation 1. The stable characteristic is also given under additional schemes 
(Maximum, minimum, etc.). 

4.2. Estimated parameters and performance measures 

Having introduced the stable Paretian distribution we compare its goodness of fit on the 
spot market data to the normal distribution. The parameters of the α -stable distribution are calcu-
lated using a numerical maximum likelihood method that was implemented by Stoyan Stoyanov 
from BRAVO Group. For further reading on maximum likelihood estimation we refer to Rachev 
et al. (2000)1. 

                                                           
1p. 91 ff. 
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We then compare the Kolmogorov distance (KD) and the Anderson-Darling (ANS) statis-
tic of both estimations. The latter measurement is more sensitive against the goodness of fit in the 
tails while the Kolmogorov distance compares the maximum deviation of the empirical sample 
distribution from the estimated distribution function. 

4.2.1. Original data 
First, we refer to the original daily spot market prices that still incorporate the high third 

and fourth moments. Table 5 shows the estimates for both distritions on all three data sets.  

Table 5 

Estimates of unconditional distributions – Original data 

         Parameters 

  α  µ  σ  β  

 2 150.4494 88.8184 0 Nord Pool 
                             Stable 1.5344 151.8318 31.0115 1.000 

Normal 2 22.3067 11.5841 0 EEX 
                             Stable 1.7630 22.1589 4.4283 1.000 

Normal 2 116.9176 15.8121 0 GE SA 
                             Stable 2.0000 116.9166 11.1462 -0.2694 

  
The skewness of the EEX and Nord Pool data is very high. The parameter β  which 

ranges from -1 to 1 reaches its maximum value in both cases. Again, the GE SA data differ. Very 
little and even negative skewness is indicated by the parameter β  which is relatively close to 
zero. A behavior that might not be expected beforehand regarding the marginal production costs of 
electricity depending on the energy source which usually results in price spikes during peak times.  

 

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
EEX − Daily prices

Empirical Density
Stable Fit
Gaussian (Normal) Fit

 
Fig. 8. EEX – Empirical and theoretical density functions 

Table 6 presents the Kolmogorov distance and the Anderson-Darling statistic for the 
normal and the α -stable case. 
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Table 6 

Goodness of fit of unconditional distributions – Original data 

 Kd Ans 

 Normal Stable Normal Stable 

Nord Pool 0.1772 0.2532 4872.4 0.7264 

EEX 0.1618 0.1041 0.3466 0.2419 

GE SA 0.0662 0.068 0.1901 0.1896 

 
The results show that the α -stable distribution describes the original price data better ac-

cording to these two measurements. Only in the -untypical- case of GE SA with its low market 
activity the normal distribution does not perform worse.  
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Fig. 9. Nord Pool – Empirical and theoretical density functions 

4.2.2. Returns Preprocessed data 
Second, the two distributions are fitted on the returns of the pre-processed data. The pre-

processed data do no longer contain extremely high values and periodic weekly and yearly fluctua-
tions are removed. Again, the estimated parameters, the Kolmogorov distances and the Anderson-
Darling statistics are calculated. The parameters can be found in Table 7. The resulting goodness 
of fit is given in Table 8. 

Table 7 

Estimates of unconditional distributions – Preprocessed data 

  Parameters 

  α  µ  σ  β  

Nord Pool Normal 2 0.0006 11.4745 0 
                                 Stable 1.3664 -0.5626 4.1468 -0.1110 
EEX Normal 2 0.0023 4.5582 0 
                                 Stable 1.5966 0.0203 2.2675 0.0407 
GE SA Normal 2 -0.3039 13.4711 0 
                                 Stable 1.7110 -0.3827 8.2110 0.0571 
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The parameter α  is the smallest in the case of Nord Pool. This reflects a high kurtosis. 
The skewness, indicated by parameter β , is not very distinct in all three cases. The reduced 
skewness mainly results from the fact that now the returns are examined. The parameter β  when 
fitting the stable distribution on the preprocessed data is 1.000, 0.6417 and -0.2573 for Nord Pool, 
EEX and GE SA, respectively. 

Comparing the goodness of fit, the α -stable distribution leads to better results than the 
Normal distribution in all cases. 
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Fig. 10. Empirical and theoretical density functions (Nord Pool, GE SA) 

Table 8 

Goodness of fit of unconditional distributions – Preprocessed data 

 Kd  Ans  
 Normal Stable Normal Stable 
Nord Pool 0.1439 0.0676 2362800.0 0.1344 
EEX 0.0811 0.0186 26.574 0.0538 
GE SA 0.0739 0.0499 0.1715 0.1069 

4.3. Summary 

This first quantitative description of the data reveals a high kurtosis for the EEX and Nord 
Pool data. Additionally, the data are skewed to the right and typical seasonal fluctuations can be 
observed. The GE SA data are very limited and consequently results are not very significant. Es-
pecially the low market activity1 explains this contrasting behavior. Finally, the stable Paretian 
distribution was introduced and fitted on the original data as well as on the first differences of the 
preprocessed data. The comparison of this fit with the Normal case gives empirical evidence that 
the data are more adequately described by the α -stable distribution. 

In the next section some models are presented that allow modeling the conditional mean 
and in a next step the conditional variance of a process.  

5. Time Series Modeling 
We now turn to time series modeling of the spot market data. Autoregressive Moving Av-

erage (ARMA) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models 
are fitted on the returns. We look again at whether the residuals are more likely to be normally or 
α -stable distributed.  

                                                           
1The traded volume of about 1 TWh in 2002 corresponds to less than 1% of the electricity consumption in Poland. Moreover, 
considerable market activity can be observed on the Polish balancing market what reduces the interest in the spot market. 
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5.1. ARMA modeling 

Before we start modeling an Augmented Dickey-Fuller (ADF) test as introduced by 
Dickey and Fuller (1979) is performed to test whether the data is stationary1.  

According to the ADF test2 the hypothesis of a unit root in the returns is rejected at the 
1% level for the raw and the adjusted returns (see Table 9). 

Table 9 
ADF test results 

 Nord Pool EEX GE SA 

Daily prices  -30.42 ***  -22.85 ***  -10.30 *** 

Preprocessed data  -28.04 *** -20.86 ***    -8.94 *** 

 
ARMA models allow modeling a conditional mean. The mean of the next period 1+t  

depends on the information that is available up to the current period t . For the AR and MA terms 
a lag structure of up to four was considered. For a fixed AR order the best MA order was deter-
mined according to the Akaike criterion. 

We finally choose these three models: 
Nord Pool: ARMA(4,3) with AR(3) omitted 
EEX: ARMA(3,3) with MA(2) omitted 
GE SA: ARMA(3,4) 
The estimation was done by using EViews 3.1. The results are provided in Table 10. The 

standard deviation of each parameter is given in parenthesis below each value. Parameters fixed to 
zero are indicated by 0. 

Table 10 

ARMA estimation results 

 Nord Pool EEX GE SA 
AR(1) 0.3264 0.8221 0.4604 

 (0.0421) (0.0520) (0.0672) 
AR(2) -0.5594 0.1872 -0.2583 

 (0.0432) (0.0469) (0.0723) 
AR(3) 0 -0.0793 -0.6500 

 -- (0.0430) (0.0657) 
AR(4) -0.1374 -- -- 

 (0.0238) -- -- 
MA(1) -0.6144 -1.3538 -1.1443 

 (0.0420) (0.0415) (0.0126) 
MA(2) 0.5609 0 0.4940 

 (0.0343) -- (0.0210) 
MA(3) -0.1343 0.3566 0.5580 

 (0.0232) (0.0387) (0.0097) 
MA(4) -- -- -0.4578 

 -- -- (0.0334) 
 

                                                           
1Stationary is again used in the sense of weakly stationary. 
2ADF test with lag 4, no trend and no intercept assumed. 
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The ARMA estimation assumes the residuals to be normally distributed. To test whether 
this assumption holds in the case of our data we fit the Normal and the stable distribution on the 
residuals. The estimated parameters are shown in Table 11. 

Table 11 

Estimated parameters of the ARMA residuals 

         Parameters 

  α  µ  σ  β  

Nord Pool Normal 2 0.0403 10.6195 0 
                     Stable 1.5369 -0.0830 4.8379 0.0009 
EEX Normal 2 0.001 3.9259 0 
                     Stable 1.6158 -0.055 2.0156 0.0722 
GE SA Normal 2 -0.7282 10.4568 0 
                     Stable 1.7575 -1.0312 6.4485 -0.6301 

 
If the residuals were normally distributed µ  should be close to zero. To see whether the 

Normal or the α -stable distribution perform better their goodness of fit is compared. As before 
we calculate the Kolmogrov distance and the Anderson-darling statistic (see Table 12).  

Table 12 

Goodness of fit of ARMA residuals 

        Kd Ans 

 Normal Stable Normal Stable 
Nord Pool 0.0952 0.0124 8920000 0.0531 
EEX 0.0812 0.0249 560.956 0.0769 
GE SA 0.0736 0.0977 0.5319 0.2047 

Again, the normal assumption does not verify. The goodness of fit is much better for the 
stable case. A visual inspection of the empirical and theoretical distribution functions as in Figure 
11 underlines these results. 
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Fig. 11. EEX – ARMA residuals 
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As the autocorrelations (ACs) of the squared residuals are significant for the Nord Pool 
and EEX data1 we model conditional variances using a GARCH model. 

5.2. GARCH modeling 

In the next step, the estimated ARMA models are extended. The Nord Pool and EEX time 
series are reestimated including a GARCH(1,1) term. GARCH models were first introduced by 
Engle (1982) and generalized by Bollerslev (1986). 

Consequently, the estimated models are: 
Nord Pool: GARCH(1,1) extended by ARMA(4,3) with AR(3) omitted 
EEX : GARCH(1,1) extended by ARMA(3,3) with MA(2) omitted 
The estimation results can be found in Table 132. 
As an example we explicitly describe the resulting process for the EEX case:  

1 1 2 2 3 3 1 1 3 3− − − − −= + + + + +t t t t t t tX X X Xα α α β ε β ε ε  

where tε  follows a GARCH(1,1) process. 

That means in our case that = ⋅ ,t t tε σ υ  with 2 2 2
1 1 1 1− −= + +t t tσ ω δ ε φ σ , where tυ  is 

i.i.d. N(0,1).  
The GARCH terms are all significant. The assumption in the case of our GARCH model 

is that the innovations tυ  are normally distributed. To test whether this assumption holds the in-
novations have to be extracted out of the residuals. 

Table 13 

GARCH estimation results 

 Nord Pool EEX 
AR(1) 0.9449 0.8357 

 (0.0263) (0.0427) 
AR(2) -0.0647 0.2010 

 (0.0375) (0.0532) 
AR(3) 0 -0.1016 

 -- (0.0417) 
AR(4) 0.0680 -- 

 (0.0227) -- 
MA(1) -1.0938 -1.3450 

 (0.0000) (0.0299) 
MA(2) 0.0912 0 

 (0.0366) -- 
MA(3) 0.0115 0.3492 

 (0.0362) (0.0262) 
ω 21.1794 0.0736 
 (1.1827) (0.0444) 

ARCH(1) 0.3660 0.0811 
 (0.0265) (0.0109) 

GARCH(1) 0.4677 0.9261 
 (0.02196) (0.0091) 

                                                           
1They exceed the approximate two standard error bounds computed as 2±

T
. If the AC is within these bounds, it is not 

significantly different from zero at (approximately) the 5% significance level. 
2Standard deviation in parentheses. 
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To do so, we need to set a starting value for 2
1σ  for which we choose the variance of the 

residuals. 
Equivalently to the ARMA residuals, we want to check whether the assumption that the 

innovations are normally distributed is realistic. Accordingly, we fit the Normal distribution on the 
innovations as well as the α -stable distribution. The results can be found in Table 14. 

Table 14 

Estimated parameters of the GARCH innovations 

         Parameters 

  α  µ  σ  β  

Nord Pool Normal 2 0.0079 1.0118 0 

                     Stable 1.6143 -0.0163 0.5236 -0.0777 

EEX Normal 2 0.0199 0.9900 0 

                     Stable 1.7024 0.0153 0.5629 0.1565 

 
The Kolmogorov distance and the Anderson-Darling statistic are then calculated to com-

pare the goodness of fit. These values are presented in Table 15. 

Table 15 

Goodness of fit of GARCH innovations 

        Kd Ans 
 Normal Stable Normal Stable 
Nord Pool 0.0758 0.0355 26500 0.0726 
EEX 0.0665 0.034 22.4231 0.0719 

 
The resulting innovations tυ  show evidence that they are not normally distributed but 

that they follow an α -stable distribution. The goodness of fit that is provided is significantly en-
hanced when fitting the stable distribution in both cases. This is also underlined by the plot of the 
theoretical and empirical distribution functions that can be found in Figure 12. For this reason, the 
idea of a GARCH model assuming the innovations to follow a stable Paretian distribution should 
be further considered.  
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Fig. 12. GARCH residuals (Nord Pool, EEX) 
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5.3. Stable GARCH-M 

As argued above the next step would be to estimate a GARCH model with stable innova-
tions. However, Eviews 3.1 is not able to estimate such a model. For this reason we switch to Matlab 
6.5 at this point to continue with a more advanced model. We use an extended program partly based 
on the UCSD GARCH toolbox for Matlab. For the normal as well as for the stable case we will esti-
mate a GARCH-in-mean (GARCH-M) model and compare their performances in describing the 
data. The estimation procedures used in Matlab and Eviews are different. For example the applied 
Matlab toolbox includes linear constraints which are not included in Eviews. The default estimation 
method in Eviews for GARCH models is the Marquardt algorithm. It is a first derivative method, 
derivatives are computed numerically. In the applied Matlab routine they are computed analytically.  

5.3.1. Definition 
The GARCH-M model is an extension of the GARCH model. The general idea is that in-

creases in the conditional variance are associated with increases in the conditional mean. Accord-
ingly, the mean equation is extended. 

The mean equation of a GARCH-M process is described by  
 ( )= + + .t t tX c fγ σ ε  (4) 
The function ( )tf σ  defines in which way the equation depends on the conditional vari-

ance. Usually the standard deviation tσ , the variance 2
tσ  or the logarithm of the the variance 

2ln( )tσ  are used. 
The variance equation does not change compared to a GARCH process and is given by  

 =t t tε σ υ , (5) 

where ( )1,0~ Ntυ  and 2
tσ  evolves according to 

 2 2 2
− −= + + .∑ ∑t i t i j t jσ ω δ ε φ σ  (6) 

In the stable case the normal assumption for the innovations tυ  is changed to the assump-
tion of α -stable distributed innovations. 

5.3.2. Modeling 
First, we fit a normal GARCH-M model. We chose ( )tf σ  to be ( )⋅ = tf λσ . This re-

flects the mean reverting property of electricity prices.  
The resulting model is described by 

− −= + + +∑ ∑t i t i j t j t tX Xα β ε λσ ε , 

where tε  follows a normal GARCH(1,1) process as in Equations (7) and (8). 
The resulting parameters can be found in Table 16. Standard errors of the parameters are 

in parentheses. 
The results are very different compared to the previous estimations. However, the extension 

to a GARCH-M model should not be the reason. The reasons should be rather found in varying 
constraints and different estimation methods. The parameter λ  is not significant in the EEX case. 
The extension to a GARCH-M model does not enhance the explanatory value of the model in this 
case. In the Nord Pool case all parameters are significant on a 1% level. However, λ  is still rather 
close to zero. 
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Table 16 

Normal GARCH-M 

 EEX Nord Pool 

AR(1) -0.79734 0.5291 

 (0.0243) (0.0509) 

AR(2) -0.29063 -0.70173 

 (0.1231) (0.0179) 

AR(3) 0.25602 0.67242 

 (0.0690) (0.0058) 

MA(1) 0.29802 -0.68536 

 (0.0534) (0.0350) 

MA(2) -0.31266 0.69499 

 (0.1732) (0.0222) 

MA(3) -0.59516 -0.77414 

 (0.0799) (0.0310) 

λ  -0.00039 -0.011662 

 (0.0124) (0.0042) 

σ  0.2701 15.792 

 (0.1129) (2.0956) 

ARCH(1) 0.12502 0.35792 

 (0.0166) (0.0461) 

GARCH(1) 0.87498 0.54518 

 (0.0047) (0.0361) 

 
The resulting innovations are assumed to be normally distributed. We fit a stable distribu-

tion to these innovations. Table 17 shows the estimated values for the α -stable parameters. We 
find that the parameters are very different from the normal case and therefore we estimated a sta-
ble GARCH-M model. 

Table 17 

Estimated parameters 

 α  β  σ  µ  

EEX 1.7336 0.17248 0.57571 0.02153 
Nord Pool 1.6189 -0.08482 0.52233 0.02311 

 

Table 18 

Log likelihood and standard error of regression 

 EEX Nord Pool 
    Log likel. Std. error Log likel. Std. error 
normal M-GARCH -2499 39.848 -7600 10.955 
stable M-GARCH -2436 39.802 -7368 11.187 
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Table 19 shows the estimated parameters for the stable GARCH-M model. Standard er-
rors in parentheses should be handled with care. As due to the infinite variance of the stable distri-
butions the variance matrix of the standard errors cannot be interpreted exactly the same way as in 
the case of normally distributed innovations.  

Using this approach the resulting model describes the data more adequately. The Log-
likelihood value is enhanced for the EEX and Nord Pool data what can be seen in Table 18. Also the 
standard error of regression is better in the EEX case while it increases slightly for the Nord Pool data. 

Table 19 

Stable GARCH-M 

 EEX Nord Pool 

AR(1) -0.78359 -0.01374 

 (0.0377) (0.1818) 

AR(2) -0.16465 -0.16732 

 (0.1407) (0.1862) 

AR(3) 0.29673 0.70763 

 (0.0602) (0.0498) 

MA(1) 0.30244 -0.041222 

 (0.0278) (0.1178) 

MA(2) -0.43095 0.073051 

 (0.1679) (0.1441) 

MA(3) -0.61794 -0.78557 

 (0.0884) (0.0384) 

λ  -0.00777 -0.013525 

 (0.0072) (0.0154) 

σ  0.95771 20.646 

 (0.2275) (3.2819) 

ARCH(1) 0.16175 0.43075 

 (0.0296) (0.0508) 

GARCH(1) 0.80091 0.43127 

 (0.0135) (0.0469) 

 
This way we demonstrate that in the case of the investigated spot prices the assumption of 

normally distributed innovations should be changed. Furthermore, we present a model with α-
stable distributed error terms that leads to a more adequate description of our data and therefore is 
to be preferred to the normal model. The research on estimation methods for time series processes 
assuming the errors to be stable distributed should certainly be continued. Also the performance of 
the α -stable assumption against other distributions should be further examined. 

5.4. Summary 

The processes in this section allow to model conditional means and variances. Again, GE 
SA behaves very differently. The data are not very characteristic for electricity markets and higher 
market activity as well as a larger sample size would be necessary to reasonably model these data.  

Against the Nord Pool and EEX data exhibit heteroscedasticity and the GARCH parame-
ters are both significant. We had a special interest in the assumption that error terms are normally 
distributed. This empirical analysis clearly gives evidence that the α -stable distribution describes 
the resulting errors more adequately than the Normal distribution. Consequently, we fitted a model 
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assuming the innovations to be α -stable distributed. Thereby we demonstrated that this model 
performs better in comparison to the normal case.  

6. Conclusion and outlook 
In this paper we addressed the issue of modeling spot prices of different European power 

markets. We found that there are quite striking differences between the least mature power ex-
change Gielda Energii SA in Poland and the German EEX or Nordic power exchange. While spot 
prices of GE SA could be modeled adequately by a Gaussian distribution, the more mature mar-
kets Nord Pool as well as the German EEX showed jumps and spikes as well as high volatilities 
and heteroscedasticity in spot price data.  

Introducing the stable Paretian distribution, we found that for these markets it provided a 
superior fit to the returns of the spot prices. The reason is that the alpha-stable distribution is able 
to capture phenomena like heavy tails, high kurtosis and asymmetries in electricity spot prices. We 
further fitted a combined ARMA/ GARCH model to describe the time series behaviors of the three 
markets. Investigating the returns and error terms, we found that the assumption of normally dis-
tributed error terms does not hold. Again, the stable Paretian distribution gives a better fit also to 
the error terms, since they exhibit skewness and heavy tails.  

In a last step a GARCH-M model assuming α -stable innovations was estimated. The 
comparison with the normal case clearly shows better log likelihood values what strengthens the 
argument to relax the normal assumption. The results recommend the use of heavy-tailed distribu-
tions for modeling electricity spot prices.  

In future work the results should be compared to other approaches provided by the litera-
ture like jump diffusion or regime switching models (see e.g. Bierbrauer et al., 2004). Furthermore 
advanced stable models like a so-called ARMAX-GARCH-process with heavy-tailed innovations 
(Menn and Rachev, 2005) could be implemented for further spot price modeling and also deriva-
tive pricing.  
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